xref: /original-bsd/sys/kern/kern_time.c (revision 641d4200)
1 /*	kern_time.c	6.1	83/07/29	*/
2 
3 #include "../machine/reg.h"
4 
5 #include "../h/param.h"
6 #include "../h/dir.h"		/* XXX */
7 #include "../h/user.h"
8 #include "../h/kernel.h"
9 #include "../h/inode.h"
10 #include "../h/proc.h"
11 
12 /*
13  * Time of day and interval timer support.
14  *
15  * These routines provide the kernel entry points to get and set
16  * the time-of-day and per-process interval timers.  Subroutines
17  * here provide support for adding and subtracting timeval structures
18  * and decrementing interval timers, optionally reloading the interval
19  * timers when they expire.
20  */
21 
22 gettimeofday()
23 {
24 	register struct a {
25 		struct	timeval *tp;
26 		struct	timezone *tzp;
27 	} *uap = (struct a *)u.u_ap;
28 	struct timeval atv;
29 	int s;
30 
31 	s = spl7(); atv = time; splx(s);
32 	u.u_error = copyout((caddr_t)&atv, (caddr_t)uap->tp, sizeof (atv));
33 	if (u.u_error)
34 		return;
35 	if (uap->tzp == 0)
36 		return;
37 	/* SHOULD HAVE PER-PROCESS TIMEZONE */
38 	u.u_error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, sizeof (tz));
39 }
40 
41 settimeofday()
42 {
43 	register struct a {
44 		struct	timeval *tv;
45 		struct	timezone *tzp;
46 	} *uap = (struct a *)u.u_ap;
47 	struct timeval atv;
48 	struct timezone atz;
49 
50 	u.u_error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
51 		sizeof (struct timeval));
52 	if (u.u_error)
53 		return;
54 	setthetime(&atv);
55 	if (uap->tzp && suser()) {
56 		u.u_error = copyin((caddr_t)uap->tzp, (caddr_t)&atz,
57 			sizeof (atz));
58 		if (u.u_error)
59 			return;
60 	}
61 }
62 
63 setthetime(tv)
64 	struct timeval *tv;
65 {
66 	int s;
67 
68 	if (!suser())
69 		return;
70 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
71 	boottime.tv_sec += tv->tv_sec - time.tv_sec;
72 	s = spl7(); time = *tv; splx(s);
73 	resettodr();
74 }
75 
76 /*
77  * Get value of an interval timer.  The process virtual and
78  * profiling virtual time timers are kept in the u. area, since
79  * they can be swapped out.  These are kept internally in the
80  * way they are specified externally: in time until they expire.
81  *
82  * The real time interval timer is kept in the process table slot
83  * for the process, and its value (it_value) is kept as an
84  * absolute time rather than as a delta, so that it is easy to keep
85  * periodic real-time signals from drifting.
86  *
87  * Virtual time timers are processed in the hardclock() routine of
88  * kern_clock.c.  The real time timer is processed by a timeout
89  * routine, called from the softclock() routine.  Since a callout
90  * may be delayed in real time due to interrupt processing in the system,
91  * it is possible for the real time timeout routine (realitexpire, given below),
92  * to be delayed in real time past when it is supposed to occur.  It
93  * does not suffice, therefore, to reload the real timer .it_value from the
94  * real time timers .it_interval.  Rather, we compute the next time in
95  * absolute time the timer should go off.
96  */
97 getitimer()
98 {
99 	register struct a {
100 		u_int	which;
101 		struct	itimerval *itv;
102 	} *uap = (struct a *)u.u_ap;
103 	struct itimerval aitv;
104 	int s;
105 
106 	if (uap->which > 2) {
107 		u.u_error = EINVAL;
108 		return;
109 	}
110 	s = spl7();
111 	if (uap->which == ITIMER_REAL) {
112 		/*
113 		 * Convert from absoulte to relative time in .it_value
114 		 * part of real time timer.  If time for real time timer
115 		 * has passed return 0, else return difference between
116 		 * current time and time for the timer to go off.
117 		 */
118 		aitv = u.u_procp->p_realtimer;
119 		if (timerisset(&aitv.it_value))
120 			if (timercmp(&aitv.it_value, &time, <))
121 				timerclear(&aitv.it_value);
122 			else
123 				timevalsub(&aitv.it_value, &time);
124 	} else
125 		aitv = u.u_timer[uap->which];
126 	splx(s);
127 	u.u_error = copyout((caddr_t)&aitv, (caddr_t)uap->itv,
128 	    sizeof (struct itimerval));
129 	splx(s);
130 }
131 
132 setitimer()
133 {
134 	register struct a {
135 		u_int	which;
136 		struct	itimerval *itv, *oitv;
137 	} *uap = (struct a *)u.u_ap;
138 	struct itimerval aitv;
139 	int s;
140 	register struct proc *p = u.u_procp;
141 
142 	if (uap->which > 2) {
143 		u.u_error = EINVAL;
144 		return;
145 	}
146 	u.u_error = copyin((caddr_t)uap->itv, (caddr_t)&aitv,
147 	    sizeof (struct itimerval));
148 	if (u.u_error)
149 		return;
150 	if (uap->oitv) {
151 		uap->itv = uap->oitv;
152 		getitimer();
153 	}
154 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) {
155 		u.u_error = EINVAL;
156 		return;
157 	}
158 	s = spl7();
159 	if (uap->which == ITIMER_REAL) {
160 		untimeout(realitexpire, (caddr_t)p);
161 		if (timerisset(&aitv.it_value)) {
162 			timevaladd(&aitv.it_value, &time);
163 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
164 		}
165 		p->p_realtimer = aitv;
166 	} else
167 		u.u_timer[uap->which] = aitv;
168 	splx(s);
169 }
170 
171 /*
172  * Real interval timer expired:
173  * send process whose timer expired an alarm signal.
174  * If time is not set up to reload, then just return.
175  * Else compute next time timer should go off which is > current time.
176  * This is where delay in processing this timeout causes multiple
177  * SIGALRM calls to be compressed into one.
178  */
179 realitexpire(p)
180 	register struct proc *p;
181 {
182 	int s;
183 
184 	psignal(p, SIGALRM);
185 	if (!timerisset(&p->p_realtimer.it_interval)) {
186 		timerclear(&p->p_realtimer.it_value);
187 		return;
188 	}
189 	for (;;) {
190 		s = spl7();
191 		timevaladd(&p->p_realtimer.it_value,
192 		    &p->p_realtimer.it_interval);
193 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
194 			timeout(realitexpire, (caddr_t)p,
195 			    hzto(&p->p_realtimer.it_value));
196 			splx(s);
197 			return;
198 		}
199 		splx(s);
200 	}
201 }
202 
203 /*
204  * Check that a proposed value to load into the .it_value or
205  * .it_interval part of an interval timer is acceptable, and
206  * fix it to have at least minimal value (i.e. if it is less
207  * than the resolution of the clock, round it up.)
208  */
209 itimerfix(tv)
210 	struct timeval *tv;
211 {
212 
213 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
214 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
215 		return (EINVAL);
216 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
217 		tv->tv_usec = tick;
218 	return (0);
219 }
220 
221 /*
222  * Decrement an interval timer by a specified number
223  * of microseconds, which must be less than a second,
224  * i.e. < 1000000.  If the timer expires, then reload
225  * it.  In this case, carry over (usec - old value) to
226  * reducint the value reloaded into the timer so that
227  * the timer does not drift.  This routine assumes
228  * that it is called in a context where the timers
229  * on which it is operating cannot change in value.
230  */
231 itimerdecr(itp, usec)
232 	register struct itimerval *itp;
233 	int usec;
234 {
235 
236 	if (itp->it_value.tv_usec < usec) {
237 		if (itp->it_value.tv_sec == 0) {
238 			/* expired, and already in next interval */
239 			usec -= itp->it_value.tv_usec;
240 			goto expire;
241 		}
242 		itp->it_value.tv_usec += 1000000;
243 		itp->it_value.tv_sec--;
244 	}
245 	itp->it_value.tv_usec -= usec;
246 	usec = 0;
247 	if (timerisset(&itp->it_value))
248 		return (1);
249 	/* expired, exactly at end of interval */
250 expire:
251 	if (timerisset(&itp->it_interval)) {
252 		itp->it_value = itp->it_interval;
253 		itp->it_value.tv_usec -= usec;
254 		if (itp->it_value.tv_usec < 0) {
255 			itp->it_value.tv_usec += 1000000;
256 			itp->it_value.tv_sec--;
257 		}
258 	} else
259 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
260 	return (0);
261 }
262 
263 /*
264  * Add and subtract routines for timevals.
265  * N.B.: subtract routine doesn't deal with
266  * results which are before the beginning,
267  * it just gets very confused in this case.
268  * Caveat emptor.
269  */
270 timevaladd(t1, t2)
271 	struct timeval *t1, *t2;
272 {
273 
274 	t1->tv_sec += t2->tv_sec;
275 	t1->tv_usec += t2->tv_usec;
276 	timevalfix(t1);
277 }
278 
279 timevalsub(t1, t2)
280 	struct timeval *t1, *t2;
281 {
282 
283 	t1->tv_sec -= t2->tv_sec;
284 	t1->tv_usec -= t2->tv_usec;
285 	timevalfix(t1);
286 }
287 
288 timevalfix(t1)
289 	struct timeval *t1;
290 {
291 
292 	if (t1->tv_usec < 0) {
293 		t1->tv_sec--;
294 		t1->tv_usec += 1000000;
295 	}
296 	if (t1->tv_usec >= 1000000) {
297 		t1->tv_sec++;
298 		t1->tv_usec -= 1000000;
299 	}
300 }
301