xref: /original-bsd/sys/kern/kern_synch.c (revision 3705696b)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * All rights reserved.
5  *
6  * %sccs.include.redist.c%
7  *
8  *	@(#)kern_synch.c	8.1 (Berkeley) 06/10/93
9  */
10 
11 #include <sys/param.h>
12 #include <sys/systm.h>
13 #include <sys/proc.h>
14 #include <sys/kernel.h>
15 #include <sys/buf.h>
16 #include <sys/signalvar.h>
17 #include <sys/resourcevar.h>
18 #include <sys/vmmeter.h>
19 #ifdef KTRACE
20 #include <sys/ktrace.h>
21 #endif
22 
23 #include <machine/cpu.h>
24 
25 u_char	curpri;			/* usrpri of curproc */
26 int	lbolt;			/* once a second sleep address */
27 
28 /*
29  * Force switch among equal priority processes every 100ms.
30  */
31 /* ARGSUSED */
32 void
33 roundrobin(arg)
34 	void *arg;
35 {
36 
37 	need_resched();
38 	timeout(roundrobin, (void *)0, hz / 10);
39 }
40 
41 /*
42  * constants for digital decay and forget
43  *	90% of (p_cpu) usage in 5*loadav time
44  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
45  *          Note that, as ps(1) mentions, this can let percentages
46  *          total over 100% (I've seen 137.9% for 3 processes).
47  *
48  * Note that hardclock updates p_cpu and p_cpticks independently.
49  *
50  * We wish to decay away 90% of p_cpu in (5 * loadavg) seconds.
51  * That is, the system wants to compute a value of decay such
52  * that the following for loop:
53  * 	for (i = 0; i < (5 * loadavg); i++)
54  * 		p_cpu *= decay;
55  * will compute
56  * 	p_cpu *= 0.1;
57  * for all values of loadavg:
58  *
59  * Mathematically this loop can be expressed by saying:
60  * 	decay ** (5 * loadavg) ~= .1
61  *
62  * The system computes decay as:
63  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
64  *
65  * We wish to prove that the system's computation of decay
66  * will always fulfill the equation:
67  * 	decay ** (5 * loadavg) ~= .1
68  *
69  * If we compute b as:
70  * 	b = 2 * loadavg
71  * then
72  * 	decay = b / (b + 1)
73  *
74  * We now need to prove two things:
75  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
76  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
77  *
78  * Facts:
79  *         For x close to zero, exp(x) =~ 1 + x, since
80  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
81  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
82  *         For x close to zero, ln(1+x) =~ x, since
83  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
84  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
85  *         ln(.1) =~ -2.30
86  *
87  * Proof of (1):
88  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
89  *	solving for factor,
90  *      ln(factor) =~ (-2.30/5*loadav), or
91  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
92  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
93  *
94  * Proof of (2):
95  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
96  *	solving for power,
97  *      power*ln(b/(b+1)) =~ -2.30, or
98  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
99  *
100  * Actual power values for the implemented algorithm are as follows:
101  *      loadav: 1       2       3       4
102  *      power:  5.68    10.32   14.94   19.55
103  */
104 
105 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
106 #define	loadfactor(loadav)	(2 * (loadav))
107 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
108 
109 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
110 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
111 
112 /*
113  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
114  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
115  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
116  *
117  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
118  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
119  *
120  * If you dont want to bother with the faster/more-accurate formula, you
121  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
122  * (more general) method of calculating the %age of CPU used by a process.
123  */
124 #define	CCPU_SHIFT	11
125 
126 /*
127  * Recompute process priorities, once a second
128  */
129 /* ARGSUSED */
130 void
131 schedcpu(arg)
132 	void *arg;
133 {
134 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
135 	register struct proc *p;
136 	register int s;
137 	register unsigned int newcpu;
138 
139 	wakeup((caddr_t)&lbolt);
140 	for (p = (struct proc *)allproc; p != NULL; p = p->p_nxt) {
141 		/*
142 		 * Increment time in/out of memory and sleep time
143 		 * (if sleeping).  We ignore overflow; with 16-bit int's
144 		 * (remember them?) overflow takes 45 days.
145 		 */
146 		p->p_time++;
147 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
148 			p->p_slptime++;
149 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
150 		/*
151 		 * If the process has slept the entire second,
152 		 * stop recalculating its priority until it wakes up.
153 		 */
154 		if (p->p_slptime > 1)
155 			continue;
156 		s = splstatclock();	/* prevent state changes */
157 		/*
158 		 * p_pctcpu is only for ps.
159 		 */
160 #if	(FSHIFT >= CCPU_SHIFT)
161 		p->p_pctcpu += (hz == 100)?
162 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
163                 	100 * (((fixpt_t) p->p_cpticks)
164 				<< (FSHIFT - CCPU_SHIFT)) / hz;
165 #else
166 		p->p_pctcpu += ((FSCALE - ccpu) *
167 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
168 #endif
169 		p->p_cpticks = 0;
170 		newcpu = (u_int) decay_cpu(loadfac, p->p_cpu) + p->p_nice;
171 		p->p_cpu = min(newcpu, UCHAR_MAX);
172 		setpri(p);
173 		if (p->p_pri >= PUSER) {
174 #define	PPQ	(128 / NQS)		/* priorities per queue */
175 			if ((p != curproc) &&
176 			    p->p_stat == SRUN &&
177 			    (p->p_flag & SLOAD) &&
178 			    (p->p_pri / PPQ) != (p->p_usrpri / PPQ)) {
179 				remrq(p);
180 				p->p_pri = p->p_usrpri;
181 				setrq(p);
182 			} else
183 				p->p_pri = p->p_usrpri;
184 		}
185 		splx(s);
186 	}
187 	vmmeter();
188 	if (bclnlist != NULL)
189 		wakeup((caddr_t)pageproc);
190 	timeout(schedcpu, (void *)0, hz);
191 }
192 
193 /*
194  * Recalculate the priority of a process after it has slept for a while.
195  * For all load averages >= 1 and max p_cpu of 255, sleeping for at least
196  * six times the loadfactor will decay p_cpu to zero.
197  */
198 void
199 updatepri(p)
200 	register struct proc *p;
201 {
202 	register unsigned int newcpu = p->p_cpu;
203 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
204 
205 	if (p->p_slptime > 5 * loadfac)
206 		p->p_cpu = 0;
207 	else {
208 		p->p_slptime--;	/* the first time was done in schedcpu */
209 		while (newcpu && --p->p_slptime)
210 			newcpu = (int) decay_cpu(loadfac, newcpu);
211 		p->p_cpu = min(newcpu, UCHAR_MAX);
212 	}
213 	setpri(p);
214 }
215 
216 #define SQSIZE 0100	/* Must be power of 2 */
217 #define HASH(x)	(( (int) x >> 5) & (SQSIZE-1))
218 struct slpque {
219 	struct proc *sq_head;
220 	struct proc **sq_tailp;
221 } slpque[SQSIZE];
222 
223 /*
224  * During autoconfiguration or after a panic, a sleep will simply
225  * lower the priority briefly to allow interrupts, then return.
226  * The priority to be used (safepri) is machine-dependent, thus this
227  * value is initialized and maintained in the machine-dependent layers.
228  * This priority will typically be 0, or the lowest priority
229  * that is safe for use on the interrupt stack; it can be made
230  * higher to block network software interrupts after panics.
231  */
232 int safepri;
233 
234 /*
235  * General sleep call.
236  * Suspends current process until a wakeup is made on chan.
237  * The process will then be made runnable with priority pri.
238  * Sleeps at most timo/hz seconds (0 means no timeout).
239  * If pri includes PCATCH flag, signals are checked
240  * before and after sleeping, else signals are not checked.
241  * Returns 0 if awakened, EWOULDBLOCK if the timeout expires.
242  * If PCATCH is set and a signal needs to be delivered,
243  * ERESTART is returned if the current system call should be restarted
244  * if possible, and EINTR is returned if the system call should
245  * be interrupted by the signal (return EINTR).
246  */
247 int
248 tsleep(chan, pri, wmesg, timo)
249 	void *chan;
250 	int pri;
251 	char *wmesg;
252 	int timo;
253 {
254 	register struct proc *p = curproc;
255 	register struct slpque *qp;
256 	register s;
257 	int sig, catch = pri & PCATCH;
258 	extern int cold;
259 	void endtsleep __P((void *));
260 
261 #ifdef KTRACE
262 	if (KTRPOINT(p, KTR_CSW))
263 		ktrcsw(p->p_tracep, 1, 0);
264 #endif
265 	s = splhigh();
266 	if (cold || panicstr) {
267 		/*
268 		 * After a panic, or during autoconfiguration,
269 		 * just give interrupts a chance, then just return;
270 		 * don't run any other procs or panic below,
271 		 * in case this is the idle process and already asleep.
272 		 */
273 		splx(safepri);
274 		splx(s);
275 		return (0);
276 	}
277 #ifdef DIAGNOSTIC
278 	if (chan == NULL || p->p_stat != SRUN || p->p_rlink)
279 		panic("tsleep");
280 #endif
281 	p->p_wchan = chan;
282 	p->p_wmesg = wmesg;
283 	p->p_slptime = 0;
284 	p->p_pri = pri & PRIMASK;
285 	qp = &slpque[HASH(chan)];
286 	if (qp->sq_head == 0)
287 		qp->sq_head = p;
288 	else
289 		*qp->sq_tailp = p;
290 	*(qp->sq_tailp = &p->p_link) = 0;
291 	if (timo)
292 		timeout(endtsleep, (void *)p, timo);
293 	/*
294 	 * We put ourselves on the sleep queue and start our timeout
295 	 * before calling CURSIG, as we could stop there, and a wakeup
296 	 * or a SIGCONT (or both) could occur while we were stopped.
297 	 * A SIGCONT would cause us to be marked as SSLEEP
298 	 * without resuming us, thus we must be ready for sleep
299 	 * when CURSIG is called.  If the wakeup happens while we're
300 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
301 	 */
302 	if (catch) {
303 		p->p_flag |= SSINTR;
304 		if (sig = CURSIG(p)) {
305 			if (p->p_wchan)
306 				unsleep(p);
307 			p->p_stat = SRUN;
308 			goto resume;
309 		}
310 		if (p->p_wchan == 0) {
311 			catch = 0;
312 			goto resume;
313 		}
314 	} else
315 		sig = 0;
316 	p->p_stat = SSLEEP;
317 	p->p_stats->p_ru.ru_nvcsw++;
318 	swtch();
319 resume:
320 	curpri = p->p_usrpri;
321 	splx(s);
322 	p->p_flag &= ~SSINTR;
323 	if (p->p_flag & STIMO) {
324 		p->p_flag &= ~STIMO;
325 		if (sig == 0) {
326 #ifdef KTRACE
327 			if (KTRPOINT(p, KTR_CSW))
328 				ktrcsw(p->p_tracep, 0, 0);
329 #endif
330 			return (EWOULDBLOCK);
331 		}
332 	} else if (timo)
333 		untimeout(endtsleep, (void *)p);
334 	if (catch && (sig != 0 || (sig = CURSIG(p)))) {
335 #ifdef KTRACE
336 		if (KTRPOINT(p, KTR_CSW))
337 			ktrcsw(p->p_tracep, 0, 0);
338 #endif
339 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
340 			return (EINTR);
341 		return (ERESTART);
342 	}
343 #ifdef KTRACE
344 	if (KTRPOINT(p, KTR_CSW))
345 		ktrcsw(p->p_tracep, 0, 0);
346 #endif
347 	return (0);
348 }
349 
350 /*
351  * Implement timeout for tsleep.
352  * If process hasn't been awakened (wchan non-zero),
353  * set timeout flag and undo the sleep.  If proc
354  * is stopped, just unsleep so it will remain stopped.
355  */
356 void
357 endtsleep(arg)
358 	void *arg;
359 {
360 	register struct proc *p;
361 	int s;
362 
363 	p = (struct proc *)arg;
364 	s = splhigh();
365 	if (p->p_wchan) {
366 		if (p->p_stat == SSLEEP)
367 			setrun(p);
368 		else
369 			unsleep(p);
370 		p->p_flag |= STIMO;
371 	}
372 	splx(s);
373 }
374 
375 /*
376  * Short-term, non-interruptable sleep.
377  */
378 void
379 sleep(chan, pri)
380 	void *chan;
381 	int pri;
382 {
383 	register struct proc *p = curproc;
384 	register struct slpque *qp;
385 	register s;
386 	extern int cold;
387 
388 #ifdef DIAGNOSTIC
389 	if (pri > PZERO) {
390 		printf("sleep called with pri %d > PZERO, wchan: %x\n",
391 		    pri, chan);
392 		panic("old sleep");
393 	}
394 #endif
395 	s = splhigh();
396 	if (cold || panicstr) {
397 		/*
398 		 * After a panic, or during autoconfiguration,
399 		 * just give interrupts a chance, then just return;
400 		 * don't run any other procs or panic below,
401 		 * in case this is the idle process and already asleep.
402 		 */
403 		splx(safepri);
404 		splx(s);
405 		return;
406 	}
407 #ifdef DIAGNOSTIC
408 	if (chan == NULL || p->p_stat != SRUN || p->p_rlink)
409 		panic("sleep");
410 #endif
411 	p->p_wchan = chan;
412 	p->p_wmesg = NULL;
413 	p->p_slptime = 0;
414 	p->p_pri = pri;
415 	qp = &slpque[HASH(chan)];
416 	if (qp->sq_head == 0)
417 		qp->sq_head = p;
418 	else
419 		*qp->sq_tailp = p;
420 	*(qp->sq_tailp = &p->p_link) = 0;
421 	p->p_stat = SSLEEP;
422 	p->p_stats->p_ru.ru_nvcsw++;
423 #ifdef KTRACE
424 	if (KTRPOINT(p, KTR_CSW))
425 		ktrcsw(p->p_tracep, 1, 0);
426 #endif
427 	swtch();
428 #ifdef KTRACE
429 	if (KTRPOINT(p, KTR_CSW))
430 		ktrcsw(p->p_tracep, 0, 0);
431 #endif
432 	curpri = p->p_usrpri;
433 	splx(s);
434 }
435 
436 /*
437  * Remove a process from its wait queue
438  */
439 void
440 unsleep(p)
441 	register struct proc *p;
442 {
443 	register struct slpque *qp;
444 	register struct proc **hp;
445 	int s;
446 
447 	s = splhigh();
448 	if (p->p_wchan) {
449 		hp = &(qp = &slpque[HASH(p->p_wchan)])->sq_head;
450 		while (*hp != p)
451 			hp = &(*hp)->p_link;
452 		*hp = p->p_link;
453 		if (qp->sq_tailp == &p->p_link)
454 			qp->sq_tailp = hp;
455 		p->p_wchan = 0;
456 	}
457 	splx(s);
458 }
459 
460 /*
461  * Wakeup on "chan"; set all processes
462  * sleeping on chan to run state.
463  */
464 void
465 wakeup(chan)
466 	register void *chan;
467 {
468 	register struct slpque *qp;
469 	register struct proc *p, **q;
470 	int s;
471 
472 	s = splhigh();
473 	qp = &slpque[HASH(chan)];
474 restart:
475 	for (q = &qp->sq_head; p = *q; ) {
476 #ifdef DIAGNOSTIC
477 		if (p->p_rlink || p->p_stat != SSLEEP && p->p_stat != SSTOP)
478 			panic("wakeup");
479 #endif
480 		if (p->p_wchan == chan) {
481 			p->p_wchan = 0;
482 			*q = p->p_link;
483 			if (qp->sq_tailp == &p->p_link)
484 				qp->sq_tailp = q;
485 			if (p->p_stat == SSLEEP) {
486 				/* OPTIMIZED INLINE EXPANSION OF setrun(p) */
487 				if (p->p_slptime > 1)
488 					updatepri(p);
489 				p->p_slptime = 0;
490 				p->p_stat = SRUN;
491 				if (p->p_flag & SLOAD)
492 					setrq(p);
493 				/*
494 				 * Since curpri is a usrpri,
495 				 * p->p_pri is always better than curpri.
496 				 */
497 				if ((p->p_flag&SLOAD) == 0)
498 					wakeup((caddr_t)&proc0);
499 				else
500 					need_resched();
501 				/* END INLINE EXPANSION */
502 				goto restart;
503 			}
504 		} else
505 			q = &p->p_link;
506 	}
507 	splx(s);
508 }
509 
510 /*
511  * The machine independent parts of swtch().
512  * Must be called at splstatclock() or higher.
513  */
514 void
515 swtch()
516 {
517 	register struct proc *p = curproc;	/* XXX */
518 	register struct rlimit *rlim;
519 	register long s, u;
520 	struct timeval tv;
521 
522 	/*
523 	 * Compute the amount of time during which the current
524 	 * process was running, and add that to its total so far.
525 	 */
526 	microtime(&tv);
527 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
528 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
529 	if (u < 0) {
530 		u += 1000000;
531 		s--;
532 	} else if (u >= 1000000) {
533 		u -= 1000000;
534 		s++;
535 	}
536 	p->p_rtime.tv_usec = u;
537 	p->p_rtime.tv_sec = s;
538 
539 	/*
540 	 * Check if the process exceeds its cpu resource allocation.
541 	 * If over max, kill it.  In any case, if it has run for more
542 	 * than 10 minutes, reduce priority to give others a chance.
543 	 */
544 	rlim = &p->p_rlimit[RLIMIT_CPU];
545 	if (s >= rlim->rlim_cur) {
546 		if (s >= rlim->rlim_max)
547 			psignal(p, SIGKILL);
548 		else {
549 			psignal(p, SIGXCPU);
550 			if (rlim->rlim_cur < rlim->rlim_max)
551 				rlim->rlim_cur += 5;
552 		}
553 	}
554 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
555 		p->p_nice = NZERO + 4;
556 		setpri(p);
557 	}
558 
559 	/*
560 	 * Pick a new current process and record its start time.
561 	 */
562 	cnt.v_swtch++;
563 	cpu_swtch(p);
564 	microtime(&runtime);
565 }
566 
567 /*
568  * Initialize the (doubly-linked) run queues
569  * to be empty.
570  */
571 rqinit()
572 {
573 	register int i;
574 
575 	for (i = 0; i < NQS; i++)
576 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
577 }
578 
579 /*
580  * Change process state to be runnable,
581  * placing it on the run queue if it is in memory,
582  * and awakening the swapper if it isn't in memory.
583  */
584 void
585 setrun(p)
586 	register struct proc *p;
587 {
588 	register int s;
589 
590 	s = splhigh();
591 	switch (p->p_stat) {
592 
593 	case 0:
594 	case SWAIT:
595 	case SRUN:
596 	case SZOMB:
597 	default:
598 		panic("setrun");
599 
600 	case SSTOP:
601 	case SSLEEP:
602 		unsleep(p);		/* e.g. when sending signals */
603 		break;
604 
605 	case SIDL:
606 		break;
607 	}
608 	p->p_stat = SRUN;
609 	if (p->p_flag & SLOAD)
610 		setrq(p);
611 	splx(s);
612 	if (p->p_slptime > 1)
613 		updatepri(p);
614 	p->p_slptime = 0;
615 	if ((p->p_flag&SLOAD) == 0)
616 		wakeup((caddr_t)&proc0);
617 	else if (p->p_pri < curpri)
618 		need_resched();
619 }
620 
621 /*
622  * Compute priority of process when running in user mode.
623  * Arrange to reschedule if the resulting priority
624  * is better than that of the current process.
625  */
626 void
627 setpri(p)
628 	register struct proc *p;
629 {
630 	register unsigned int newpri;
631 
632 	newpri = PUSER + p->p_cpu / 4 + 2 * p->p_nice;
633 	newpri = min(newpri, MAXPRI);
634 	p->p_usrpri = newpri;
635 	if (newpri < curpri)
636 		need_resched();
637 }
638