xref: /original-bsd/sys/i386/include/vmparam.h (revision 78724994)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * William Jolitz.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vmparam.h	5.7 (Berkeley) 04/15/91
11  */
12 
13 
14 /*
15  * Machine dependent constants for 386.
16  */
17 
18 /*
19  * Virtual address space arrangement. On 386, both user and kernel
20  * share the address space, not unlike the vax.
21  * USRTEXT is the start of the user text/data space, while USRSTACK
22  * is the top (end) of the user stack. Immediately above the user stack
23  * resides the user structure, which is UPAGES long and contains the
24  * kernel stack. As such, UPAGES is the number of pages from the beginning
25  * of the P1 region to the beginning of the user stack. Also, the P0
26  * region begins with user text and ends with user data.
27  * Immediately after the user structure is the kernal address space.
28  */
29 #define	USRTEXT		0
30 #define	USRSTACK	0xFDBFE000
31 #define	BTOPUSRSTACK	(0xFDC00-(UPAGES))	/* btop(USRSTACK) */
32 
33 #define P1PAGES		0xFDC00
34 #define	LOWPAGES	0
35 #define HIGHPAGES	UPAGES
36 
37 /*
38  * Virtual memory related constants, all in bytes
39  */
40 #define	MAXTSIZ		(6*1024*1024)		/* max text size */
41 #ifndef DFLDSIZ
42 #define	DFLDSIZ		(6*1024*1024)		/* initial data size limit */
43 #endif
44 #ifndef MAXDSIZ
45 #define	MAXDSIZ		(32*1024*1024)		/* max data size */
46 #endif
47 #ifndef	DFLSSIZ
48 #define	DFLSSIZ		(512*1024)		/* initial stack size limit */
49 #endif
50 #ifndef	MAXSSIZ
51 #define	MAXSSIZ		MAXDSIZ			/* max stack size */
52 #endif
53 
54 /*
55  * Default sizes of swap allocation chunks (see dmap.h).
56  * The actual values may be changed in vminit() based on MAXDSIZ.
57  * With MAXDSIZ of 16Mb and NDMAP of 38, dmmax will be 1024.
58  */
59 #define	DMMIN	32			/* smallest swap allocation */
60 #define	DMMAX	4096			/* largest potential swap allocation */
61 #define	DMTEXT	1024			/* swap allocation for text */
62 
63 /*
64  * Sizes of the system and user portions of the system page table.
65  */
66 #define	SYSPTSIZE 	(2*NPTEPG)
67 #define	USRPTSIZE 	(2*NPTEPG)
68 
69 /*
70  * Size of User Raw I/O map
71  */
72 #define	USRIOSIZE 	300
73 
74 /*
75  * The size of the clock loop.
76  */
77 #define	LOOPPAGES	(maxfree - firstfree)
78 
79 /*
80  * The time for a process to be blocked before being very swappable.
81  * This is a number of seconds which the system takes as being a non-trivial
82  * amount of real time.  You probably shouldn't change this;
83  * it is used in subtle ways (fractions and multiples of it are, that is, like
84  * half of a ``long time'', almost a long time, etc.)
85  * It is related to human patience and other factors which don't really
86  * change over time.
87  */
88 #define	MAXSLP 		20
89 
90 /*
91  * A swapped in process is given a small amount of core without being bothered
92  * by the page replacement algorithm.  Basically this says that if you are
93  * swapped in you deserve some resources.  We protect the last SAFERSS
94  * pages against paging and will just swap you out rather than paging you.
95  * Note that each process has at least UPAGES+CLSIZE pages which are not
96  * paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
97  * number just means a swapped in process is given around 25k bytes.
98  * Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
99  * so we loan each swapped in process memory worth 100$, or just admit
100  * that we don't consider it worthwhile and swap it out to disk which costs
101  * $30/mb or about $0.75.
102  * { wfj 6/16/89: Retail AT memory expansion $800/megabyte, loan of $17
103  *   on disk costing $7/mb or $0.18 (in memory still 100:1 in cost!) }
104  */
105 #define	SAFERSS		8		/* nominal ``small'' resident set size
106 					   protected against replacement */
107 
108 /*
109  * DISKRPM is used to estimate the number of paging i/o operations
110  * which one can expect from a single disk controller.
111  */
112 #define	DISKRPM		60
113 
114 /*
115  * Klustering constants.  Klustering is the gathering
116  * of pages together for pagein/pageout, while clustering
117  * is the treatment of hardware page size as though it were
118  * larger than it really is.
119  *
120  * KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
121  * units.  Note that KLMAX*CLSIZE must be <= DMMIN in dmap.h.
122  */
123 
124 #define	KLMAX	(4/CLSIZE)
125 #define	KLSEQL	(2/CLSIZE)		/* in klust if vadvise(VA_SEQL) */
126 #define	KLIN	(4/CLSIZE)		/* default data/stack in klust */
127 #define	KLTXT	(4/CLSIZE)		/* default text in klust */
128 #define	KLOUT	(4/CLSIZE)
129 
130 /*
131  * KLSDIST is the advance or retard of the fifo reclaim for sequential
132  * processes data space.
133  */
134 #define	KLSDIST	3		/* klusters advance/retard for seq. fifo */
135 
136 /*
137  * Paging thresholds (see vm_sched.c).
138  * Strategy of 1/19/85:
139  *	lotsfree is 512k bytes, but at most 1/4 of memory
140  *	desfree is 200k bytes, but at most 1/8 of memory
141  *	minfree is 64k bytes, but at most 1/2 of desfree
142  */
143 #define	LOTSFREE	(512 * 1024)
144 #define	LOTSFREEFRACT	4
145 #define	DESFREE		(200 * 1024)
146 #define	DESFREEFRACT	8
147 #define	MINFREE		(64 * 1024)
148 #define	MINFREEFRACT	2
149 
150 /*
151  * There are two clock hands, initially separated by HANDSPREAD bytes
152  * (but at most all of user memory).  The amount of time to reclaim
153  * a page once the pageout process examines it increases with this
154  * distance and decreases as the scan rate rises.
155  */
156 #define	HANDSPREAD	(2 * 1024 * 1024)
157 
158 /*
159  * The number of times per second to recompute the desired paging rate
160  * and poke the pagedaemon.
161  */
162 #define	RATETOSCHEDPAGING	4
163 
164 /*
165  * Believed threshold (in megabytes) for which interleaved
166  * swapping area is desirable.
167  */
168 #define	LOTSOFMEM	2
169 
170 #define	mapin(pte, v, pfnum, prot) \
171 	{(*(int *)(pte) = ((pfnum)<<PGSHIFT) | (prot)) ; }
172 
173 /*
174  * Mach derived constants
175  */
176 
177 /* user/kernel map constants */
178 #define VM_MIN_ADDRESS		((vm_offset_t)0)
179 #define UPT_MIN_ADDRESS		((vm_offset_t)0xFDC00000)
180 #define UPT_MAX_ADDRESS		((vm_offset_t)0xFDFF7000)
181 #define VM_MAX_ADDRESS		UPT_MAX_ADDRESS
182 #define VM_MIN_KERNEL_ADDRESS	((vm_offset_t)0xFDFF7000)
183 #define UPDT			VM_MIN_KERNEL_ADDRESS
184 #define KPT_MIN_ADDRESS		((vm_offset_t)0xFDFF8000)
185 #define KPT_MAX_ADDRESS		((vm_offset_t)0xFDFFF000)
186 #define VM_MAX_KERNEL_ADDRESS	((vm_offset_t)0xFF7FF000)
187 
188 /* virtual sizes (bytes) for various kernel submaps */
189 #define VM_MBUF_SIZE		(NMBCLUSTERS*MCLBYTES)
190 #define VM_KMEM_SIZE		(NKMEMCLUSTERS*CLBYTES)
191 #define VM_PHYS_SIZE		(USRIOSIZE*CLBYTES)
192 
193 /* # of kernel PT pages (initial only, can grow dynamically) */
194 #define VM_KERNEL_PT_PAGES	((vm_size_t)2)		/* XXX: SYSPTSIZE */
195 
196 /* pcb base */
197 #define	pcbb(p)		((u_int)(p)->p_addr)
198 
199 /*
200  * Flush MMU TLB
201  */
202 
203 #ifndef I386_CR3PAT
204 #define	I386_CR3PAT	0x0
205 #endif
206 
207 #ifdef notyet
208 #define _cr3() ({u_long rtn; \
209 	asm (" movl %%cr3,%%eax; movl %%eax,%0 " \
210 		: "=g" (rtn) \
211 		: \
212 		: "ax"); \
213 	rtn; \
214 })
215 
216 #define load_cr3(s) ({ u_long val; \
217 	val = (s) | I386_CR3PAT; \
218 	asm ("movl %0,%%eax; movl %%eax,%%cr3" \
219 		:  \
220 		: "g" (val) \
221 		: "ax"); \
222 })
223 
224 #define tlbflush() ({ u_long val; \
225 	val = u.u_pcb.pcb_ptd | I386_CR3PAT; \
226 	asm ("movl %0,%%eax; movl %%eax,%%cr3" \
227 		:  \
228 		: "g" (val) \
229 		: "ax"); \
230 })
231 #endif
232