xref: /original-bsd/sys/kern/kern_clock.c (revision acda45c0)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)kern_clock.c	7.11 (Berkeley) 12/05/90
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "dkstat.h"
12 #include "callout.h"
13 #include "user.h"
14 #include "kernel.h"
15 #include "proc.h"
16 
17 #include "machine/reg.h"
18 #include "machine/psl.h"
19 
20 #if defined(vax) || defined(tahoe)
21 #include "machine/mtpr.h"
22 #include "machine/clock.h"
23 #endif
24 #if defined(hp300)
25 #include "machine/mtpr.h"
26 #endif
27 #ifdef i386
28 #include "machine/frame.h"
29 #include "machine/segments.h"
30 #endif
31 
32 #ifdef GPROF
33 #include "gprof.h"
34 #endif
35 
36 /*
37  * Clock handling routines.
38  *
39  * This code is written to operate with two timers which run
40  * independently of each other. The main clock, running at hz
41  * times per second, is used to do scheduling and timeout calculations.
42  * The second timer does resource utilization estimation statistically
43  * based on the state of the machine phz times a second. Both functions
44  * can be performed by a single clock (ie hz == phz), however the
45  * statistics will be much more prone to errors. Ideally a machine
46  * would have separate clocks measuring time spent in user state, system
47  * state, interrupt state, and idle state. These clocks would allow a non-
48  * approximate measure of resource utilization.
49  */
50 
51 /*
52  * TODO:
53  *	time of day, system/user timing, timeouts, profiling on separate timers
54  *	allocate more timeout table slots when table overflows.
55  */
56 
57 /*
58  * Bump a timeval by a small number of usec's.
59  */
60 #define BUMPTIME(t, usec) { \
61 	register struct timeval *tp = (t); \
62  \
63 	tp->tv_usec += (usec); \
64 	if (tp->tv_usec >= 1000000) { \
65 		tp->tv_usec -= 1000000; \
66 		tp->tv_sec++; \
67 	} \
68 }
69 
70 /*
71  * The hz hardware interval timer.
72  * We update the events relating to real time.
73  * If this timer is also being used to gather statistics,
74  * we run through the statistics gathering routine as well.
75  */
76 /*ARGSUSED*/
77 #ifndef i386
78 hardclock(pc, ps)
79 	caddr_t pc;
80 	int ps;
81 #else
82 hardclock(frame)
83 	struct intrframe frame;
84 #define	pc	frame.if_eip
85 #endif
86 {
87 	register struct callout *p1;
88 	register struct proc *p = u.u_procp;
89 	register int s;
90 	int needsoft = 0;
91 	extern int tickdelta;
92 	extern long timedelta;
93 
94 	/*
95 	 * Update real-time timeout queue.
96 	 * At front of queue are some number of events which are ``due''.
97 	 * The time to these is <= 0 and if negative represents the
98 	 * number of ticks which have passed since it was supposed to happen.
99 	 * The rest of the q elements (times > 0) are events yet to happen,
100 	 * where the time for each is given as a delta from the previous.
101 	 * Decrementing just the first of these serves to decrement the time
102 	 * to all events.
103 	 */
104 	p1 = calltodo.c_next;
105 	while (p1) {
106 		if (--p1->c_time > 0)
107 			break;
108 		needsoft = 1;
109 		if (p1->c_time == 0)
110 			break;
111 		p1 = p1->c_next;
112 	}
113 
114 	/*
115 	 * Charge the time out based on the mode the cpu is in.
116 	 * Here again we fudge for the lack of proper interval timers
117 	 * assuming that the current state has been around at least
118 	 * one tick.
119 	 */
120 #ifdef i386
121 	if (ISPL(frame.if_cs) == SEL_UPL) {
122 #else
123 	if (USERMODE(ps)) {
124 #endif
125 		if (u.u_prof.pr_scale)
126 			needsoft = 1;
127 		/*
128 		 * CPU was in user state.  Increment
129 		 * user time counter, and process process-virtual time
130 		 * interval timer.
131 		 */
132 		BUMPTIME(&p->p_utime, tick);
133 		if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
134 		    itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
135 			psignal(p, SIGVTALRM);
136 	} else {
137 		/*
138 		 * CPU was in system state.
139 		 */
140 		if (!noproc)
141 			BUMPTIME(&p->p_stime, tick);
142 	}
143 
144 	/*
145 	 * If the cpu is currently scheduled to a process, then
146 	 * charge it with resource utilization for a tick, updating
147 	 * statistics which run in (user+system) virtual time,
148 	 * such as the cpu time limit and profiling timers.
149 	 * This assumes that the current process has been running
150 	 * the entire last tick.
151 	 */
152 	if (noproc == 0) {
153 		if ((p->p_utime.tv_sec+p->p_stime.tv_sec+1) >
154 		    u.u_rlimit[RLIMIT_CPU].rlim_cur) {
155 			psignal(p, SIGXCPU);
156 			if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
157 			    u.u_rlimit[RLIMIT_CPU].rlim_max)
158 				u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
159 		}
160 		if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
161 		    itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
162 			psignal(p, SIGPROF);
163 	}
164 
165 	/*
166 	 * We adjust the priority of the current process.
167 	 * The priority of a process gets worse as it accumulates
168 	 * CPU time.  The cpu usage estimator (p_cpu) is increased here
169 	 * and the formula for computing priorities (in kern_synch.c)
170 	 * will compute a different value each time the p_cpu increases
171 	 * by 4.  The cpu usage estimator ramps up quite quickly when
172 	 * the process is running (linearly), and decays away exponentially,
173 	 * at a rate which is proportionally slower when the system is
174 	 * busy.  The basic principal is that the system will 90% forget
175 	 * that a process used a lot of CPU time in 5*loadav seconds.
176 	 * This causes the system to favor processes which haven't run
177 	 * much recently, and to round-robin among other processes.
178 	 */
179 	if (!noproc) {
180 		p->p_cpticks++;
181 		if (++p->p_cpu == 0)
182 			p->p_cpu--;
183 		if ((p->p_cpu&3) == 0) {
184 			(void) setpri(p);
185 			if (p->p_pri >= PUSER)
186 				p->p_pri = p->p_usrpri;
187 		}
188 	}
189 
190 	/*
191 	 * If the alternate clock has not made itself known then
192 	 * we must gather the statistics.
193 	 */
194 	if (phz == 0)
195 #ifdef i386
196 		gatherstats(pc, ISPL(frame.if_cs), frame.if_ppl);
197 #else
198 		gatherstats(pc, ps);
199 #endif
200 
201 	/*
202 	 * Increment the time-of-day, and schedule
203 	 * processing of the callouts at a very low cpu priority,
204 	 * so we don't keep the relatively high clock interrupt
205 	 * priority any longer than necessary.
206 	 */
207 	if (timedelta == 0)
208 		BUMPTIME(&time, tick)
209 	else {
210 		register delta;
211 
212 		if (timedelta < 0) {
213 			delta = tick - tickdelta;
214 			timedelta += tickdelta;
215 		} else {
216 			delta = tick + tickdelta;
217 			timedelta -= tickdelta;
218 		}
219 		BUMPTIME(&time, delta);
220 	}
221 	if (needsoft) {
222 #ifdef i386
223 		if (frame.if_ppl == 0) {
224 #else
225 		if (BASEPRI(ps)) {
226 #endif
227 			/*
228 			 * Save the overhead of a software interrupt;
229 			 * it will happen as soon as we return, so do it now.
230 			 */
231 			(void) splsoftclock();
232 #ifdef i386
233 			softclock(frame);
234 #else
235 			softclock(pc, ps);
236 #endif
237 		} else
238 			setsoftclock();
239 	}
240 }
241 
242 int	dk_ndrive = DK_NDRIVE;
243 /*
244  * Gather statistics on resource utilization.
245  *
246  * We make a gross assumption: that the system has been in the
247  * state it is in (user state, kernel state, interrupt state,
248  * or idle state) for the entire last time interval, and
249  * update statistics accordingly.
250  */
251 /*ARGSUSED*/
252 #ifdef i386
253 #undef pc
254 gatherstats(pc, ps, ppl)
255 #else
256 gatherstats(pc, ps)
257 #endif
258 	caddr_t pc;
259 	int ps;
260 {
261 	register int cpstate, s;
262 
263 	/*
264 	 * Determine what state the cpu is in.
265 	 */
266 #ifdef i386
267 	if (ps == SEL_UPL) {
268 #else
269 	if (USERMODE(ps)) {
270 #endif
271 		/*
272 		 * CPU was in user state.
273 		 */
274 		if (u.u_procp->p_nice > NZERO)
275 			cpstate = CP_NICE;
276 		else
277 			cpstate = CP_USER;
278 	} else {
279 		/*
280 		 * CPU was in system state.  If profiling kernel
281 		 * increment a counter.  If no process is running
282 		 * then this is a system tick if we were running
283 		 * at a non-zero IPL (in a driver).  If a process is running,
284 		 * then we charge it with system time even if we were
285 		 * at a non-zero IPL, since the system often runs
286 		 * this way during processing of system calls.
287 		 * This is approximate, but the lack of true interval
288 		 * timers makes doing anything else difficult.
289 		 */
290 		cpstate = CP_SYS;
291 #if defined(i386)
292 		if (noproc && ps == 0)
293 #else
294 		if (noproc && BASEPRI(ps))
295 #endif
296 			cpstate = CP_IDLE;
297 #ifdef GPROF
298 		s = pc - s_lowpc;
299 		if (profiling < 2 && s < s_textsize)
300 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
301 #endif
302 	}
303 	/*
304 	 * We maintain statistics shown by user-level statistics
305 	 * programs:  the amount of time in each cpu state, and
306 	 * the amount of time each of DK_NDRIVE ``drives'' is busy.
307 	 */
308 	cp_time[cpstate]++;
309 	for (s = 0; s < DK_NDRIVE; s++)
310 		if (dk_busy&(1<<s))
311 			dk_time[s]++;
312 }
313 
314 /*
315  * Software priority level clock interrupt.
316  * Run periodic events from timeout queue.
317  */
318 /*ARGSUSED*/
319 #ifdef i386
320 softclock(frame)
321 	struct	intrframe frame;
322 #define	pc	frame.if_eip
323 #else
324 softclock(pc, ps)
325 	caddr_t pc;
326 	int ps;
327 #endif
328 {
329 
330 	for (;;) {
331 		register struct callout *p1;
332 		register caddr_t arg;
333 		register int (*func)();
334 		register int a, s;
335 
336 		s = splhigh();
337 		if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
338 			splx(s);
339 			break;
340 		}
341 		arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
342 		calltodo.c_next = p1->c_next;
343 		p1->c_next = callfree;
344 		callfree = p1;
345 		splx(s);
346 		(*func)(arg, a);
347 	}
348 	/*
349 	 * If trapped user-mode and profiling, give it
350 	 * a profiling tick.
351 	 */
352 #ifdef i386
353 	if (ISPL(frame.if_cs) == SEL_UPL) {
354 #else
355 	if (USERMODE(ps)) {
356 #endif
357 		register struct proc *p = u.u_procp;
358 
359 		if (u.u_prof.pr_scale) {
360 			p->p_flag |= SOWEUPC;
361 			aston();
362 		}
363 		/*
364 		 * Check to see if process has accumulated
365 		 * more than 10 minutes of user time.  If so
366 		 * reduce priority to give others a chance.
367 		 */
368 		if (p->p_uid && p->p_nice == NZERO &&
369 		    p->p_utime.tv_sec > 10 * 60) {
370 			p->p_nice = NZERO+4;
371 			(void) setpri(p);
372 			p->p_pri = p->p_usrpri;
373 		}
374 	}
375 }
376 
377 /*
378  * Arrange that (*fun)(arg) is called in t/hz seconds.
379  */
380 timeout(fun, arg, t)
381 	int (*fun)();
382 	caddr_t arg;
383 	register int t;
384 {
385 	register struct callout *p1, *p2, *pnew;
386 	register int s = splhigh();
387 
388 	if (t <= 0)
389 		t = 1;
390 	pnew = callfree;
391 	if (pnew == NULL)
392 		panic("timeout table overflow");
393 	callfree = pnew->c_next;
394 	pnew->c_arg = arg;
395 	pnew->c_func = fun;
396 	for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
397 		if (p2->c_time > 0)
398 			t -= p2->c_time;
399 	p1->c_next = pnew;
400 	pnew->c_next = p2;
401 	pnew->c_time = t;
402 	if (p2)
403 		p2->c_time -= t;
404 	splx(s);
405 }
406 
407 /*
408  * untimeout is called to remove a function timeout call
409  * from the callout structure.
410  */
411 untimeout(fun, arg)
412 	int (*fun)();
413 	caddr_t arg;
414 {
415 	register struct callout *p1, *p2;
416 	register int s;
417 
418 	s = splhigh();
419 	for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
420 		if (p2->c_func == fun && p2->c_arg == arg) {
421 			if (p2->c_next && p2->c_time > 0)
422 				p2->c_next->c_time += p2->c_time;
423 			p1->c_next = p2->c_next;
424 			p2->c_next = callfree;
425 			callfree = p2;
426 			break;
427 		}
428 	}
429 	splx(s);
430 }
431 
432 /*
433  * Compute number of hz until specified time.
434  * Used to compute third argument to timeout() from an
435  * absolute time.
436  */
437 hzto(tv)
438 	struct timeval *tv;
439 {
440 	register long ticks;
441 	register long sec;
442 	int s = splhigh();
443 
444 	/*
445 	 * If number of milliseconds will fit in 32 bit arithmetic,
446 	 * then compute number of milliseconds to time and scale to
447 	 * ticks.  Otherwise just compute number of hz in time, rounding
448 	 * times greater than representible to maximum value.
449 	 *
450 	 * Delta times less than 25 days can be computed ``exactly''.
451 	 * Maximum value for any timeout in 10ms ticks is 250 days.
452 	 */
453 	sec = tv->tv_sec - time.tv_sec;
454 	if (sec <= 0x7fffffff / 1000 - 1000)
455 		ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
456 			(tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
457 	else if (sec <= 0x7fffffff / hz)
458 		ticks = sec * hz;
459 	else
460 		ticks = 0x7fffffff;
461 	splx(s);
462 	return (ticks);
463 }
464 
465 /* ARGSUSED */
466 profil(p, uap, retval)
467 	struct proc *p;
468 	register struct args {
469 		short	*bufbase;
470 		unsigned bufsize;
471 		unsigned pcoffset;
472 		unsigned pcscale;
473 	} *uap;
474 	int *retval;
475 {
476 	register struct uprof *upp = &u.u_prof;
477 
478 	upp->pr_base = uap->bufbase;
479 	upp->pr_size = uap->bufsize;
480 	upp->pr_off = uap->pcoffset;
481 	upp->pr_scale = uap->pcscale;
482 	return (0);
483 }
484