xref: /original-bsd/sys/kern/uipc_socket2.c (revision 6472dbc6)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  *	@(#)uipc_socket2.c	7.12 (Berkeley) 05/20/90
18  */
19 
20 #include "param.h"
21 #include "systm.h"
22 #include "user.h"
23 #include "proc.h"
24 #include "file.h"
25 #include "buf.h"
26 #include "malloc.h"
27 #include "mbuf.h"
28 #include "protosw.h"
29 #include "socket.h"
30 #include "socketvar.h"
31 
32 /*
33  * Primitive routines for operating on sockets and socket buffers
34  */
35 
36 /* strings for sleep message: */
37 char	netio[] = "netio";
38 char	netcon[] = "netcon";
39 char	netcls[] = "netcls";
40 
41 u_long	sb_max = SB_MAX;		/* patchable */
42 
43 /*
44  * Procedures to manipulate state flags of socket
45  * and do appropriate wakeups.  Normal sequence from the
46  * active (originating) side is that soisconnecting() is
47  * called during processing of connect() call,
48  * resulting in an eventual call to soisconnected() if/when the
49  * connection is established.  When the connection is torn down
50  * soisdisconnecting() is called during processing of disconnect() call,
51  * and soisdisconnected() is called when the connection to the peer
52  * is totally severed.  The semantics of these routines are such that
53  * connectionless protocols can call soisconnected() and soisdisconnected()
54  * only, bypassing the in-progress calls when setting up a ``connection''
55  * takes no time.
56  *
57  * From the passive side, a socket is created with
58  * two queues of sockets: so_q0 for connections in progress
59  * and so_q for connections already made and awaiting user acceptance.
60  * As a protocol is preparing incoming connections, it creates a socket
61  * structure queued on so_q0 by calling sonewconn().  When the connection
62  * is established, soisconnected() is called, and transfers the
63  * socket structure to so_q, making it available to accept().
64  *
65  * If a socket is closed with sockets on either
66  * so_q0 or so_q, these sockets are dropped.
67  *
68  * If higher level protocols are implemented in
69  * the kernel, the wakeups done here will sometimes
70  * cause software-interrupt process scheduling.
71  */
72 
73 soisconnecting(so)
74 	register struct socket *so;
75 {
76 
77 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
78 	so->so_state |= SS_ISCONNECTING;
79 }
80 
81 soisconnected(so)
82 	register struct socket *so;
83 {
84 	register struct socket *head = so->so_head;
85 
86 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
87 	so->so_state |= SS_ISCONNECTED;
88 	if (head && soqremque(so, 0)) {
89 		soqinsque(head, so, 1);
90 		sorwakeup(head);
91 		wakeup((caddr_t)&head->so_timeo);
92 	} else {
93 		wakeup((caddr_t)&so->so_timeo);
94 		sorwakeup(so);
95 		sowwakeup(so);
96 	}
97 }
98 
99 soisdisconnecting(so)
100 	register struct socket *so;
101 {
102 
103 	so->so_state &= ~SS_ISCONNECTING;
104 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
105 	wakeup((caddr_t)&so->so_timeo);
106 	sowwakeup(so);
107 	sorwakeup(so);
108 }
109 
110 soisdisconnected(so)
111 	register struct socket *so;
112 {
113 
114 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
115 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
116 	wakeup((caddr_t)&so->so_timeo);
117 	sowwakeup(so);
118 	sorwakeup(so);
119 }
120 
121 /*
122  * When an attempt at a new connection is noted on a socket
123  * which accepts connections, sonewconn is called.  If the
124  * connection is possible (subject to space constraints, etc.)
125  * then we allocate a new structure, propoerly linked into the
126  * data structure of the original socket, and return this.
127  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
128  *
129  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
130  * to catch calls that are missing the (new) second parameter.
131  */
132 struct socket *
133 sonewconn1(head, connstatus)
134 	register struct socket *head;
135 	int connstatus;
136 {
137 	register struct socket *so;
138 	int soqueue = connstatus ? 1 : 0;
139 
140 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
141 		return ((struct socket *)0);
142 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
143 	if (so == NULL)
144 		return ((struct socket *)0);
145 	bzero((caddr_t)so, sizeof(*so));
146 	so->so_type = head->so_type;
147 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
148 	so->so_linger = head->so_linger;
149 	so->so_state = head->so_state | SS_NOFDREF;
150 	so->so_proto = head->so_proto;
151 	so->so_timeo = head->so_timeo;
152 	so->so_pgid = head->so_pgid;
153 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
154 	soqinsque(head, so, soqueue);
155 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
156 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
157 		(void) soqremque(so, soqueue);
158 		(void) free((caddr_t)so, M_SOCKET);
159 		return ((struct socket *)0);
160 	}
161 	if (connstatus) {
162 		sorwakeup(head);
163 		wakeup((caddr_t)&head->so_timeo);
164 		so->so_state |= connstatus;
165 	}
166 	return (so);
167 }
168 
169 soqinsque(head, so, q)
170 	register struct socket *head, *so;
171 	int q;
172 {
173 
174 	register struct socket **prev;
175 	so->so_head = head;
176 	if (q == 0) {
177 		head->so_q0len++;
178 		so->so_q0 = 0;
179 		for (prev = &(head->so_q0); *prev; )
180 			prev = &((*prev)->so_q0);
181 	} else {
182 		head->so_qlen++;
183 		so->so_q = 0;
184 		for (prev = &(head->so_q); *prev; )
185 			prev = &((*prev)->so_q);
186 	}
187 	*prev = so;
188 }
189 
190 soqremque(so, q)
191 	register struct socket *so;
192 	int q;
193 {
194 	register struct socket *head, *prev, *next;
195 
196 	head = so->so_head;
197 	prev = head;
198 	for (;;) {
199 		next = q ? prev->so_q : prev->so_q0;
200 		if (next == so)
201 			break;
202 		if (next == 0)
203 			return (0);
204 		prev = next;
205 	}
206 	if (q == 0) {
207 		prev->so_q0 = next->so_q0;
208 		head->so_q0len--;
209 	} else {
210 		prev->so_q = next->so_q;
211 		head->so_qlen--;
212 	}
213 	next->so_q0 = next->so_q = 0;
214 	next->so_head = 0;
215 	return (1);
216 }
217 
218 /*
219  * Socantsendmore indicates that no more data will be sent on the
220  * socket; it would normally be applied to a socket when the user
221  * informs the system that no more data is to be sent, by the protocol
222  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
223  * will be received, and will normally be applied to the socket by a
224  * protocol when it detects that the peer will send no more data.
225  * Data queued for reading in the socket may yet be read.
226  */
227 
228 socantsendmore(so)
229 	struct socket *so;
230 {
231 
232 	so->so_state |= SS_CANTSENDMORE;
233 	sowwakeup(so);
234 }
235 
236 socantrcvmore(so)
237 	struct socket *so;
238 {
239 
240 	so->so_state |= SS_CANTRCVMORE;
241 	sorwakeup(so);
242 }
243 
244 /*
245  * Socket select/wakeup routines.
246  */
247 
248 /*
249  * Queue a process for a select on a socket buffer.
250  */
251 sbselqueue(sb)
252 	struct sockbuf *sb;
253 {
254 	struct proc *p;
255 
256 	if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
257 		sb->sb_flags |= SB_COLL;
258 	else
259 		sb->sb_sel = u.u_procp;
260 }
261 
262 /*
263  * Wait for data to arrive at/drain from a socket buffer.
264  */
265 sbwait(sb)
266 	struct sockbuf *sb;
267 {
268 
269 	sb->sb_flags |= SB_WAIT;
270 	return (tsleep((caddr_t)&sb->sb_cc,
271 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
272 	    sb->sb_timeo));
273 }
274 
275 /*
276  * Lock a sockbuf already known to be locked;
277  * return any error returned from sleep (EINTR).
278  */
279 sb_lock(sb)
280 	register struct sockbuf *sb;
281 {
282 	int error;
283 
284 	while (sb->sb_flags & SB_LOCK) {
285 		sb->sb_flags |= SB_WANT;
286 		if (error = tsleep((caddr_t)&sb->sb_flags,
287 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
288 		    netio, 0))
289 			return (error);
290 	}
291 	sb->sb_flags |= SB_LOCK;
292 	return (0);
293 }
294 
295 /*
296  * Wakeup processes waiting on a socket buffer.
297  * Do asynchronous notification via SIGIO
298  * if the socket has the SS_ASYNC flag set.
299  */
300 sowakeup(so, sb)
301 	register struct socket *so;
302 	register struct sockbuf *sb;
303 {
304 	struct proc *p;
305 
306 	if (sb->sb_sel) {
307 		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
308 		sb->sb_sel = 0;
309 		sb->sb_flags &= ~SB_COLL;
310 	}
311 	if (sb->sb_flags & SB_WAIT) {
312 		sb->sb_flags &= ~SB_WAIT;
313 		wakeup((caddr_t)&sb->sb_cc);
314 	}
315 	if (so->so_state & SS_ASYNC) {
316 		if (so->so_pgid < 0)
317 			gsignal(-so->so_pgid, SIGIO);
318 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
319 			psignal(p, SIGIO);
320 	}
321 }
322 
323 /*
324  * Socket buffer (struct sockbuf) utility routines.
325  *
326  * Each socket contains two socket buffers: one for sending data and
327  * one for receiving data.  Each buffer contains a queue of mbufs,
328  * information about the number of mbufs and amount of data in the
329  * queue, and other fields allowing select() statements and notification
330  * on data availability to be implemented.
331  *
332  * Data stored in a socket buffer is maintained as a list of records.
333  * Each record is a list of mbufs chained together with the m_next
334  * field.  Records are chained together with the m_nextpkt field. The upper
335  * level routine soreceive() expects the following conventions to be
336  * observed when placing information in the receive buffer:
337  *
338  * 1. If the protocol requires each message be preceded by the sender's
339  *    name, then a record containing that name must be present before
340  *    any associated data (mbuf's must be of type MT_SONAME).
341  * 2. If the protocol supports the exchange of ``access rights'' (really
342  *    just additional data associated with the message), and there are
343  *    ``rights'' to be received, then a record containing this data
344  *    should be present (mbuf's must be of type MT_RIGHTS).
345  * 3. If a name or rights record exists, then it must be followed by
346  *    a data record, perhaps of zero length.
347  *
348  * Before using a new socket structure it is first necessary to reserve
349  * buffer space to the socket, by calling sbreserve().  This should commit
350  * some of the available buffer space in the system buffer pool for the
351  * socket (currently, it does nothing but enforce limits).  The space
352  * should be released by calling sbrelease() when the socket is destroyed.
353  */
354 
355 soreserve(so, sndcc, rcvcc)
356 	register struct socket *so;
357 	u_long sndcc, rcvcc;
358 {
359 
360 	if (sbreserve(&so->so_snd, sndcc) == 0)
361 		goto bad;
362 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
363 		goto bad2;
364 	if (so->so_rcv.sb_lowat == 0)
365 		so->so_rcv.sb_lowat = 1;
366 	if (so->so_snd.sb_lowat == 0)
367 		so->so_snd.sb_lowat = MCLBYTES;
368 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
369 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
370 	return (0);
371 bad2:
372 	sbrelease(&so->so_snd);
373 bad:
374 	return (ENOBUFS);
375 }
376 
377 /*
378  * Allot mbufs to a sockbuf.
379  * Attempt to scale mbmax so that mbcnt doesn't become limiting
380  * if buffering efficiency is near the normal case.
381  */
382 sbreserve(sb, cc)
383 	struct sockbuf *sb;
384 	u_long cc;
385 {
386 
387 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
388 		return (0);
389 	sb->sb_hiwat = cc;
390 	sb->sb_mbmax = min(cc * 2, sb_max);
391 	if (sb->sb_lowat > sb->sb_hiwat)
392 		sb->sb_lowat = sb->sb_hiwat;
393 	return (1);
394 }
395 
396 /*
397  * Free mbufs held by a socket, and reserved mbuf space.
398  */
399 sbrelease(sb)
400 	struct sockbuf *sb;
401 {
402 
403 	sbflush(sb);
404 	sb->sb_hiwat = sb->sb_mbmax = 0;
405 }
406 
407 /*
408  * Routines to add and remove
409  * data from an mbuf queue.
410  *
411  * The routines sbappend() or sbappendrecord() are normally called to
412  * append new mbufs to a socket buffer, after checking that adequate
413  * space is available, comparing the function sbspace() with the amount
414  * of data to be added.  sbappendrecord() differs from sbappend() in
415  * that data supplied is treated as the beginning of a new record.
416  * To place a sender's address, optional access rights, and data in a
417  * socket receive buffer, sbappendaddr() should be used.  To place
418  * access rights and data in a socket receive buffer, sbappendrights()
419  * should be used.  In either case, the new data begins a new record.
420  * Note that unlike sbappend() and sbappendrecord(), these routines check
421  * for the caller that there will be enough space to store the data.
422  * Each fails if there is not enough space, or if it cannot find mbufs
423  * to store additional information in.
424  *
425  * Reliable protocols may use the socket send buffer to hold data
426  * awaiting acknowledgement.  Data is normally copied from a socket
427  * send buffer in a protocol with m_copy for output to a peer,
428  * and then removing the data from the socket buffer with sbdrop()
429  * or sbdroprecord() when the data is acknowledged by the peer.
430  */
431 
432 /*
433  * Append mbuf chain m to the last record in the
434  * socket buffer sb.  The additional space associated
435  * the mbuf chain is recorded in sb.  Empty mbufs are
436  * discarded and mbufs are compacted where possible.
437  */
438 sbappend(sb, m)
439 	struct sockbuf *sb;
440 	struct mbuf *m;
441 {
442 	register struct mbuf *n;
443 
444 	if (m == 0)
445 		return;
446 	if (n = sb->sb_mb) {
447 		while (n->m_nextpkt)
448 			n = n->m_nextpkt;
449 		while (n->m_next)
450 			if (n->m_flags & M_EOR) {
451 				sbappendrecord(sb, m); /* XXXXXX!!!! */
452 				return;
453 			} else
454 				n = n->m_next;
455 	}
456 	sbcompress(sb, m, n);
457 }
458 
459 /*
460  * As above, except the mbuf chain
461  * begins a new record.
462  */
463 sbappendrecord(sb, m0)
464 	register struct sockbuf *sb;
465 	register struct mbuf *m0;
466 {
467 	register struct mbuf *m;
468 
469 	if (m0 == 0)
470 		return;
471 	if (m = sb->sb_mb)
472 		while (m->m_nextpkt)
473 			m = m->m_nextpkt;
474 	/*
475 	 * Put the first mbuf on the queue.
476 	 * Note this permits zero length records.
477 	 */
478 	sballoc(sb, m0);
479 	if (m)
480 		m->m_nextpkt = m0;
481 	else
482 		sb->sb_mb = m0;
483 	m = m0->m_next;
484 	m0->m_next = 0;
485 	if (m && (m0->m_flags & M_EOR)) {
486 		m0->m_flags &= ~M_EOR;
487 		m->m_flags |= M_EOR;
488 	}
489 	sbcompress(sb, m, m0);
490 }
491 
492 /*
493  * As above except that OOB data
494  * is inserted at the beginning of the sockbuf,
495  * but after any other OOB data.
496  */
497 sbinsertoob(sb, m0)
498 	register struct sockbuf *sb;
499 	register struct mbuf *m0;
500 {
501 	register struct mbuf *m;
502 	register struct mbuf **mp;
503 
504 	if (m0 == 0)
505 		return;
506 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
507 	    again:
508 		switch (m->m_type) {
509 
510 		case MT_OOBDATA:
511 			continue;		/* WANT next train */
512 
513 		case MT_CONTROL:
514 			if (m = m->m_next)
515 				goto again;	/* inspect THIS train further */
516 		}
517 		break;
518 	}
519 	/*
520 	 * Put the first mbuf on the queue.
521 	 * Note this permits zero length records.
522 	 */
523 	sballoc(sb, m0);
524 	m0->m_nextpkt = *mp;
525 	*mp = m0;
526 	m = m0->m_next;
527 	m0->m_next = 0;
528 	if (m && (m0->m_flags & M_EOR)) {
529 		m0->m_flags &= ~M_EOR;
530 		m->m_flags |= M_EOR;
531 	}
532 	sbcompress(sb, m, m0);
533 }
534 
535 /*
536  * Append address and data, and optionally, control (ancillary) data
537  * to the receive queue of a socket.  If present,
538  * m0 must include a packet header with total length.
539  * Returns 0 if no space in sockbuf or insufficient mbufs.
540  */
541 sbappendaddr(sb, asa, m0, control)
542 	register struct sockbuf *sb;
543 	struct sockaddr *asa;
544 	struct mbuf *m0, *control;
545 {
546 	register struct mbuf *m, *n;
547 	int space = asa->sa_len;
548 
549 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
550 panic("sbappendaddr");
551 	if (m0)
552 		space += m0->m_pkthdr.len;
553 	for (n = control; n; n = n->m_next) {
554 		space += n->m_len;
555 		if (n->m_next == 0)	/* keep pointer to last control buf */
556 			break;
557 	}
558 	if (space > sbspace(sb))
559 		return (0);
560 	if (asa->sa_len > MLEN)
561 		return (0);
562 	MGET(m, M_DONTWAIT, MT_SONAME);
563 	if (m == 0)
564 		return (0);
565 	m->m_len = asa->sa_len;
566 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
567 	if (n)
568 		n->m_next = m0;		/* concatenate data to control */
569 	else
570 		control = m0;
571 	m->m_next = control;
572 	for (n = m; n; n = n->m_next)
573 		sballoc(sb, n);
574 	if (n = sb->sb_mb) {
575 		while (n->m_nextpkt)
576 			n = n->m_nextpkt;
577 		n->m_nextpkt = m;
578 	} else
579 		sb->sb_mb = m;
580 	return (1);
581 }
582 
583 sbappendcontrol(sb, m0, control)
584 	struct sockbuf *sb;
585 	struct mbuf *control, *m0;
586 {
587 	register struct mbuf *m, *n;
588 	int space = 0;
589 
590 	if (control == 0)
591 		panic("sbappendcontrol");
592 	for (m = control; ; m = m->m_next) {
593 		space += m->m_len;
594 		if (m->m_next == 0)
595 			break;
596 	}
597 	n = m;			/* save pointer to last control buffer */
598 	for (m = m0; m; m = m->m_next)
599 		space += m->m_len;
600 	if (space > sbspace(sb))
601 		return (0);
602 	n->m_next = m0;			/* concatenate data to control */
603 	for (m = control; m; m = m->m_next)
604 		sballoc(sb, m);
605 	if (n = sb->sb_mb) {
606 		while (n->m_nextpkt)
607 			n = n->m_nextpkt;
608 		n->m_nextpkt = control;
609 	} else
610 		sb->sb_mb = control;
611 	return (1);
612 }
613 
614 /*
615  * Compress mbuf chain m into the socket
616  * buffer sb following mbuf n.  If n
617  * is null, the buffer is presumed empty.
618  */
619 sbcompress(sb, m, n)
620 	register struct sockbuf *sb;
621 	register struct mbuf *m, *n;
622 {
623 	register int eor = 0;
624 
625 	while (m) {
626 		eor |= m->m_flags & M_EOR;
627 		if (m->m_len == 0) {
628 			m = m_free(m);
629 			continue;
630 		}
631 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
632 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
633 		    n->m_type == m->m_type) {
634 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
635 			    (unsigned)m->m_len);
636 			n->m_len += m->m_len;
637 			sb->sb_cc += m->m_len;
638 			m = m_free(m);
639 			continue;
640 		}
641 		if (n)
642 			n->m_next = m;
643 		else
644 			sb->sb_mb = m;
645 		sballoc(sb, m);
646 		n = m;
647 		m->m_flags &= ~M_EOR;
648 		m = m->m_next;
649 		n->m_next = 0;
650 	}
651 	if (n)
652 		n->m_flags |= eor;
653 }
654 
655 /*
656  * Free all mbufs in a sockbuf.
657  * Check that all resources are reclaimed.
658  */
659 sbflush(sb)
660 	register struct sockbuf *sb;
661 {
662 
663 	if (sb->sb_flags & SB_LOCK)
664 		panic("sbflush");
665 	while (sb->sb_mbcnt)
666 		sbdrop(sb, (int)sb->sb_cc);
667 	if (sb->sb_cc || sb->sb_mb)
668 		panic("sbflush 2");
669 }
670 
671 /*
672  * Drop data from (the front of) a sockbuf.
673  */
674 sbdrop(sb, len)
675 	register struct sockbuf *sb;
676 	register int len;
677 {
678 	register struct mbuf *m, *mn;
679 	struct mbuf *next;
680 
681 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
682 	while (len > 0) {
683 		if (m == 0) {
684 			if (next == 0)
685 				panic("sbdrop");
686 			m = next;
687 			next = m->m_nextpkt;
688 			continue;
689 		}
690 		if (m->m_len > len) {
691 			m->m_len -= len;
692 			m->m_data += len;
693 			sb->sb_cc -= len;
694 			break;
695 		}
696 		len -= m->m_len;
697 		sbfree(sb, m);
698 		MFREE(m, mn);
699 		m = mn;
700 	}
701 	while (m && m->m_len == 0) {
702 		sbfree(sb, m);
703 		MFREE(m, mn);
704 		m = mn;
705 	}
706 	if (m) {
707 		sb->sb_mb = m;
708 		m->m_nextpkt = next;
709 	} else
710 		sb->sb_mb = next;
711 }
712 
713 /*
714  * Drop a record off the front of a sockbuf
715  * and move the next record to the front.
716  */
717 sbdroprecord(sb)
718 	register struct sockbuf *sb;
719 {
720 	register struct mbuf *m, *mn;
721 
722 	m = sb->sb_mb;
723 	if (m) {
724 		sb->sb_mb = m->m_nextpkt;
725 		do {
726 			sbfree(sb, m);
727 			MFREE(m, mn);
728 		} while (m = mn);
729 	}
730 }
731