xref: /original-bsd/sys/kern/uipc_socket2.c (revision 58db4230)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)uipc_socket2.c	7.15 (Berkeley) 06/28/90
8  */
9 
10 #include "param.h"
11 #include "systm.h"
12 #include "user.h"
13 #include "proc.h"
14 #include "file.h"
15 #include "buf.h"
16 #include "malloc.h"
17 #include "mbuf.h"
18 #include "protosw.h"
19 #include "socket.h"
20 #include "socketvar.h"
21 
22 /*
23  * Primitive routines for operating on sockets and socket buffers
24  */
25 
26 /* strings for sleep message: */
27 char	netio[] = "netio";
28 char	netcon[] = "netcon";
29 char	netcls[] = "netcls";
30 
31 u_long	sb_max = SB_MAX;		/* patchable */
32 
33 /*
34  * Procedures to manipulate state flags of socket
35  * and do appropriate wakeups.  Normal sequence from the
36  * active (originating) side is that soisconnecting() is
37  * called during processing of connect() call,
38  * resulting in an eventual call to soisconnected() if/when the
39  * connection is established.  When the connection is torn down
40  * soisdisconnecting() is called during processing of disconnect() call,
41  * and soisdisconnected() is called when the connection to the peer
42  * is totally severed.  The semantics of these routines are such that
43  * connectionless protocols can call soisconnected() and soisdisconnected()
44  * only, bypassing the in-progress calls when setting up a ``connection''
45  * takes no time.
46  *
47  * From the passive side, a socket is created with
48  * two queues of sockets: so_q0 for connections in progress
49  * and so_q for connections already made and awaiting user acceptance.
50  * As a protocol is preparing incoming connections, it creates a socket
51  * structure queued on so_q0 by calling sonewconn().  When the connection
52  * is established, soisconnected() is called, and transfers the
53  * socket structure to so_q, making it available to accept().
54  *
55  * If a socket is closed with sockets on either
56  * so_q0 or so_q, these sockets are dropped.
57  *
58  * If higher level protocols are implemented in
59  * the kernel, the wakeups done here will sometimes
60  * cause software-interrupt process scheduling.
61  */
62 
63 soisconnecting(so)
64 	register struct socket *so;
65 {
66 
67 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
68 	so->so_state |= SS_ISCONNECTING;
69 }
70 
71 soisconnected(so)
72 	register struct socket *so;
73 {
74 	register struct socket *head = so->so_head;
75 
76 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
77 	so->so_state |= SS_ISCONNECTED;
78 	if (head && soqremque(so, 0)) {
79 		soqinsque(head, so, 1);
80 		sorwakeup(head);
81 		wakeup((caddr_t)&head->so_timeo);
82 	} else {
83 		wakeup((caddr_t)&so->so_timeo);
84 		sorwakeup(so);
85 		sowwakeup(so);
86 	}
87 }
88 
89 soisdisconnecting(so)
90 	register struct socket *so;
91 {
92 
93 	so->so_state &= ~SS_ISCONNECTING;
94 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
95 	wakeup((caddr_t)&so->so_timeo);
96 	sowwakeup(so);
97 	sorwakeup(so);
98 }
99 
100 soisdisconnected(so)
101 	register struct socket *so;
102 {
103 
104 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
105 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
106 	wakeup((caddr_t)&so->so_timeo);
107 	sowwakeup(so);
108 	sorwakeup(so);
109 }
110 
111 /*
112  * When an attempt at a new connection is noted on a socket
113  * which accepts connections, sonewconn is called.  If the
114  * connection is possible (subject to space constraints, etc.)
115  * then we allocate a new structure, propoerly linked into the
116  * data structure of the original socket, and return this.
117  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
118  *
119  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
120  * to catch calls that are missing the (new) second parameter.
121  */
122 struct socket *
123 sonewconn1(head, connstatus)
124 	register struct socket *head;
125 	int connstatus;
126 {
127 	register struct socket *so;
128 	int soqueue = connstatus ? 1 : 0;
129 
130 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
131 		return ((struct socket *)0);
132 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
133 	if (so == NULL)
134 		return ((struct socket *)0);
135 	bzero((caddr_t)so, sizeof(*so));
136 	so->so_type = head->so_type;
137 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
138 	so->so_linger = head->so_linger;
139 	so->so_state = head->so_state | SS_NOFDREF;
140 	so->so_proto = head->so_proto;
141 	so->so_timeo = head->so_timeo;
142 	so->so_pgid = head->so_pgid;
143 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
144 	soqinsque(head, so, soqueue);
145 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
146 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
147 		(void) soqremque(so, soqueue);
148 		(void) free((caddr_t)so, M_SOCKET);
149 		return ((struct socket *)0);
150 	}
151 	if (connstatus) {
152 		sorwakeup(head);
153 		wakeup((caddr_t)&head->so_timeo);
154 		so->so_state |= connstatus;
155 	}
156 	return (so);
157 }
158 
159 soqinsque(head, so, q)
160 	register struct socket *head, *so;
161 	int q;
162 {
163 
164 	register struct socket **prev;
165 	so->so_head = head;
166 	if (q == 0) {
167 		head->so_q0len++;
168 		so->so_q0 = 0;
169 		for (prev = &(head->so_q0); *prev; )
170 			prev = &((*prev)->so_q0);
171 	} else {
172 		head->so_qlen++;
173 		so->so_q = 0;
174 		for (prev = &(head->so_q); *prev; )
175 			prev = &((*prev)->so_q);
176 	}
177 	*prev = so;
178 }
179 
180 soqremque(so, q)
181 	register struct socket *so;
182 	int q;
183 {
184 	register struct socket *head, *prev, *next;
185 
186 	head = so->so_head;
187 	prev = head;
188 	for (;;) {
189 		next = q ? prev->so_q : prev->so_q0;
190 		if (next == so)
191 			break;
192 		if (next == 0)
193 			return (0);
194 		prev = next;
195 	}
196 	if (q == 0) {
197 		prev->so_q0 = next->so_q0;
198 		head->so_q0len--;
199 	} else {
200 		prev->so_q = next->so_q;
201 		head->so_qlen--;
202 	}
203 	next->so_q0 = next->so_q = 0;
204 	next->so_head = 0;
205 	return (1);
206 }
207 
208 /*
209  * Socantsendmore indicates that no more data will be sent on the
210  * socket; it would normally be applied to a socket when the user
211  * informs the system that no more data is to be sent, by the protocol
212  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
213  * will be received, and will normally be applied to the socket by a
214  * protocol when it detects that the peer will send no more data.
215  * Data queued for reading in the socket may yet be read.
216  */
217 
218 socantsendmore(so)
219 	struct socket *so;
220 {
221 
222 	so->so_state |= SS_CANTSENDMORE;
223 	sowwakeup(so);
224 }
225 
226 socantrcvmore(so)
227 	struct socket *so;
228 {
229 
230 	so->so_state |= SS_CANTRCVMORE;
231 	sorwakeup(so);
232 }
233 
234 /*
235  * Socket select/wakeup routines.
236  */
237 
238 /*
239  * Queue a process for a select on a socket buffer.
240  */
241 sbselqueue(sb)
242 	struct sockbuf *sb;
243 {
244 	struct proc *p;
245 
246 	if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
247 		sb->sb_flags |= SB_COLL;
248 	else {
249 		sb->sb_sel = u.u_procp;
250 		sb->sb_flags |= SB_SEL;
251 	}
252 }
253 
254 /*
255  * Wait for data to arrive at/drain from a socket buffer.
256  */
257 sbwait(sb)
258 	struct sockbuf *sb;
259 {
260 
261 	sb->sb_flags |= SB_WAIT;
262 	return (tsleep((caddr_t)&sb->sb_cc,
263 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
264 	    sb->sb_timeo));
265 }
266 
267 /*
268  * Lock a sockbuf already known to be locked;
269  * return any error returned from sleep (EINTR).
270  */
271 sb_lock(sb)
272 	register struct sockbuf *sb;
273 {
274 	int error;
275 
276 	while (sb->sb_flags & SB_LOCK) {
277 		sb->sb_flags |= SB_WANT;
278 		if (error = tsleep((caddr_t)&sb->sb_flags,
279 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
280 		    netio, 0))
281 			return (error);
282 	}
283 	sb->sb_flags |= SB_LOCK;
284 	return (0);
285 }
286 
287 /*
288  * Wakeup processes waiting on a socket buffer.
289  * Do asynchronous notification via SIGIO
290  * if the socket has the SS_ASYNC flag set.
291  */
292 sowakeup(so, sb)
293 	register struct socket *so;
294 	register struct sockbuf *sb;
295 {
296 	struct proc *p;
297 
298 	if (sb->sb_sel) {
299 		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
300 		sb->sb_sel = 0;
301 		sb->sb_flags &= ~(SB_SEL|SB_COLL);
302 	}
303 	if (sb->sb_flags & SB_WAIT) {
304 		sb->sb_flags &= ~SB_WAIT;
305 		wakeup((caddr_t)&sb->sb_cc);
306 	}
307 	if (so->so_state & SS_ASYNC) {
308 		if (so->so_pgid < 0)
309 			gsignal(-so->so_pgid, SIGIO);
310 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
311 			psignal(p, SIGIO);
312 	}
313 }
314 
315 /*
316  * Socket buffer (struct sockbuf) utility routines.
317  *
318  * Each socket contains two socket buffers: one for sending data and
319  * one for receiving data.  Each buffer contains a queue of mbufs,
320  * information about the number of mbufs and amount of data in the
321  * queue, and other fields allowing select() statements and notification
322  * on data availability to be implemented.
323  *
324  * Data stored in a socket buffer is maintained as a list of records.
325  * Each record is a list of mbufs chained together with the m_next
326  * field.  Records are chained together with the m_nextpkt field. The upper
327  * level routine soreceive() expects the following conventions to be
328  * observed when placing information in the receive buffer:
329  *
330  * 1. If the protocol requires each message be preceded by the sender's
331  *    name, then a record containing that name must be present before
332  *    any associated data (mbuf's must be of type MT_SONAME).
333  * 2. If the protocol supports the exchange of ``access rights'' (really
334  *    just additional data associated with the message), and there are
335  *    ``rights'' to be received, then a record containing this data
336  *    should be present (mbuf's must be of type MT_RIGHTS).
337  * 3. If a name or rights record exists, then it must be followed by
338  *    a data record, perhaps of zero length.
339  *
340  * Before using a new socket structure it is first necessary to reserve
341  * buffer space to the socket, by calling sbreserve().  This should commit
342  * some of the available buffer space in the system buffer pool for the
343  * socket (currently, it does nothing but enforce limits).  The space
344  * should be released by calling sbrelease() when the socket is destroyed.
345  */
346 
347 soreserve(so, sndcc, rcvcc)
348 	register struct socket *so;
349 	u_long sndcc, rcvcc;
350 {
351 
352 	if (sbreserve(&so->so_snd, sndcc) == 0)
353 		goto bad;
354 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
355 		goto bad2;
356 	if (so->so_rcv.sb_lowat == 0)
357 		so->so_rcv.sb_lowat = 1;
358 	if (so->so_snd.sb_lowat == 0)
359 		so->so_snd.sb_lowat = MCLBYTES;
360 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
361 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
362 	return (0);
363 bad2:
364 	sbrelease(&so->so_snd);
365 bad:
366 	return (ENOBUFS);
367 }
368 
369 /*
370  * Allot mbufs to a sockbuf.
371  * Attempt to scale mbmax so that mbcnt doesn't become limiting
372  * if buffering efficiency is near the normal case.
373  */
374 sbreserve(sb, cc)
375 	struct sockbuf *sb;
376 	u_long cc;
377 {
378 
379 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
380 		return (0);
381 	sb->sb_hiwat = cc;
382 	sb->sb_mbmax = min(cc * 2, sb_max);
383 	if (sb->sb_lowat > sb->sb_hiwat)
384 		sb->sb_lowat = sb->sb_hiwat;
385 	return (1);
386 }
387 
388 /*
389  * Free mbufs held by a socket, and reserved mbuf space.
390  */
391 sbrelease(sb)
392 	struct sockbuf *sb;
393 {
394 
395 	sbflush(sb);
396 	sb->sb_hiwat = sb->sb_mbmax = 0;
397 }
398 
399 /*
400  * Routines to add and remove
401  * data from an mbuf queue.
402  *
403  * The routines sbappend() or sbappendrecord() are normally called to
404  * append new mbufs to a socket buffer, after checking that adequate
405  * space is available, comparing the function sbspace() with the amount
406  * of data to be added.  sbappendrecord() differs from sbappend() in
407  * that data supplied is treated as the beginning of a new record.
408  * To place a sender's address, optional access rights, and data in a
409  * socket receive buffer, sbappendaddr() should be used.  To place
410  * access rights and data in a socket receive buffer, sbappendrights()
411  * should be used.  In either case, the new data begins a new record.
412  * Note that unlike sbappend() and sbappendrecord(), these routines check
413  * for the caller that there will be enough space to store the data.
414  * Each fails if there is not enough space, or if it cannot find mbufs
415  * to store additional information in.
416  *
417  * Reliable protocols may use the socket send buffer to hold data
418  * awaiting acknowledgement.  Data is normally copied from a socket
419  * send buffer in a protocol with m_copy for output to a peer,
420  * and then removing the data from the socket buffer with sbdrop()
421  * or sbdroprecord() when the data is acknowledged by the peer.
422  */
423 
424 /*
425  * Append mbuf chain m to the last record in the
426  * socket buffer sb.  The additional space associated
427  * the mbuf chain is recorded in sb.  Empty mbufs are
428  * discarded and mbufs are compacted where possible.
429  */
430 sbappend(sb, m)
431 	struct sockbuf *sb;
432 	struct mbuf *m;
433 {
434 	register struct mbuf *n;
435 
436 	if (m == 0)
437 		return;
438 	if (n = sb->sb_mb) {
439 		while (n->m_nextpkt)
440 			n = n->m_nextpkt;
441 		while (n->m_next)
442 			if (n->m_flags & M_EOR) {
443 				sbappendrecord(sb, m); /* XXXXXX!!!! */
444 				return;
445 			} else
446 				n = n->m_next;
447 	}
448 	sbcompress(sb, m, n);
449 }
450 
451 #ifdef SOCKBUF_DEBUG
452 sbcheck(sb)
453 	register struct sockbuf *sb;
454 {
455 	register struct mbuf *m;
456 	register int len = 0, mbcnt = 0;
457 
458 	for (m = sb->sb_mb; m; m = m->m_next) {
459 		len += m->m_len;
460 		mbcnt += MSIZE;
461 		if (m->m_flags & M_EXT)
462 			mbcnt += m->m_ext.ext_size;
463 		if (m->m_nextpkt)
464 			panic("sbcheck nextpkt");
465 	}
466 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
467 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
468 		    mbcnt, sb->sb_mbcnt);
469 		panic("sbcheck");
470 	}
471 }
472 #endif
473 
474 /*
475  * As above, except the mbuf chain
476  * begins a new record.
477  */
478 sbappendrecord(sb, m0)
479 	register struct sockbuf *sb;
480 	register struct mbuf *m0;
481 {
482 	register struct mbuf *m;
483 
484 	if (m0 == 0)
485 		return;
486 	if (m = sb->sb_mb)
487 		while (m->m_nextpkt)
488 			m = m->m_nextpkt;
489 	/*
490 	 * Put the first mbuf on the queue.
491 	 * Note this permits zero length records.
492 	 */
493 	sballoc(sb, m0);
494 	if (m)
495 		m->m_nextpkt = m0;
496 	else
497 		sb->sb_mb = m0;
498 	m = m0->m_next;
499 	m0->m_next = 0;
500 	if (m && (m0->m_flags & M_EOR)) {
501 		m0->m_flags &= ~M_EOR;
502 		m->m_flags |= M_EOR;
503 	}
504 	sbcompress(sb, m, m0);
505 }
506 
507 /*
508  * As above except that OOB data
509  * is inserted at the beginning of the sockbuf,
510  * but after any other OOB data.
511  */
512 sbinsertoob(sb, m0)
513 	register struct sockbuf *sb;
514 	register struct mbuf *m0;
515 {
516 	register struct mbuf *m;
517 	register struct mbuf **mp;
518 
519 	if (m0 == 0)
520 		return;
521 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
522 	    again:
523 		switch (m->m_type) {
524 
525 		case MT_OOBDATA:
526 			continue;		/* WANT next train */
527 
528 		case MT_CONTROL:
529 			if (m = m->m_next)
530 				goto again;	/* inspect THIS train further */
531 		}
532 		break;
533 	}
534 	/*
535 	 * Put the first mbuf on the queue.
536 	 * Note this permits zero length records.
537 	 */
538 	sballoc(sb, m0);
539 	m0->m_nextpkt = *mp;
540 	*mp = m0;
541 	m = m0->m_next;
542 	m0->m_next = 0;
543 	if (m && (m0->m_flags & M_EOR)) {
544 		m0->m_flags &= ~M_EOR;
545 		m->m_flags |= M_EOR;
546 	}
547 	sbcompress(sb, m, m0);
548 }
549 
550 /*
551  * Append address and data, and optionally, control (ancillary) data
552  * to the receive queue of a socket.  If present,
553  * m0 must include a packet header with total length.
554  * Returns 0 if no space in sockbuf or insufficient mbufs.
555  */
556 sbappendaddr(sb, asa, m0, control)
557 	register struct sockbuf *sb;
558 	struct sockaddr *asa;
559 	struct mbuf *m0, *control;
560 {
561 	register struct mbuf *m, *n;
562 	int space = asa->sa_len;
563 
564 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
565 panic("sbappendaddr");
566 	if (m0)
567 		space += m0->m_pkthdr.len;
568 	for (n = control; n; n = n->m_next) {
569 		space += n->m_len;
570 		if (n->m_next == 0)	/* keep pointer to last control buf */
571 			break;
572 	}
573 	if (space > sbspace(sb))
574 		return (0);
575 	if (asa->sa_len > MLEN)
576 		return (0);
577 	MGET(m, M_DONTWAIT, MT_SONAME);
578 	if (m == 0)
579 		return (0);
580 	m->m_len = asa->sa_len;
581 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
582 	if (n)
583 		n->m_next = m0;		/* concatenate data to control */
584 	else
585 		control = m0;
586 	m->m_next = control;
587 	for (n = m; n; n = n->m_next)
588 		sballoc(sb, n);
589 	if (n = sb->sb_mb) {
590 		while (n->m_nextpkt)
591 			n = n->m_nextpkt;
592 		n->m_nextpkt = m;
593 	} else
594 		sb->sb_mb = m;
595 	return (1);
596 }
597 
598 sbappendcontrol(sb, m0, control)
599 	struct sockbuf *sb;
600 	struct mbuf *control, *m0;
601 {
602 	register struct mbuf *m, *n;
603 	int space = 0;
604 
605 	if (control == 0)
606 		panic("sbappendcontrol");
607 	for (m = control; ; m = m->m_next) {
608 		space += m->m_len;
609 		if (m->m_next == 0)
610 			break;
611 	}
612 	n = m;			/* save pointer to last control buffer */
613 	for (m = m0; m; m = m->m_next)
614 		space += m->m_len;
615 	if (space > sbspace(sb))
616 		return (0);
617 	n->m_next = m0;			/* concatenate data to control */
618 	for (m = control; m; m = m->m_next)
619 		sballoc(sb, m);
620 	if (n = sb->sb_mb) {
621 		while (n->m_nextpkt)
622 			n = n->m_nextpkt;
623 		n->m_nextpkt = control;
624 	} else
625 		sb->sb_mb = control;
626 	return (1);
627 }
628 
629 /*
630  * Compress mbuf chain m into the socket
631  * buffer sb following mbuf n.  If n
632  * is null, the buffer is presumed empty.
633  */
634 sbcompress(sb, m, n)
635 	register struct sockbuf *sb;
636 	register struct mbuf *m, *n;
637 {
638 	register int eor = 0;
639 
640 	while (m) {
641 		eor |= m->m_flags & M_EOR;
642 		if (m->m_len == 0) {
643 			m = m_free(m);
644 			continue;
645 		}
646 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
647 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
648 		    n->m_type == m->m_type) {
649 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
650 			    (unsigned)m->m_len);
651 			n->m_len += m->m_len;
652 			sb->sb_cc += m->m_len;
653 			m = m_free(m);
654 			continue;
655 		}
656 		if (n)
657 			n->m_next = m;
658 		else
659 			sb->sb_mb = m;
660 		sballoc(sb, m);
661 		n = m;
662 		m->m_flags &= ~M_EOR;
663 		m = m->m_next;
664 		n->m_next = 0;
665 	}
666 	if (n)
667 		n->m_flags |= eor;
668 }
669 
670 /*
671  * Free all mbufs in a sockbuf.
672  * Check that all resources are reclaimed.
673  */
674 sbflush(sb)
675 	register struct sockbuf *sb;
676 {
677 
678 	if (sb->sb_flags & SB_LOCK)
679 		panic("sbflush");
680 	while (sb->sb_mbcnt)
681 		sbdrop(sb, (int)sb->sb_cc);
682 	if (sb->sb_cc || sb->sb_mb)
683 		panic("sbflush 2");
684 }
685 
686 /*
687  * Drop data from (the front of) a sockbuf.
688  */
689 sbdrop(sb, len)
690 	register struct sockbuf *sb;
691 	register int len;
692 {
693 	register struct mbuf *m, *mn;
694 	struct mbuf *next;
695 
696 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
697 	while (len > 0) {
698 		if (m == 0) {
699 			if (next == 0)
700 				panic("sbdrop");
701 			m = next;
702 			next = m->m_nextpkt;
703 			continue;
704 		}
705 		if (m->m_len > len) {
706 			m->m_len -= len;
707 			m->m_data += len;
708 			sb->sb_cc -= len;
709 			break;
710 		}
711 		len -= m->m_len;
712 		sbfree(sb, m);
713 		MFREE(m, mn);
714 		m = mn;
715 	}
716 	while (m && m->m_len == 0) {
717 		sbfree(sb, m);
718 		MFREE(m, mn);
719 		m = mn;
720 	}
721 	if (m) {
722 		sb->sb_mb = m;
723 		m->m_nextpkt = next;
724 	} else
725 		sb->sb_mb = next;
726 }
727 
728 /*
729  * Drop a record off the front of a sockbuf
730  * and move the next record to the front.
731  */
732 sbdroprecord(sb)
733 	register struct sockbuf *sb;
734 {
735 	register struct mbuf *m, *mn;
736 
737 	m = sb->sb_mb;
738 	if (m) {
739 		sb->sb_mb = m->m_nextpkt;
740 		do {
741 			sbfree(sb, m);
742 			MFREE(m, mn);
743 		} while (m = mn);
744 	}
745 }
746