xref: /original-bsd/sys/kern/kern_physio.c (revision 30d60fbe)
1 /*
2  * Copyright (c) 1982 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)kern_physio.c	6.9 (Berkeley) 02/21/86
7  */
8 
9 #include "../machine/pte.h"
10 
11 #include "param.h"
12 #include "systm.h"
13 #include "dir.h"
14 #include "user.h"
15 #include "buf.h"
16 #include "conf.h"
17 #include "proc.h"
18 #include "seg.h"
19 #include "vm.h"
20 #include "trace.h"
21 #include "map.h"
22 #include "uio.h"
23 
24 /*
25  * Swap IO headers -
26  * They contain the necessary information for the swap I/O.
27  * At any given time, a swap header can be in three
28  * different lists. When free it is in the free list,
29  * when allocated and the I/O queued, it is on the swap
30  * device list, and finally, if the operation was a dirty
31  * page push, when the I/O completes, it is inserted
32  * in a list of cleaned pages to be processed by the pageout daemon.
33  */
34 struct	buf *swbuf;
35 
36 /*
37  * swap I/O -
38  *
39  * If the flag indicates a dirty page push initiated
40  * by the pageout daemon, we map the page into the i th
41  * virtual page of process 2 (the daemon itself) where i is
42  * the index of the swap header that has been allocated.
43  * We simply initialize the header and queue the I/O but
44  * do not wait for completion. When the I/O completes,
45  * iodone() will link the header to a list of cleaned
46  * pages to be processed by the pageout daemon.
47  */
48 swap(p, dblkno, addr, nbytes, rdflg, flag, dev, pfcent)
49 	struct proc *p;
50 	swblk_t dblkno;
51 	caddr_t addr;
52 	int nbytes, rdflg, flag;
53 	dev_t dev;
54 	u_int pfcent;
55 {
56 	register struct buf *bp;
57 	register u_int c;
58 	int p2dp;
59 	register struct pte *dpte, *vpte;
60 	int s;
61 	extern swdone();
62 	int error = 0;
63 
64 	s = splbio();
65 	while (bswlist.av_forw == NULL) {
66 		bswlist.b_flags |= B_WANTED;
67 		sleep((caddr_t)&bswlist, PSWP+1);
68 	}
69 	bp = bswlist.av_forw;
70 	bswlist.av_forw = bp->av_forw;
71 	splx(s);
72 
73 	bp->b_flags = B_BUSY | B_PHYS | rdflg | flag;
74 	if ((bp->b_flags & (B_DIRTY|B_PGIN)) == 0)
75 		if (rdflg == B_READ)
76 			sum.v_pswpin += btoc(nbytes);
77 		else
78 			sum.v_pswpout += btoc(nbytes);
79 	bp->b_proc = p;
80 	if (flag & B_DIRTY) {
81 		p2dp = ((bp - swbuf) * CLSIZE) * KLMAX;
82 		dpte = dptopte(&proc[2], p2dp);
83 		vpte = vtopte(p, btop(addr));
84 		for (c = 0; c < nbytes; c += NBPG) {
85 			if (vpte->pg_pfnum == 0 || vpte->pg_fod)
86 				panic("swap bad pte");
87 			*dpte++ = *vpte++;
88 		}
89 		bp->b_un.b_addr = (caddr_t)ctob(dptov(&proc[2], p2dp));
90 		bp->b_flags |= B_CALL;
91 		bp->b_iodone = swdone;
92 		bp->b_pfcent = pfcent;
93 	} else
94 		bp->b_un.b_addr = addr;
95 	while (nbytes > 0) {
96 		bp->b_bcount = nbytes;
97 		minphys(bp);
98 		c = bp->b_bcount;
99 		bp->b_blkno = dblkno;
100 		bp->b_dev = dev;
101 #ifdef TRACE
102 		trace(TR_SWAPIO, dev, bp->b_blkno);
103 #endif
104 		physstrat(bp, bdevsw[major(dev)].d_strategy, PSWP);
105 		if (flag & B_DIRTY) {
106 			if (c < nbytes)
107 				panic("big push");
108 			return (error);
109 		}
110 		bp->b_un.b_addr += c;
111 		bp->b_flags &= ~B_DONE;
112 		if (bp->b_flags & B_ERROR) {
113 			if ((flag & (B_UAREA|B_PAGET)) || rdflg == B_WRITE)
114 				panic("hard IO err in swap");
115 			swkill(p, "swap: read error from swap device");
116 			error = EIO;
117 		}
118 		nbytes -= c;
119 		dblkno += btodb(c);
120 	}
121 	s = splbio();
122 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
123 	bp->av_forw = bswlist.av_forw;
124 	bswlist.av_forw = bp;
125 	if (bswlist.b_flags & B_WANTED) {
126 		bswlist.b_flags &= ~B_WANTED;
127 		wakeup((caddr_t)&bswlist);
128 		wakeup((caddr_t)&proc[2]);
129 	}
130 	splx(s);
131 	return (error);
132 }
133 
134 /*
135  * Put a buffer on the clean list after I/O is done.
136  * Called from biodone.
137  */
138 swdone(bp)
139 	register struct buf *bp;
140 {
141 	register int s;
142 
143 	if (bp->b_flags & B_ERROR)
144 		panic("IO err in push");
145 	s = splbio();
146 	bp->av_forw = bclnlist;
147 	cnt.v_pgout++;
148 	cnt.v_pgpgout += bp->b_bcount / NBPG;
149 	bclnlist = bp;
150 	if (bswlist.b_flags & B_WANTED)
151 		wakeup((caddr_t)&proc[2]);
152 	splx(s);
153 }
154 
155 /*
156  * If rout == 0 then killed on swap error, else
157  * rout is the name of the routine where we ran out of
158  * swap space.
159  */
160 swkill(p, rout)
161 	struct proc *p;
162 	char *rout;
163 {
164 
165 	printf("pid %d: %s\n", p->p_pid, rout);
166 	uprintf("sorry, pid %d was killed in %s\n", p->p_pid, rout);
167 	/*
168 	 * To be sure no looping (e.g. in vmsched trying to
169 	 * swap out) mark process locked in core (as though
170 	 * done by user) after killing it so noone will try
171 	 * to swap it out.
172 	 */
173 	psignal(p, SIGKILL);
174 	p->p_flag |= SULOCK;
175 }
176 
177 /*
178  * Raw I/O. The arguments are
179  *	The strategy routine for the device
180  *	A buffer, which will always be a special buffer
181  *	  header owned exclusively by the device for this purpose
182  *	The device number
183  *	Read/write flag
184  * Essentially all the work is computing physical addresses and
185  * validating them.
186  * If the user has the proper access privilidges, the process is
187  * marked 'delayed unlock' and the pages involved in the I/O are
188  * faulted and locked. After the completion of the I/O, the above pages
189  * are unlocked.
190  */
191 physio(strat, bp, dev, rw, mincnt, uio)
192 	int (*strat)();
193 	register struct buf *bp;
194 	dev_t dev;
195 	int rw;
196 	unsigned (*mincnt)();
197 	struct uio *uio;
198 {
199 	register struct iovec *iov;
200 	register int c;
201 	char *a;
202 	int s, error = 0;
203 
204 nextiov:
205 	if (uio->uio_iovcnt == 0)
206 		return (0);
207 	iov = uio->uio_iov;
208 	if (useracc(iov->iov_base,(u_int)iov->iov_len,rw==B_READ?B_WRITE:B_READ) == NULL)
209 		return (EFAULT);
210 	s = splbio();
211 	while (bp->b_flags&B_BUSY) {
212 		bp->b_flags |= B_WANTED;
213 		sleep((caddr_t)bp, PRIBIO+1);
214 	}
215 	splx(s);
216 	bp->b_error = 0;
217 	bp->b_proc = u.u_procp;
218 	bp->b_un.b_addr = iov->iov_base;
219 	while (iov->iov_len > 0) {
220 		bp->b_flags = B_BUSY | B_PHYS | rw;
221 		bp->b_dev = dev;
222 		bp->b_blkno = btodb(uio->uio_offset);
223 		bp->b_bcount = iov->iov_len;
224 		(*mincnt)(bp);
225 		c = bp->b_bcount;
226 		u.u_procp->p_flag |= SPHYSIO;
227 		vslock(a = bp->b_un.b_addr, c);
228 		physstrat(bp, strat, PRIBIO);
229 		(void) splbio();
230 		vsunlock(a, c, rw);
231 		u.u_procp->p_flag &= ~SPHYSIO;
232 		if (bp->b_flags&B_WANTED)
233 			wakeup((caddr_t)bp);
234 		splx(s);
235 		c -= bp->b_resid;
236 		bp->b_un.b_addr += c;
237 		iov->iov_len -= c;
238 		uio->uio_resid -= c;
239 		uio->uio_offset += c;
240 		/* temp kludge for tape drives */
241 		if (bp->b_resid || (bp->b_flags&B_ERROR))
242 			break;
243 	}
244 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS);
245 	error = geterror(bp);
246 	/* temp kludge for tape drives */
247 	if (bp->b_resid || error)
248 		return (error);
249 	uio->uio_iov++;
250 	uio->uio_iovcnt--;
251 	goto nextiov;
252 }
253 
254 #define	MAXPHYS	(63 * 1024)
255 
256 unsigned
257 minphys(bp)
258 	struct buf *bp;
259 {
260 
261 	if (bp->b_bcount > MAXPHYS)
262 		bp->b_bcount = MAXPHYS;
263 }
264