xref: /original-bsd/sys/kern/kern_time.c (revision f0fd5f8a)
1 /*	kern_time.c	5.12	82/12/17	*/
2 
3 #include "../machine/reg.h"
4 
5 #include "../h/param.h"
6 #include "../h/dir.h"		/* XXX */
7 #include "../h/user.h"
8 #include "../h/kernel.h"
9 #include "../h/inode.h"
10 #include "../h/proc.h"
11 
12 /*
13  * Time of day and interval timer support.
14  *
15  * These routines provide the kernel entry points to get and set
16  * the time-of-day and per-process interval timers.  Subroutines
17  * here provide support for adding and subtracting timeval structures
18  * and decrementing interval timers, optionally reloading the interval
19  * timers when they expire.
20  */
21 
22 gettimeofday()
23 {
24 	register struct a {
25 		struct	timeval *tp;
26 		struct	timezone *tzp;
27 	} *uap = (struct a *)u.u_ap;
28 	struct timeval atv;
29 	int s;
30 
31 	s = spl7(); atv = time; splx(s);
32 	if (copyout((caddr_t)&atv, (caddr_t)uap->tp, sizeof (atv))) {
33 		u.u_error = EFAULT;
34 		return;
35 	}
36 	if (uap->tzp == 0)
37 		return;
38 	/* SHOULD HAVE PER-PROCESS TIMEZONE */
39 	if (copyout((caddr_t)&tz, (caddr_t)uap->tzp, sizeof (tz))) {
40 		u.u_error = EFAULT;
41 		return;
42 	}
43 }
44 
45 settimeofday()
46 {
47 	register struct a {
48 		struct	timeval *tv;
49 		struct	timezone *tzp;
50 	} *uap = (struct a *)u.u_ap;
51 	struct timeval atv;
52 	struct timezone atz;
53 
54 	if (copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof (struct timeval))) {
55 		u.u_error = EFAULT;
56 		return;
57 	}
58 	setthetime(&atv);
59 	if (uap->tzp && suser()) {
60 		if (copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof (atz))) {
61 			u.u_error = EFAULT;
62 			return;
63 		}
64 	}
65 }
66 
67 setthetime(tv)
68 	struct timeval *tv;
69 {
70 	int s;
71 
72 	if (!suser())
73 		return;
74 /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
75 	boottime.tv_sec += tv->tv_sec - time.tv_sec;
76 	s = spl7(); time = *tv; splx(s);
77 	resettodr();
78 }
79 
80 /*
81  * Get value of an interval timer.  The process virtual and
82  * profiling virtual time timers are kept in the u. area, since
83  * they can be swapped out.  These are kept internally in the
84  * way they are specified externally: in time until they expire.
85  *
86  * The real time interval timer is kept in the process table slot
87  * for the process, and its value (it_value) is kept as an
88  * absolute time rather than as a delta, so that it is easy to keep
89  * periodic real-time signals from drifting.
90  *
91  * Virtual time timers are processed in the hardclock() routine of
92  * kern_clock.c.  The real time timer is processed by a timeout
93  * routine, called from the softclock() routine.  Since a callout
94  * may be delayed in real time due to interrupt processing in the system,
95  * it is possible for the real time timeout routine (realitexpire, given below),
96  * to be delayed in real time past when it is supposed to occur.  It
97  * does not suffice, therefore, to reload the real timer .it_value from the
98  * real time timers .it_interval.  Rather, we compute the next time in
99  * absolute time the timer should go off.
100  */
101 getitimer()
102 {
103 	register struct a {
104 		u_int	which;
105 		struct	itimerval *itv;
106 	} *uap = (struct a *)u.u_ap;
107 	struct itimerval aitv;
108 	int s;
109 
110 	if (uap->which > 2) {
111 		u.u_error = EINVAL;
112 		return;
113 	}
114 	s = spl7();
115 	if (uap->which == ITIMER_REAL) {
116 		/*
117 		 * Convert from absoulte to relative time in .it_value
118 		 * part of real time timer.  If time for real time timer
119 		 * has passed return 0, else return difference between
120 		 * current time and time for the timer to go off.
121 		 */
122 		aitv = u.u_procp->p_realtimer;
123 		if (timerisset(&aitv.it_value))
124 			if (timercmp(&aitv.it_value, &time, <))
125 				timerclear(&aitv.it_value);
126 			else
127 				timevalsub(&aitv.it_value, &time);
128 	} else
129 		aitv = u.u_timer[uap->which];
130 	splx(s);
131 	if (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
132 	    sizeof (struct itimerval)))
133 		u.u_error = EFAULT;
134 	splx(s);
135 }
136 
137 setitimer()
138 {
139 	register struct a {
140 		u_int	which;
141 		struct	itimerval *itv, *oitv;
142 	} *uap = (struct a *)u.u_ap;
143 	struct itimerval aitv;
144 	int s;
145 	register struct proc *p = u.u_procp;
146 
147 	if (uap->which > 2) {
148 		u.u_error = EINVAL;
149 		return;
150 	}
151 	if (copyin((caddr_t)uap->itv, (caddr_t)&aitv,
152 	    sizeof (struct itimerval))) {
153 		u.u_error = EFAULT;
154 		return;
155 	}
156 	if (uap->oitv) {
157 		uap->itv = uap->oitv;
158 		getitimer();
159 	}
160 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) {
161 		u.u_error = EINVAL;
162 		return;
163 	}
164 	s = spl7();
165 	if (uap->which == ITIMER_REAL) {
166 		untimeout(realitexpire, (caddr_t)p);
167 		if (timerisset(&aitv.it_value)) {
168 			timevaladd(&aitv.it_value, &time);
169 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
170 		}
171 		p->p_realtimer = aitv;
172 	} else
173 		u.u_timer[uap->which] = aitv;
174 	splx(s);
175 }
176 
177 /*
178  * Real interval timer expired:
179  * send process whose timer expired an alarm signal.
180  * If time is not set up to reload, then just return.
181  * Else compute next time timer should go off which is > current time.
182  * This is where delay in processing this timeout causes multiple
183  * SIGALRM calls to be compressed into one.
184  */
185 realitexpire(p)
186 	register struct proc *p;
187 {
188 	int s;
189 
190 	psignal(p, SIGALRM);
191 	if (!timerisset(&p->p_realtimer.it_interval)) {
192 		timerclear(&p->p_realtimer.it_value);
193 		return;
194 	}
195 	for (;;) {
196 		s = spl7();
197 		timevaladd(&p->p_realtimer.it_value,
198 		    &p->p_realtimer.it_interval);
199 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
200 			timeout(realitexpire, (caddr_t)p,
201 			    hzto(&p->p_realtimer.it_value));
202 			splx(s);
203 			return;
204 		}
205 		splx(s);
206 	}
207 }
208 
209 /*
210  * Check that a proposed value to load into the .it_value or
211  * .it_interval part of an interval timer is acceptable, and
212  * fix it to have at least minimal value (i.e. if it is less
213  * than the resolution of the clock, round it up.)
214  */
215 itimerfix(tv)
216 	struct timeval *tv;
217 {
218 
219 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
220 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
221 		return (EINVAL);
222 	if (tv->tv_sec == 0 && tv->tv_usec < tick)
223 		tv->tv_usec = tick;
224 	return (0);
225 }
226 
227 /*
228  * Decrement an interval timer by a specified number
229  * of microseconds, which must be less than a second,
230  * i.e. < 1000000.  If the timer expires, then reload
231  * it.  In this case, carry over (usec - old value) to
232  * reducint the value reloaded into the timer so that
233  * the timer does not drift.  This routine assumes
234  * that it is called in a context where the timers
235  * on which it is operating cannot change in value.
236  */
237 itimerdecr(itp, usec)
238 	register struct itimerval *itp;
239 	int usec;
240 {
241 
242 	if (itp->it_value.tv_usec < usec) {
243 		if (itp->it_value.tv_sec == 0) {
244 			/* expired, and already in next interval */
245 			usec -= itp->it_value.tv_usec;
246 			goto expire;
247 		}
248 		itp->it_value.tv_usec += 1000000;
249 		itp->it_value.tv_sec--;
250 	}
251 	itp->it_value.tv_usec -= usec;
252 	usec = 0;
253 	if (timerisset(&itp->it_value))
254 		return (1);
255 	/* expired, exactly at end of interval */
256 expire:
257 	if (timerisset(&itp->it_interval)) {
258 		itp->it_value = itp->it_interval;
259 		itp->it_value.tv_usec -= usec;
260 		if (itp->it_value.tv_usec < 0) {
261 			itp->it_value.tv_usec += 1000000;
262 			itp->it_value.tv_sec--;
263 		}
264 	} else
265 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
266 	return (0);
267 }
268 
269 /*
270  * Add and subtract routines for timevals.
271  * N.B.: subtract routine doesn't deal with
272  * results which are before the beginning,
273  * it just gets very confused in this case.
274  * Caveat emptor.
275  */
276 timevaladd(t1, t2)
277 	struct timeval *t1, *t2;
278 {
279 
280 	t1->tv_sec += t2->tv_sec;
281 	t1->tv_usec += t2->tv_usec;
282 	timevalfix(t1);
283 }
284 
285 timevalsub(t1, t2)
286 	struct timeval *t1, *t2;
287 {
288 
289 	t1->tv_sec -= t2->tv_sec;
290 	t1->tv_usec -= t2->tv_usec;
291 	timevalfix(t1);
292 }
293 
294 timevalfix(t1)
295 	struct timeval *t1;
296 {
297 
298 	if (t1->tv_usec < 0) {
299 		t1->tv_sec--;
300 		t1->tv_usec += 1000000;
301 	}
302 	if (t1->tv_usec >= 1000000) {
303 		t1->tv_sec++;
304 		t1->tv_usec -= 1000000;
305 	}
306 }
307 
308 #ifndef NOCOMPAT
309 otime()
310 {
311 
312 	u.u_r.r_time = time.tv_sec;
313 }
314 
315 ostime()
316 {
317 	register struct a {
318 		int	time;
319 	} *uap = (struct a *)u.u_ap;
320 	struct timeval tv;
321 
322 	tv.tv_sec = uap->time;
323 	tv.tv_usec = 0;
324 	setthetime(&tv);
325 }
326 
327 /* from old timeb.h */
328 struct timeb {
329 	time_t	time;
330 	u_short	millitm;
331 	short	timezone;
332 	short	dstflag;
333 };
334 
335 oftime()
336 {
337 	register struct a {
338 		struct	timeb	*tp;
339 	} *uap;
340 	struct timeb tb;
341 
342 	uap = (struct a *)u.u_ap;
343 	(void) spl7();
344 	tb.time = time.tv_sec;
345 	tb.millitm = time.tv_usec / 1000;
346 	(void) spl0();
347 	tb.timezone = tz.tz_minuteswest;
348 	tb.dstflag = tz.tz_dsttime;
349 	if (copyout((caddr_t)&tb, (caddr_t)uap->tp, sizeof (tb)) < 0)
350 		u.u_error = EFAULT;
351 }
352 
353 oalarm()
354 {
355 	register struct a {
356 		int	deltat;
357 	} *uap = (struct a *)u.u_ap;
358 	register struct proc *p = u.u_procp;
359 	int s = spl7();
360 
361 	untimeout(realitexpire, (caddr_t)p);
362 	timerclear(&p->p_realtimer.it_interval);
363 	u.u_r.r_val1 = 0;
364 	if (timerisset(&p->p_realtimer.it_value) &&
365 	    timercmp(&p->p_realtimer.it_value, &time, >))
366 		u.u_r.r_val1 = p->p_realtimer.it_value.tv_sec - time.tv_sec;
367 	if (uap->deltat == 0) {
368 		splx(s);
369 		return;
370 	}
371 	p->p_realtimer.it_value = time;
372 	p->p_realtimer.it_value.tv_sec += uap->deltat;
373 	timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value));
374 	splx(s);
375 }
376 #endif
377