xref: /original-bsd/sys/kern/kern_time.c (revision cbd24f66)
1dcae39bdSmckusick /*
2014695a9Smckusick  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3014695a9Smckusick  * All rights reserved.
4dcae39bdSmckusick  *
5b383d302Sbostic  * %sccs.include.redist.c%
6014695a9Smckusick  *
7*cbd24f66Storek  *	@(#)kern_time.c	7.19 (Berkeley) 07/16/92
8dcae39bdSmckusick  */
9db51853bSsam 
1048846e23Sbloom #include "param.h"
110b0833e3Skarels #include "resourcevar.h"
1248846e23Sbloom #include "kernel.h"
13e4223d7eStorek #include "systm.h"
1448846e23Sbloom #include "proc.h"
155ad5aaf8Smckusick #include "vnode.h"
16ef678427Sroot 
17ae1aeb7bSmckusick #include "machine/cpu.h"
1867a72975Skarels 
1972762883Sroot /*
2072762883Sroot  * Time of day and interval timer support.
2134eef8ebSroot  *
2234eef8ebSroot  * These routines provide the kernel entry points to get and set
2334eef8ebSroot  * the time-of-day and per-process interval timers.  Subroutines
2434eef8ebSroot  * here provide support for adding and subtracting timeval structures
2534eef8ebSroot  * and decrementing interval timers, optionally reloading the interval
2634eef8ebSroot  * timers when they expire.
2772762883Sroot  */
2872762883Sroot 
29e5ed490aStorek struct gettimeofday_args {
30e5ed490aStorek 	struct	timeval *tp;
31e5ed490aStorek 	struct	timezone *tzp;
32e5ed490aStorek };
33d1ec48c2Skarels /* ARGSUSED */
34d1ec48c2Skarels gettimeofday(p, uap, retval)
35d1ec48c2Skarels 	struct proc *p;
36e5ed490aStorek 	register struct gettimeofday_args *uap;
37d1ec48c2Skarels 	int *retval;
38d1ec48c2Skarels {
39ef678427Sroot 	struct timeval atv;
40d1ec48c2Skarels 	int error = 0;
41ef678427Sroot 
422da4521eSbostic 	if (uap->tp) {
4370dbe469Skarels 		microtime(&atv);
44d1ec48c2Skarels 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
45d1ec48c2Skarels 		    sizeof (atv)))
462c51c3e4Skarels 			return (error);
472da4521eSbostic 	}
482da4521eSbostic 	if (uap->tzp)
49d1ec48c2Skarels 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
502da4521eSbostic 		    sizeof (tz));
512c51c3e4Skarels 	return (error);
52ef678427Sroot }
53ef678427Sroot 
54e5ed490aStorek struct settimeofday_args {
55e5ed490aStorek 	struct	timeval *tv;
56e5ed490aStorek 	struct	timezone *tzp;
57e5ed490aStorek };
58187e1fb7Sbostic /* ARGSUSED */
59d1ec48c2Skarels settimeofday(p, uap, retval)
60d1ec48c2Skarels 	struct proc *p;
61e5ed490aStorek 	struct settimeofday_args *uap;
62d1ec48c2Skarels 	int *retval;
63d1ec48c2Skarels {
64e4223d7eStorek 	struct timeval atv, delta;
65ef678427Sroot 	struct timezone atz;
66d1ec48c2Skarels 	int error, s;
67ef678427Sroot 
680b0833e3Skarels 	if (error = suser(p->p_ucred, &p->p_acflag))
692c51c3e4Skarels 		return (error);
70e4223d7eStorek 	/* Verify all parameters before changing time. */
71e4223d7eStorek 	if (uap->tv &&
72e4223d7eStorek 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
732c51c3e4Skarels 		return (error);
74e4223d7eStorek 	if (uap->tzp &&
75e4223d7eStorek 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
76e4223d7eStorek 		return (error);
77e4223d7eStorek 	if (uap->tv) {
78014695a9Smckusick 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
79e4223d7eStorek 		s = splclock();
80e4223d7eStorek 		/* nb. delta.tv_usec may be < 0, but this is OK here */
81e4223d7eStorek 		delta.tv_sec = atv.tv_sec - time.tv_sec;
82e4223d7eStorek 		delta.tv_usec = atv.tv_usec - time.tv_usec;
83e4223d7eStorek 		time = atv;
84e4223d7eStorek 		(void) splsoftclock();
85e4223d7eStorek 		timevaladd(&boottime, &delta);
86e4223d7eStorek 		timevalfix(&boottime);
87e4223d7eStorek 		timevaladd(&runtime, &delta);
88e4223d7eStorek 		timevalfix(&runtime);
89e4223d7eStorek 		LEASE_UPDATETIME(delta.tv_sec);
90e4223d7eStorek 		splx(s);
91014695a9Smckusick 		resettodr();
922da4521eSbostic 	}
93e4223d7eStorek 	if (uap->tzp)
940228495eSsam 		tz = atz;
95e4223d7eStorek 	return (0);
96ef678427Sroot }
9772762883Sroot 
98a690062aSkarels extern	int tickadj;			/* "standard" clock skew, us./tick */
99a690062aSkarels int	tickdelta;			/* current clock skew, us. per tick */
100a690062aSkarels long	timedelta;			/* unapplied time correction, us. */
101a690062aSkarels long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
1025d3ec6cbSkarels 
103e5ed490aStorek struct adjtime_args {
104e5ed490aStorek 	struct timeval *delta;
105e5ed490aStorek 	struct timeval *olddelta;
106e5ed490aStorek };
107d1ec48c2Skarels /* ARGSUSED */
108d1ec48c2Skarels adjtime(p, uap, retval)
109d1ec48c2Skarels 	struct proc *p;
110e5ed490aStorek 	register struct adjtime_args *uap;
111d1ec48c2Skarels 	int *retval;
112d1ec48c2Skarels {
113*cbd24f66Storek 	struct timeval atv;
114*cbd24f66Storek 	register long ndelta, ntickdelta, odelta;
115d1ec48c2Skarels 	int s, error;
1165d3ec6cbSkarels 
1170b0833e3Skarels 	if (error = suser(p->p_ucred, &p->p_acflag))
1182c51c3e4Skarels 		return (error);
119d1ec48c2Skarels 	if (error =
120d1ec48c2Skarels 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
1212c51c3e4Skarels 		return (error);
122a690062aSkarels 
123*cbd24f66Storek 	/*
124*cbd24f66Storek 	 * Compute the total correction and the rate at which to apply it.
125*cbd24f66Storek 	 * Round the adjustment down to a whole multiple of the per-tick
126*cbd24f66Storek 	 * delta, so that after some number of incremental changes in
127*cbd24f66Storek 	 * hardclock(), tickdelta will become zero, lest the correction
128*cbd24f66Storek 	 * overshoot and start taking us away from the desired final time.
129*cbd24f66Storek 	 */
130*cbd24f66Storek 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
131*cbd24f66Storek 	if (ndelta > bigadj)
132*cbd24f66Storek 		ntickdelta = 10 * tickadj;
133*cbd24f66Storek 	else
134*cbd24f66Storek 		ntickdelta = tickadj;
135*cbd24f66Storek 	if (ndelta % ntickdelta)
136*cbd24f66Storek 		ndelta = ndelta / ntickdelta * ntickdelta;
137*cbd24f66Storek 
138*cbd24f66Storek 	/*
139*cbd24f66Storek 	 * To make hardclock()'s job easier, make the per-tick delta negative
140*cbd24f66Storek 	 * if we want time to run slower; then hardclock can simply compute
141*cbd24f66Storek 	 * tick + tickdelta, and subtract tickdelta from timedelta.
142*cbd24f66Storek 	 */
143*cbd24f66Storek 	if (ndelta < 0)
144*cbd24f66Storek 		ntickdelta = -ntickdelta;
145e782b972Skarels 	s = splclock();
146*cbd24f66Storek 	odelta = timedelta;
147a690062aSkarels 	timedelta = ndelta;
148*cbd24f66Storek 	tickdelta = ntickdelta;
149a690062aSkarels 	splx(s);
150a690062aSkarels 
151*cbd24f66Storek 	if (uap->olddelta) {
152*cbd24f66Storek 		atv.tv_sec = odelta / 1000000;
153*cbd24f66Storek 		atv.tv_usec = odelta % 1000000;
154*cbd24f66Storek 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
1555d3ec6cbSkarels 		    sizeof(struct timeval));
156*cbd24f66Storek 	}
1572c51c3e4Skarels 	return (0);
1585d3ec6cbSkarels }
1595d3ec6cbSkarels 
16034eef8ebSroot /*
16134eef8ebSroot  * Get value of an interval timer.  The process virtual and
1620b0833e3Skarels  * profiling virtual time timers are kept in the p_stats area, since
16334eef8ebSroot  * they can be swapped out.  These are kept internally in the
16434eef8ebSroot  * way they are specified externally: in time until they expire.
16534eef8ebSroot  *
16634eef8ebSroot  * The real time interval timer is kept in the process table slot
16734eef8ebSroot  * for the process, and its value (it_value) is kept as an
16834eef8ebSroot  * absolute time rather than as a delta, so that it is easy to keep
16934eef8ebSroot  * periodic real-time signals from drifting.
17034eef8ebSroot  *
17134eef8ebSroot  * Virtual time timers are processed in the hardclock() routine of
17234eef8ebSroot  * kern_clock.c.  The real time timer is processed by a timeout
17334eef8ebSroot  * routine, called from the softclock() routine.  Since a callout
17434eef8ebSroot  * may be delayed in real time due to interrupt processing in the system,
17534eef8ebSroot  * it is possible for the real time timeout routine (realitexpire, given below),
17634eef8ebSroot  * to be delayed in real time past when it is supposed to occur.  It
17734eef8ebSroot  * does not suffice, therefore, to reload the real timer .it_value from the
17834eef8ebSroot  * real time timers .it_interval.  Rather, we compute the next time in
17934eef8ebSroot  * absolute time the timer should go off.
18034eef8ebSroot  */
181e5ed490aStorek struct getitimer_args {
182e5ed490aStorek 	u_int	which;
183e5ed490aStorek 	struct	itimerval *itv;
184e5ed490aStorek };
185d1ec48c2Skarels /* ARGSUSED */
186d1ec48c2Skarels getitimer(p, uap, retval)
187d1ec48c2Skarels 	struct proc *p;
188e5ed490aStorek 	register struct getitimer_args *uap;
189d1ec48c2Skarels 	int *retval;
190d1ec48c2Skarels {
1910ed3b3c8Sroot 	struct itimerval aitv;
192ef678427Sroot 	int s;
193ef678427Sroot 
194d1ec48c2Skarels 	if (uap->which > ITIMER_PROF)
1952c51c3e4Skarels 		return (EINVAL);
19670dbe469Skarels 	s = splclock();
1970ed3b3c8Sroot 	if (uap->which == ITIMER_REAL) {
19834eef8ebSroot 		/*
19934eef8ebSroot 		 * Convert from absoulte to relative time in .it_value
20034eef8ebSroot 		 * part of real time timer.  If time for real time timer
20134eef8ebSroot 		 * has passed return 0, else return difference between
20234eef8ebSroot 		 * current time and time for the timer to go off.
20334eef8ebSroot 		 */
204d1ec48c2Skarels 		aitv = p->p_realtimer;
2050ed3b3c8Sroot 		if (timerisset(&aitv.it_value))
2060ed3b3c8Sroot 			if (timercmp(&aitv.it_value, &time, <))
2070ed3b3c8Sroot 				timerclear(&aitv.it_value);
2080ed3b3c8Sroot 			else
209e4223d7eStorek 				timevalsub(&aitv.it_value,
210e4223d7eStorek 				    (struct timeval *)&time);
2110ed3b3c8Sroot 	} else
2120b0833e3Skarels 		aitv = p->p_stats->p_timer[uap->which];
2130ed3b3c8Sroot 	splx(s);
2142c51c3e4Skarels 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
215d1ec48c2Skarels 	    sizeof (struct itimerval)));
216ef678427Sroot }
217ef678427Sroot 
218e5ed490aStorek struct setitimer_args {
219e5ed490aStorek 	u_int	which;
220e5ed490aStorek 	struct	itimerval *itv, *oitv;
221e5ed490aStorek };
222d1ec48c2Skarels /* ARGSUSED */
223d1ec48c2Skarels setitimer(p, uap, retval)
224d1ec48c2Skarels 	struct proc *p;
225e5ed490aStorek 	register struct setitimer_args *uap;
226d1ec48c2Skarels 	int *retval;
227d1ec48c2Skarels {
2283468c2f1Smckusick 	struct itimerval aitv;
2293468c2f1Smckusick 	register struct itimerval *itvp;
230d1ec48c2Skarels 	int s, error;
231ef678427Sroot 
232d1ec48c2Skarels 	if (uap->which > ITIMER_PROF)
2332c51c3e4Skarels 		return (EINVAL);
2343468c2f1Smckusick 	itvp = uap->itv;
235d1ec48c2Skarels 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
2363468c2f1Smckusick 	    sizeof(struct itimerval))))
2372c51c3e4Skarels 		return (error);
238d1ec48c2Skarels 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
2392c51c3e4Skarels 		return (error);
2403468c2f1Smckusick 	if (itvp == 0)
241d1ec48c2Skarels 		return (0);
242d1ec48c2Skarels 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2432c51c3e4Skarels 		return (EINVAL);
24470dbe469Skarels 	s = splclock();
2450ed3b3c8Sroot 	if (uap->which == ITIMER_REAL) {
246a11faa3dSroot 		untimeout(realitexpire, (caddr_t)p);
2470ed3b3c8Sroot 		if (timerisset(&aitv.it_value)) {
248e4223d7eStorek 			timevaladd(&aitv.it_value, (struct timeval *)&time);
249a11faa3dSroot 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
2500ed3b3c8Sroot 		}
2510ed3b3c8Sroot 		p->p_realtimer = aitv;
2520ed3b3c8Sroot 	} else
2530b0833e3Skarels 		p->p_stats->p_timer[uap->which] = aitv;
254ef678427Sroot 	splx(s);
2552c51c3e4Skarels 	return (0);
256ef678427Sroot }
257ef678427Sroot 
25834eef8ebSroot /*
25934eef8ebSroot  * Real interval timer expired:
26034eef8ebSroot  * send process whose timer expired an alarm signal.
26134eef8ebSroot  * If time is not set up to reload, then just return.
26234eef8ebSroot  * Else compute next time timer should go off which is > current time.
26334eef8ebSroot  * This is where delay in processing this timeout causes multiple
26434eef8ebSroot  * SIGALRM calls to be compressed into one.
26534eef8ebSroot  */
266e4223d7eStorek void
267e4223d7eStorek realitexpire(arg)
268e4223d7eStorek 	void *arg;
2690ed3b3c8Sroot {
270e4223d7eStorek 	register struct proc *p;
2710ed3b3c8Sroot 	int s;
2720ed3b3c8Sroot 
273e4223d7eStorek 	p = (struct proc *)arg;
2740ed3b3c8Sroot 	psignal(p, SIGALRM);
2750ed3b3c8Sroot 	if (!timerisset(&p->p_realtimer.it_interval)) {
2760ed3b3c8Sroot 		timerclear(&p->p_realtimer.it_value);
2770ed3b3c8Sroot 		return;
2780ed3b3c8Sroot 	}
2790ed3b3c8Sroot 	for (;;) {
28070dbe469Skarels 		s = splclock();
2810ed3b3c8Sroot 		timevaladd(&p->p_realtimer.it_value,
2820ed3b3c8Sroot 		    &p->p_realtimer.it_interval);
2830ed3b3c8Sroot 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
284a11faa3dSroot 			timeout(realitexpire, (caddr_t)p,
285a11faa3dSroot 			    hzto(&p->p_realtimer.it_value));
2860ed3b3c8Sroot 			splx(s);
2870ed3b3c8Sroot 			return;
2880ed3b3c8Sroot 		}
2890ed3b3c8Sroot 		splx(s);
2900ed3b3c8Sroot 	}
2910ed3b3c8Sroot }
2920ed3b3c8Sroot 
29334eef8ebSroot /*
29434eef8ebSroot  * Check that a proposed value to load into the .it_value or
29534eef8ebSroot  * .it_interval part of an interval timer is acceptable, and
29634eef8ebSroot  * fix it to have at least minimal value (i.e. if it is less
29734eef8ebSroot  * than the resolution of the clock, round it up.)
29834eef8ebSroot  */
29972762883Sroot itimerfix(tv)
30072762883Sroot 	struct timeval *tv;
30172762883Sroot {
30272762883Sroot 
3030ed3b3c8Sroot 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
3040ed3b3c8Sroot 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
30572762883Sroot 		return (EINVAL);
30642312cf9Ssam 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
30772762883Sroot 		tv->tv_usec = tick;
30872762883Sroot 	return (0);
30972762883Sroot }
31072762883Sroot 
31134eef8ebSroot /*
31234eef8ebSroot  * Decrement an interval timer by a specified number
31334eef8ebSroot  * of microseconds, which must be less than a second,
31434eef8ebSroot  * i.e. < 1000000.  If the timer expires, then reload
31534eef8ebSroot  * it.  In this case, carry over (usec - old value) to
316e4223d7eStorek  * reduce the value reloaded into the timer so that
31734eef8ebSroot  * the timer does not drift.  This routine assumes
31834eef8ebSroot  * that it is called in a context where the timers
31934eef8ebSroot  * on which it is operating cannot change in value.
32034eef8ebSroot  */
321ef678427Sroot itimerdecr(itp, usec)
322ef678427Sroot 	register struct itimerval *itp;
323ef678427Sroot 	int usec;
324ef678427Sroot {
325ef678427Sroot 
32672762883Sroot 	if (itp->it_value.tv_usec < usec) {
32772762883Sroot 		if (itp->it_value.tv_sec == 0) {
32834eef8ebSroot 			/* expired, and already in next interval */
32972762883Sroot 			usec -= itp->it_value.tv_usec;
330ef678427Sroot 			goto expire;
331ef678427Sroot 		}
33272762883Sroot 		itp->it_value.tv_usec += 1000000;
33372762883Sroot 		itp->it_value.tv_sec--;
33472762883Sroot 	}
33572762883Sroot 	itp->it_value.tv_usec -= usec;
33672762883Sroot 	usec = 0;
33772762883Sroot 	if (timerisset(&itp->it_value))
338ef678427Sroot 		return (1);
33934eef8ebSroot 	/* expired, exactly at end of interval */
340ef678427Sroot expire:
34172762883Sroot 	if (timerisset(&itp->it_interval)) {
34272762883Sroot 		itp->it_value = itp->it_interval;
34372762883Sroot 		itp->it_value.tv_usec -= usec;
34472762883Sroot 		if (itp->it_value.tv_usec < 0) {
34572762883Sroot 			itp->it_value.tv_usec += 1000000;
34672762883Sroot 			itp->it_value.tv_sec--;
34772762883Sroot 		}
34872762883Sroot 	} else
34934eef8ebSroot 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
350ef678427Sroot 	return (0);
351ef678427Sroot }
352ef678427Sroot 
35334eef8ebSroot /*
35434eef8ebSroot  * Add and subtract routines for timevals.
35534eef8ebSroot  * N.B.: subtract routine doesn't deal with
35634eef8ebSroot  * results which are before the beginning,
35734eef8ebSroot  * it just gets very confused in this case.
35834eef8ebSroot  * Caveat emptor.
35934eef8ebSroot  */
36034eef8ebSroot timevaladd(t1, t2)
36134eef8ebSroot 	struct timeval *t1, *t2;
36234eef8ebSroot {
36334eef8ebSroot 
36434eef8ebSroot 	t1->tv_sec += t2->tv_sec;
36534eef8ebSroot 	t1->tv_usec += t2->tv_usec;
36634eef8ebSroot 	timevalfix(t1);
36734eef8ebSroot }
36834eef8ebSroot 
36934eef8ebSroot timevalsub(t1, t2)
37034eef8ebSroot 	struct timeval *t1, *t2;
37134eef8ebSroot {
37234eef8ebSroot 
37334eef8ebSroot 	t1->tv_sec -= t2->tv_sec;
37434eef8ebSroot 	t1->tv_usec -= t2->tv_usec;
37534eef8ebSroot 	timevalfix(t1);
37634eef8ebSroot }
37734eef8ebSroot 
37834eef8ebSroot timevalfix(t1)
37934eef8ebSroot 	struct timeval *t1;
38034eef8ebSroot {
38134eef8ebSroot 
38234eef8ebSroot 	if (t1->tv_usec < 0) {
38334eef8ebSroot 		t1->tv_sec--;
38434eef8ebSroot 		t1->tv_usec += 1000000;
38534eef8ebSroot 	}
38634eef8ebSroot 	if (t1->tv_usec >= 1000000) {
38734eef8ebSroot 		t1->tv_sec++;
38834eef8ebSroot 		t1->tv_usec -= 1000000;
38934eef8ebSroot 	}
39034eef8ebSroot }
391