xref: /original-bsd/sys/kern/kern_time.c (revision deff14a8)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)kern_time.c	8.2 (Berkeley) 08/10/94
8  */
9 
10 #include <sys/param.h>
11 #include <sys/resourcevar.h>
12 #include <sys/kernel.h>
13 #include <sys/systm.h>
14 #include <sys/proc.h>
15 #include <sys/vnode.h>
16 
17 #include <machine/cpu.h>
18 
19 /*
20  * Time of day and interval timer support.
21  *
22  * These routines provide the kernel entry points to get and set
23  * the time-of-day and per-process interval timers.  Subroutines
24  * here provide support for adding and subtracting timeval structures
25  * and decrementing interval timers, optionally reloading the interval
26  * timers when they expire.
27  */
28 
29 struct gettimeofday_args {
30 	struct	timeval *tp;
31 	struct	timezone *tzp;
32 };
33 /* ARGSUSED */
34 gettimeofday(p, uap, retval)
35 	struct proc *p;
36 	register struct gettimeofday_args *uap;
37 	int *retval;
38 {
39 	struct timeval atv;
40 	int error = 0;
41 
42 	if (uap->tp) {
43 		microtime(&atv);
44 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
45 		    sizeof (atv)))
46 			return (error);
47 	}
48 	if (uap->tzp)
49 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
50 		    sizeof (tz));
51 	return (error);
52 }
53 
54 struct settimeofday_args {
55 	struct	timeval *tv;
56 	struct	timezone *tzp;
57 };
58 /* ARGSUSED */
59 settimeofday(p, uap, retval)
60 	struct proc *p;
61 	struct settimeofday_args *uap;
62 	int *retval;
63 {
64 	struct timeval atv, delta;
65 	struct timezone atz;
66 	int error, s;
67 
68 	if (error = suser(p->p_ucred, &p->p_acflag))
69 		return (error);
70 	/* Verify all parameters before changing time. */
71 	if (uap->tv &&
72 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
73 		return (error);
74 	if (uap->tzp &&
75 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
76 		return (error);
77 	if (uap->tv) {
78 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
79 		s = splclock();
80 		/* nb. delta.tv_usec may be < 0, but this is OK here */
81 		delta.tv_sec = atv.tv_sec - time.tv_sec;
82 		delta.tv_usec = atv.tv_usec - time.tv_usec;
83 		time = atv;
84 		(void) splsoftclock();
85 		timevaladd(&boottime, &delta);
86 		timevalfix(&boottime);
87 		timevaladd(&runtime, &delta);
88 		timevalfix(&runtime);
89 #		ifdef NFS
90 			lease_updatetime(delta.tv_sec);
91 #		endif
92 		splx(s);
93 		resettodr();
94 	}
95 	if (uap->tzp)
96 		tz = atz;
97 	return (0);
98 }
99 
100 extern	int tickadj;			/* "standard" clock skew, us./tick */
101 int	tickdelta;			/* current clock skew, us. per tick */
102 long	timedelta;			/* unapplied time correction, us. */
103 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
104 
105 struct adjtime_args {
106 	struct timeval *delta;
107 	struct timeval *olddelta;
108 };
109 /* ARGSUSED */
110 adjtime(p, uap, retval)
111 	struct proc *p;
112 	register struct adjtime_args *uap;
113 	int *retval;
114 {
115 	struct timeval atv;
116 	register long ndelta, ntickdelta, odelta;
117 	int s, error;
118 
119 	if (error = suser(p->p_ucred, &p->p_acflag))
120 		return (error);
121 	if (error =
122 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
123 		return (error);
124 
125 	/*
126 	 * Compute the total correction and the rate at which to apply it.
127 	 * Round the adjustment down to a whole multiple of the per-tick
128 	 * delta, so that after some number of incremental changes in
129 	 * hardclock(), tickdelta will become zero, lest the correction
130 	 * overshoot and start taking us away from the desired final time.
131 	 */
132 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
133 	if (ndelta > bigadj)
134 		ntickdelta = 10 * tickadj;
135 	else
136 		ntickdelta = tickadj;
137 	if (ndelta % ntickdelta)
138 		ndelta = ndelta / ntickdelta * ntickdelta;
139 
140 	/*
141 	 * To make hardclock()'s job easier, make the per-tick delta negative
142 	 * if we want time to run slower; then hardclock can simply compute
143 	 * tick + tickdelta, and subtract tickdelta from timedelta.
144 	 */
145 	if (ndelta < 0)
146 		ntickdelta = -ntickdelta;
147 	s = splclock();
148 	odelta = timedelta;
149 	timedelta = ndelta;
150 	tickdelta = ntickdelta;
151 	splx(s);
152 
153 	if (uap->olddelta) {
154 		atv.tv_sec = odelta / 1000000;
155 		atv.tv_usec = odelta % 1000000;
156 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
157 		    sizeof(struct timeval));
158 	}
159 	return (0);
160 }
161 
162 /*
163  * Get value of an interval timer.  The process virtual and
164  * profiling virtual time timers are kept in the p_stats area, since
165  * they can be swapped out.  These are kept internally in the
166  * way they are specified externally: in time until they expire.
167  *
168  * The real time interval timer is kept in the process table slot
169  * for the process, and its value (it_value) is kept as an
170  * absolute time rather than as a delta, so that it is easy to keep
171  * periodic real-time signals from drifting.
172  *
173  * Virtual time timers are processed in the hardclock() routine of
174  * kern_clock.c.  The real time timer is processed by a timeout
175  * routine, called from the softclock() routine.  Since a callout
176  * may be delayed in real time due to interrupt processing in the system,
177  * it is possible for the real time timeout routine (realitexpire, given below),
178  * to be delayed in real time past when it is supposed to occur.  It
179  * does not suffice, therefore, to reload the real timer .it_value from the
180  * real time timers .it_interval.  Rather, we compute the next time in
181  * absolute time the timer should go off.
182  */
183 struct getitimer_args {
184 	u_int	which;
185 	struct	itimerval *itv;
186 };
187 /* ARGSUSED */
188 getitimer(p, uap, retval)
189 	struct proc *p;
190 	register struct getitimer_args *uap;
191 	int *retval;
192 {
193 	struct itimerval aitv;
194 	int s;
195 
196 	if (uap->which > ITIMER_PROF)
197 		return (EINVAL);
198 	s = splclock();
199 	if (uap->which == ITIMER_REAL) {
200 		/*
201 		 * Convert from absoulte to relative time in .it_value
202 		 * part of real time timer.  If time for real time timer
203 		 * has passed return 0, else return difference between
204 		 * current time and time for the timer to go off.
205 		 */
206 		aitv = p->p_realtimer;
207 		if (timerisset(&aitv.it_value))
208 			if (timercmp(&aitv.it_value, &time, <))
209 				timerclear(&aitv.it_value);
210 			else
211 				timevalsub(&aitv.it_value,
212 				    (struct timeval *)&time);
213 	} else
214 		aitv = p->p_stats->p_timer[uap->which];
215 	splx(s);
216 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
217 	    sizeof (struct itimerval)));
218 }
219 
220 struct setitimer_args {
221 	u_int	which;
222 	struct	itimerval *itv, *oitv;
223 };
224 /* ARGSUSED */
225 setitimer(p, uap, retval)
226 	struct proc *p;
227 	register struct setitimer_args *uap;
228 	int *retval;
229 {
230 	struct itimerval aitv;
231 	register struct itimerval *itvp;
232 	int s, error;
233 
234 	if (uap->which > ITIMER_PROF)
235 		return (EINVAL);
236 	itvp = uap->itv;
237 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
238 	    sizeof(struct itimerval))))
239 		return (error);
240 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
241 		return (error);
242 	if (itvp == 0)
243 		return (0);
244 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
245 		return (EINVAL);
246 	s = splclock();
247 	if (uap->which == ITIMER_REAL) {
248 		untimeout(realitexpire, (caddr_t)p);
249 		if (timerisset(&aitv.it_value)) {
250 			timevaladd(&aitv.it_value, (struct timeval *)&time);
251 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
252 		}
253 		p->p_realtimer = aitv;
254 	} else
255 		p->p_stats->p_timer[uap->which] = aitv;
256 	splx(s);
257 	return (0);
258 }
259 
260 /*
261  * Real interval timer expired:
262  * send process whose timer expired an alarm signal.
263  * If time is not set up to reload, then just return.
264  * Else compute next time timer should go off which is > current time.
265  * This is where delay in processing this timeout causes multiple
266  * SIGALRM calls to be compressed into one.
267  */
268 void
269 realitexpire(arg)
270 	void *arg;
271 {
272 	register struct proc *p;
273 	int s;
274 
275 	p = (struct proc *)arg;
276 	psignal(p, SIGALRM);
277 	if (!timerisset(&p->p_realtimer.it_interval)) {
278 		timerclear(&p->p_realtimer.it_value);
279 		return;
280 	}
281 	for (;;) {
282 		s = splclock();
283 		timevaladd(&p->p_realtimer.it_value,
284 		    &p->p_realtimer.it_interval);
285 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
286 			timeout(realitexpire, (caddr_t)p,
287 			    hzto(&p->p_realtimer.it_value));
288 			splx(s);
289 			return;
290 		}
291 		splx(s);
292 	}
293 }
294 
295 /*
296  * Check that a proposed value to load into the .it_value or
297  * .it_interval part of an interval timer is acceptable, and
298  * fix it to have at least minimal value (i.e. if it is less
299  * than the resolution of the clock, round it up.)
300  */
301 itimerfix(tv)
302 	struct timeval *tv;
303 {
304 
305 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
306 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
307 		return (EINVAL);
308 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
309 		tv->tv_usec = tick;
310 	return (0);
311 }
312 
313 /*
314  * Decrement an interval timer by a specified number
315  * of microseconds, which must be less than a second,
316  * i.e. < 1000000.  If the timer expires, then reload
317  * it.  In this case, carry over (usec - old value) to
318  * reduce the value reloaded into the timer so that
319  * the timer does not drift.  This routine assumes
320  * that it is called in a context where the timers
321  * on which it is operating cannot change in value.
322  */
323 itimerdecr(itp, usec)
324 	register struct itimerval *itp;
325 	int usec;
326 {
327 
328 	if (itp->it_value.tv_usec < usec) {
329 		if (itp->it_value.tv_sec == 0) {
330 			/* expired, and already in next interval */
331 			usec -= itp->it_value.tv_usec;
332 			goto expire;
333 		}
334 		itp->it_value.tv_usec += 1000000;
335 		itp->it_value.tv_sec--;
336 	}
337 	itp->it_value.tv_usec -= usec;
338 	usec = 0;
339 	if (timerisset(&itp->it_value))
340 		return (1);
341 	/* expired, exactly at end of interval */
342 expire:
343 	if (timerisset(&itp->it_interval)) {
344 		itp->it_value = itp->it_interval;
345 		itp->it_value.tv_usec -= usec;
346 		if (itp->it_value.tv_usec < 0) {
347 			itp->it_value.tv_usec += 1000000;
348 			itp->it_value.tv_sec--;
349 		}
350 	} else
351 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
352 	return (0);
353 }
354 
355 /*
356  * Add and subtract routines for timevals.
357  * N.B.: subtract routine doesn't deal with
358  * results which are before the beginning,
359  * it just gets very confused in this case.
360  * Caveat emptor.
361  */
362 timevaladd(t1, t2)
363 	struct timeval *t1, *t2;
364 {
365 
366 	t1->tv_sec += t2->tv_sec;
367 	t1->tv_usec += t2->tv_usec;
368 	timevalfix(t1);
369 }
370 
371 timevalsub(t1, t2)
372 	struct timeval *t1, *t2;
373 {
374 
375 	t1->tv_sec -= t2->tv_sec;
376 	t1->tv_usec -= t2->tv_usec;
377 	timevalfix(t1);
378 }
379 
380 timevalfix(t1)
381 	struct timeval *t1;
382 {
383 
384 	if (t1->tv_usec < 0) {
385 		t1->tv_sec--;
386 		t1->tv_usec += 1000000;
387 	}
388 	if (t1->tv_usec >= 1000000) {
389 		t1->tv_sec++;
390 		t1->tv_usec -= 1000000;
391 	}
392 }
393