xref: /original-bsd/sys/hp300/hp300/vm_machdep.c (revision bd226a66)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
13  *
14  *	@(#)vm_machdep.c	7.10 (Berkeley) 05/07/91
15  */
16 
17 #include "param.h"
18 #include "systm.h"
19 #include "proc.h"
20 #include "malloc.h"
21 #include "buf.h"
22 #include "user.h"
23 
24 #include "../include/cpu.h"
25 
26 #include "vm/vm.h"
27 #include "vm/vm_kern.h"
28 #include "pte.h"
29 
30 /*
31  * Finish a fork operation, with process p2 nearly set up.
32  * Copy and update the kernel stack and pcb, making the child
33  * ready to run, and marking it so that it can return differently
34  * than the parent.  Returns 1 in the child process, 0 in the parent.
35  * We currently double-map the user area so that the stack is at the same
36  * address in each process; in the future we will probably relocate
37  * the frame pointers on the stack after copying.
38  */
39 cpu_fork(p1, p2)
40 	register struct proc *p1, *p2;
41 {
42 	register struct user *up = p2->p_addr;
43 	int offset;
44 	extern caddr_t getsp();
45 	extern char kstack[];
46 
47 	/*
48 	 * Copy pcb and stack from proc p1 to p2.
49 	 * We do this as cheaply as possible, copying only the active
50 	 * part of the stack.  The stack and pcb need to agree;
51 	 * this is tricky, as the final pcb is constructed by savectx,
52 	 * but its frame isn't yet on the stack when the stack is copied.
53 	 * swtch compensates for this when the child eventually runs.
54 	 * This should be done differently, with a single call
55 	 * that copies and updates the pcb+stack,
56 	 * replacing the bcopy and savectx.
57 	 */
58 	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
59 	offset = getsp() - kstack;
60 	bcopy((caddr_t)kstack + offset, (caddr_t)p2->p_addr + offset,
61 	    (unsigned) ctob(UPAGES) - offset);
62 
63 	PMAP_ACTIVATE(&p2->p_vmspace->vm_pmap, &up->u_pcb, 0);
64 
65 	/*
66 	 * Arrange for a non-local goto when the new process
67 	 * is started, to resume here, returning nonzero from setjmp.
68 	 */
69 	if (savectx(up, 1)) {
70 		/*
71 		 * Return 1 in child.
72 		 */
73 		return (1);
74 	}
75 	return (0);
76 }
77 
78 /*
79  * cpu_exit is called as the last action during exit.
80  * We release the address space and machine-dependent resources,
81  * including the memory for the user structure and kernel stack.
82  * Once finished, we call swtch_exit, which switches to a temporary
83  * pcb and stack and never returns.  We block memory allocation
84  * until swtch_exit has made things safe again.
85  */
86 cpu_exit(p)
87 	struct proc *p;
88 {
89 
90 	vmspace_free(p->p_vmspace);
91 
92 	(void) splimp();
93 	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
94 	swtch_exit();
95 	/* NOTREACHED */
96 }
97 
98 /*
99  * Move pages from one kernel virtual address to another.
100  * Both addresses are assumed to reside in the Sysmap,
101  * and size must be a multiple of CLSIZE.
102  */
103 pagemove(from, to, size)
104 	register caddr_t from, to;
105 	int size;
106 {
107 	register struct pte *fpte, *tpte;
108 
109 	if (size % CLBYTES)
110 		panic("pagemove");
111 	fpte = kvtopte(from);
112 	tpte = kvtopte(to);
113 	while (size > 0) {
114 		*tpte++ = *fpte;
115 		*(int *)fpte++ = PG_NV;
116 		TBIS(from);
117 		TBIS(to);
118 		from += NBPG;
119 		to += NBPG;
120 		size -= NBPG;
121 	}
122 	DCIS();
123 }
124 
125 /*
126  * Map `size' bytes of physical memory starting at `paddr' into
127  * kernel VA space at `vaddr'.  Read/write and cache-inhibit status
128  * are specified by `prot'.
129  */
130 physaccess(vaddr, paddr, size, prot)
131 	caddr_t vaddr, paddr;
132 	register int size, prot;
133 {
134 	register struct pte *pte;
135 	register u_int page;
136 
137 	pte = kvtopte(vaddr);
138 	page = (u_int)paddr & PG_FRAME;
139 	for (size = btoc(size); size; size--) {
140 		*(int *)pte++ = PG_V | prot | page;
141 		page += NBPG;
142 	}
143 	TBIAS();
144 }
145 
146 physunaccess(vaddr, size)
147 	caddr_t vaddr;
148 	register int size;
149 {
150 	register struct pte *pte;
151 
152 	pte = kvtopte(vaddr);
153 	for (size = btoc(size); size; size--)
154 		*(int *)pte++ = PG_NV;
155 	TBIAS();
156 }
157 
158 /*
159  * Set a red zone in the kernel stack after the u. area.
160  * We don't support a redzone right now.  It really isn't clear
161  * that it is a good idea since, if the kernel stack were to roll
162  * into a write protected page, the processor would lock up (since
163  * it cannot create an exception frame) and we would get no useful
164  * post-mortem info.  Currently, under the DEBUG option, we just
165  * check at every clock interrupt to see if the current k-stack has
166  * gone too far (i.e. into the "redzone" page) and if so, panic.
167  * Look at _lev6intr in locore.s for more details.
168  */
169 /*ARGSUSED*/
170 setredzone(pte, vaddr)
171 	struct pte *pte;
172 	caddr_t vaddr;
173 {
174 }
175 
176 /*
177  * Convert kernel VA to physical address
178  */
179 kvtop(addr)
180 	register caddr_t addr;
181 {
182 	vm_offset_t va;
183 
184 	va = pmap_extract(kernel_pmap, (vm_offset_t)addr);
185 	if (va == 0)
186 		panic("kvtop: zero page frame");
187 	return((int)va);
188 }
189 
190 extern vm_map_t phys_map;
191 
192 /*
193  * Map an IO request into kernel virtual address space.  Requests fall into
194  * one of five catagories:
195  *
196  *	B_PHYS|B_UAREA:	User u-area swap.
197  *			Address is relative to start of u-area (p_addr).
198  *	B_PHYS|B_PAGET:	User page table swap.
199  *			Address is a kernel VA in usrpt (Usrptmap).
200  *	B_PHYS|B_DIRTY:	Dirty page push.
201  *			Address is a VA in proc2's address space.
202  *	B_PHYS|B_PGIN:	Kernel pagein of user pages.
203  *			Address is VA in user's address space.
204  *	B_PHYS:		User "raw" IO request.
205  *			Address is VA in user's address space.
206  *
207  * All requests are (re)mapped into kernel VA space via the useriomap
208  * (a name with only slightly more meaning than "kernelmap")
209  */
210 vmapbuf(bp)
211 	register struct buf *bp;
212 {
213 	register int npf;
214 	register caddr_t addr;
215 	register long flags = bp->b_flags;
216 	struct proc *p;
217 	int off;
218 	vm_offset_t kva;
219 	register vm_offset_t pa;
220 
221 	if ((flags & B_PHYS) == 0)
222 		panic("vmapbuf");
223 	addr = bp->b_saveaddr = bp->b_un.b_addr;
224 	off = (int)addr & PGOFSET;
225 	p = bp->b_proc;
226 	npf = btoc(round_page(bp->b_bcount + off));
227 	kva = kmem_alloc_wait(phys_map, ctob(npf));
228 	bp->b_un.b_addr = (caddr_t) (kva + off);
229 	while (npf--) {
230 		pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
231 		    (vm_offset_t)addr);
232 		if (pa == 0)
233 			panic("vmapbuf: null page frame");
234 		pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
235 			   VM_PROT_READ|VM_PROT_WRITE, TRUE);
236 		addr += PAGE_SIZE;
237 		kva += PAGE_SIZE;
238 	}
239 }
240 
241 /*
242  * Free the io map PTEs associated with this IO operation.
243  * We also invalidate the TLB entries and restore the original b_addr.
244  */
245 vunmapbuf(bp)
246 	register struct buf *bp;
247 {
248 	register int npf;
249 	register caddr_t addr = bp->b_un.b_addr;
250 	vm_offset_t kva;
251 
252 	if ((bp->b_flags & B_PHYS) == 0)
253 		panic("vunmapbuf");
254 	npf = btoc(round_page(bp->b_bcount + ((int)addr & PGOFSET)));
255 	kva = (vm_offset_t)((int)addr & ~PGOFSET);
256 	kmem_free_wakeup(phys_map, kva, ctob(npf));
257 	bp->b_un.b_addr = bp->b_saveaddr;
258 	bp->b_saveaddr = NULL;
259 }
260