xref: /original-bsd/sys/hp300/hp300/vm_machdep.c (revision b193be73)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
13  *
14  *	@(#)vm_machdep.c	7.11 (Berkeley) 03/13/92
15  */
16 
17 #include "param.h"
18 #include "systm.h"
19 #include "proc.h"
20 #include "malloc.h"
21 #include "buf.h"
22 #include "vnode.h"
23 #include "user.h"
24 
25 #include "../include/cpu.h"
26 
27 #include "vm/vm.h"
28 #include "vm/vm_kern.h"
29 #include "pte.h"
30 
31 /*
32  * Finish a fork operation, with process p2 nearly set up.
33  * Copy and update the kernel stack and pcb, making the child
34  * ready to run, and marking it so that it can return differently
35  * than the parent.  Returns 1 in the child process, 0 in the parent.
36  * We currently double-map the user area so that the stack is at the same
37  * address in each process; in the future we will probably relocate
38  * the frame pointers on the stack after copying.
39  */
40 cpu_fork(p1, p2)
41 	register struct proc *p1, *p2;
42 {
43 	register struct user *up = p2->p_addr;
44 	int offset;
45 	extern caddr_t getsp();
46 	extern char kstack[];
47 
48 	/*
49 	 * Copy pcb and stack from proc p1 to p2.
50 	 * We do this as cheaply as possible, copying only the active
51 	 * part of the stack.  The stack and pcb need to agree;
52 	 * this is tricky, as the final pcb is constructed by savectx,
53 	 * but its frame isn't yet on the stack when the stack is copied.
54 	 * swtch compensates for this when the child eventually runs.
55 	 * This should be done differently, with a single call
56 	 * that copies and updates the pcb+stack,
57 	 * replacing the bcopy and savectx.
58 	 */
59 	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
60 	offset = getsp() - kstack;
61 	bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
62 	    (unsigned) ctob(UPAGES) - offset);
63 
64 	PMAP_ACTIVATE(&p2->p_vmspace->vm_pmap, &up->u_pcb, 0);
65 
66 	/*
67 	 * Arrange for a non-local goto when the new process
68 	 * is started, to resume here, returning nonzero from setjmp.
69 	 */
70 	if (savectx(up, 1)) {
71 		/*
72 		 * Return 1 in child.
73 		 */
74 		return (1);
75 	}
76 	return (0);
77 }
78 
79 /*
80  * cpu_exit is called as the last action during exit.
81  * We release the address space and machine-dependent resources,
82  * including the memory for the user structure and kernel stack.
83  * Once finished, we call swtch_exit, which switches to a temporary
84  * pcb and stack and never returns.  We block memory allocation
85  * until swtch_exit has made things safe again.
86  */
87 cpu_exit(p)
88 	struct proc *p;
89 {
90 
91 	vmspace_free(p->p_vmspace);
92 
93 	(void) splimp();
94 	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
95 	swtch_exit();
96 	/* NOTREACHED */
97 }
98 
99 /*
100  * Dump the machine specific header information at the start of a core dump.
101  */
102 cpu_coredump(p, vp, cred)
103 	struct proc *p;
104 	struct vnode *vp;
105 	struct ucred *cred;
106 {
107 	int error;
108 
109 #ifdef HPUXCOMPAT
110 	/*
111 	 * BLETCH!  If we loaded from an HPUX format binary file
112 	 * we have to dump an HPUX style user struct so that the
113 	 * HPUX debuggers can grok it.
114 	 */
115 	if (p->p_addr->u_pcb.pcb_flags & PCB_HPUXBIN)
116 		return (hpuxdumpu(vp, cred));
117 #endif
118 	return (vn_rdwr(UIO_WRITE, vp, (caddr_t) p->p_addr, ctob(UPAGES),
119 	    (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *) NULL,
120 	    p));
121 }
122 
123 /*
124  * Move pages from one kernel virtual address to another.
125  * Both addresses are assumed to reside in the Sysmap,
126  * and size must be a multiple of CLSIZE.
127  */
128 pagemove(from, to, size)
129 	register caddr_t from, to;
130 	int size;
131 {
132 	register struct pte *fpte, *tpte;
133 
134 	if (size % CLBYTES)
135 		panic("pagemove");
136 	fpte = kvtopte(from);
137 	tpte = kvtopte(to);
138 	while (size > 0) {
139 		*tpte++ = *fpte;
140 		*(int *)fpte++ = PG_NV;
141 		TBIS(from);
142 		TBIS(to);
143 		from += NBPG;
144 		to += NBPG;
145 		size -= NBPG;
146 	}
147 	DCIS();
148 }
149 
150 /*
151  * Map `size' bytes of physical memory starting at `paddr' into
152  * kernel VA space at `vaddr'.  Read/write and cache-inhibit status
153  * are specified by `prot'.
154  */
155 physaccess(vaddr, paddr, size, prot)
156 	caddr_t vaddr, paddr;
157 	register int size, prot;
158 {
159 	register struct pte *pte;
160 	register u_int page;
161 
162 	pte = kvtopte(vaddr);
163 	page = (u_int)paddr & PG_FRAME;
164 	for (size = btoc(size); size; size--) {
165 		*(int *)pte++ = PG_V | prot | page;
166 		page += NBPG;
167 	}
168 	TBIAS();
169 }
170 
171 physunaccess(vaddr, size)
172 	caddr_t vaddr;
173 	register int size;
174 {
175 	register struct pte *pte;
176 
177 	pte = kvtopte(vaddr);
178 	for (size = btoc(size); size; size--)
179 		*(int *)pte++ = PG_NV;
180 	TBIAS();
181 }
182 
183 /*
184  * Set a red zone in the kernel stack after the u. area.
185  * We don't support a redzone right now.  It really isn't clear
186  * that it is a good idea since, if the kernel stack were to roll
187  * into a write protected page, the processor would lock up (since
188  * it cannot create an exception frame) and we would get no useful
189  * post-mortem info.  Currently, under the DEBUG option, we just
190  * check at every clock interrupt to see if the current k-stack has
191  * gone too far (i.e. into the "redzone" page) and if so, panic.
192  * Look at _lev6intr in locore.s for more details.
193  */
194 /*ARGSUSED*/
195 setredzone(pte, vaddr)
196 	struct pte *pte;
197 	caddr_t vaddr;
198 {
199 }
200 
201 /*
202  * Convert kernel VA to physical address
203  */
204 kvtop(addr)
205 	register caddr_t addr;
206 {
207 	vm_offset_t va;
208 
209 	va = pmap_extract(kernel_pmap, (vm_offset_t)addr);
210 	if (va == 0)
211 		panic("kvtop: zero page frame");
212 	return((int)va);
213 }
214 
215 extern vm_map_t phys_map;
216 
217 /*
218  * Map an IO request into kernel virtual address space.  Requests fall into
219  * one of five catagories:
220  *
221  *	B_PHYS|B_UAREA:	User u-area swap.
222  *			Address is relative to start of u-area (p_addr).
223  *	B_PHYS|B_PAGET:	User page table swap.
224  *			Address is a kernel VA in usrpt (Usrptmap).
225  *	B_PHYS|B_DIRTY:	Dirty page push.
226  *			Address is a VA in proc2's address space.
227  *	B_PHYS|B_PGIN:	Kernel pagein of user pages.
228  *			Address is VA in user's address space.
229  *	B_PHYS:		User "raw" IO request.
230  *			Address is VA in user's address space.
231  *
232  * All requests are (re)mapped into kernel VA space via the useriomap
233  * (a name with only slightly more meaning than "kernelmap")
234  */
235 vmapbuf(bp)
236 	register struct buf *bp;
237 {
238 	register int npf;
239 	register caddr_t addr;
240 	register long flags = bp->b_flags;
241 	struct proc *p;
242 	int off;
243 	vm_offset_t kva;
244 	register vm_offset_t pa;
245 
246 	if ((flags & B_PHYS) == 0)
247 		panic("vmapbuf");
248 	addr = bp->b_saveaddr = bp->b_un.b_addr;
249 	off = (int)addr & PGOFSET;
250 	p = bp->b_proc;
251 	npf = btoc(round_page(bp->b_bcount + off));
252 	kva = kmem_alloc_wait(phys_map, ctob(npf));
253 	bp->b_un.b_addr = (caddr_t) (kva + off);
254 	while (npf--) {
255 		pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
256 		    (vm_offset_t)addr);
257 		if (pa == 0)
258 			panic("vmapbuf: null page frame");
259 		pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
260 			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
261 		addr += PAGE_SIZE;
262 		kva += PAGE_SIZE;
263 	}
264 }
265 
266 /*
267  * Free the io map PTEs associated with this IO operation.
268  * We also invalidate the TLB entries and restore the original b_addr.
269  */
270 vunmapbuf(bp)
271 	register struct buf *bp;
272 {
273 	register int npf;
274 	register caddr_t addr = bp->b_un.b_addr;
275 	vm_offset_t kva;
276 
277 	if ((bp->b_flags & B_PHYS) == 0)
278 		panic("vunmapbuf");
279 	npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET)));
280 	kva = (vm_offset_t)((int)addr & ~PGOFSET);
281 	kmem_free_wakeup(phys_map, kva, ctob(npf));
282 	bp->b_un.b_addr = bp->b_saveaddr;
283 	bp->b_saveaddr = NULL;
284 }
285