xref: /original-bsd/sys/kern/uipc_socket2.c (revision 81a135f6)
1 /*	uipc_socket2.c	6.2	84/01/11	*/
2 
3 #include "../h/param.h"
4 #include "../h/systm.h"
5 #include "../h/dir.h"
6 #include "../h/user.h"
7 #include "../h/proc.h"
8 #include "../h/file.h"
9 #include "../h/inode.h"
10 #include "../h/buf.h"
11 #include "../h/mbuf.h"
12 #include "../h/protosw.h"
13 #include "../h/socket.h"
14 #include "../h/socketvar.h"
15 
16 /*
17  * Primitive routines for operating on sockets and socket buffers
18  */
19 
20 /*
21  * Procedures to manipulate state flags of socket
22  * and do appropriate wakeups.  Normal sequence from the
23  * active (originating) side is that soisconnecting() is
24  * called during processing of connect() call,
25  * resulting in an eventual call to soisconnected() if/when the
26  * connection is established.  When the connection is torn down
27  * soisdisconnecting() is called during processing of disconnect() call,
28  * and soisdisconnected() is called when the connection to the peer
29  * is totally severed.  The semantics of these routines are such that
30  * connectionless protocols can call soisconnected() and soisdisconnected()
31  * only, bypassing the in-progress calls when setting up a ``connection''
32  * takes no time.
33  *
34  * From the passive side, a socket is created with
35  * two queues of sockets: so_q0 for connections in progress
36  * and so_q for connections already made and awaiting user acceptance.
37  * As a protocol is preparing incoming connections, it creates a socket
38  * structure queued on so_q0 by calling sonewconn().  When the connection
39  * is established, soisconnected() is called, and transfers the
40  * socket structure to so_q, making it available to accept().
41  *
42  * If a socket is closed with sockets on either
43  * so_q0 or so_q, these sockets are dropped.
44  *
45  * If higher level protocols are implemented in
46  * the kernel, the wakeups done here will sometimes
47  * cause software-interrupt process scheduling.
48  */
49 
50 soisconnecting(so)
51 	register struct socket *so;
52 {
53 
54 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
55 	so->so_state |= SS_ISCONNECTING;
56 	wakeup((caddr_t)&so->so_timeo);
57 }
58 
59 soisconnected(so)
60 	register struct socket *so;
61 {
62 	register struct socket *head = so->so_head;
63 
64 	if (head) {
65 		if (soqremque(so, 0) == 0)
66 			panic("soisconnected");
67 		soqinsque(head, so, 1);
68 		sorwakeup(head);
69 		wakeup((caddr_t)&head->so_timeo);
70 	}
71 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
72 	so->so_state |= SS_ISCONNECTED;
73 	wakeup((caddr_t)&so->so_timeo);
74 	sorwakeup(so);
75 	sowwakeup(so);
76 }
77 
78 soisdisconnecting(so)
79 	register struct socket *so;
80 {
81 
82 	so->so_state &= ~SS_ISCONNECTING;
83 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
84 	wakeup((caddr_t)&so->so_timeo);
85 	sowwakeup(so);
86 	sorwakeup(so);
87 }
88 
89 soisdisconnected(so)
90 	register struct socket *so;
91 {
92 
93 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
94 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
95 	wakeup((caddr_t)&so->so_timeo);
96 	sowwakeup(so);
97 	sorwakeup(so);
98 }
99 
100 /*
101  * When an attempt at a new connection is noted on a socket
102  * which accepts connections, sonewconn is called.  If the
103  * connection is possible (subject to space constraints, etc.)
104  * then we allocate a new structure, propoerly linked into the
105  * data structure of the original socket, and return this.
106  */
107 struct socket *
108 sonewconn(head)
109 	register struct socket *head;
110 {
111 	register struct socket *so;
112 	register struct mbuf *m;
113 
114 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
115 		goto bad;
116 	m = m_getclr(M_DONTWAIT, MT_SOCKET);
117 	if (m == NULL)
118 		goto bad;
119 	so = mtod(m, struct socket *);
120 	so->so_type = head->so_type;
121 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
122 	so->so_linger = head->so_linger;
123 	so->so_state = head->so_state | SS_NOFDREF;
124 	so->so_proto = head->so_proto;
125 	so->so_timeo = head->so_timeo;
126 	so->so_pgrp = head->so_pgrp;
127 	soqinsque(head, so, 0);
128 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
129 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
130 		(void) soqremque(so, 0);
131 		(void) m_free(m);
132 		goto bad;
133 	}
134 	return (so);
135 bad:
136 	return ((struct socket *)0);
137 }
138 
139 soqinsque(head, so, q)
140 	register struct socket *head, *so;
141 	int q;
142 {
143 
144 	so->so_head = head;
145 	if (q == 0) {
146 		head->so_q0len++;
147 		so->so_q0 = head->so_q0;
148 		head->so_q0 = so;
149 	} else {
150 		head->so_qlen++;
151 		so->so_q = head->so_q;
152 		head->so_q = so;
153 	}
154 }
155 
156 soqremque(so, q)
157 	register struct socket *so;
158 	int q;
159 {
160 	register struct socket *head, *prev, *next;
161 
162 	head = so->so_head;
163 	prev = head;
164 	for (;;) {
165 		next = q ? prev->so_q : prev->so_q0;
166 		if (next == so)
167 			break;
168 		if (next == head)
169 			return (0);
170 		prev = next;
171 	}
172 	if (q == 0) {
173 		prev->so_q0 = next->so_q0;
174 		head->so_q0len--;
175 	} else {
176 		prev->so_q = next->so_q;
177 		head->so_qlen--;
178 	}
179 	next->so_q0 = next->so_q = 0;
180 	next->so_head = 0;
181 	return (1);
182 }
183 
184 /*
185  * Socantsendmore indicates that no more data will be sent on the
186  * socket; it would normally be applied to a socket when the user
187  * informs the system that no more data is to be sent, by the protocol
188  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
189  * will be received, and will normally be applied to the socket by a
190  * protocol when it detects that the peer will send no more data.
191  * Data queued for reading in the socket may yet be read.
192  */
193 
194 socantsendmore(so)
195 	struct socket *so;
196 {
197 
198 	so->so_state |= SS_CANTSENDMORE;
199 	sowwakeup(so);
200 }
201 
202 socantrcvmore(so)
203 	struct socket *so;
204 {
205 
206 	so->so_state |= SS_CANTRCVMORE;
207 	sorwakeup(so);
208 }
209 
210 /*
211  * Socket select/wakeup routines.
212  */
213 
214 /*
215  * Queue a process for a select on a socket buffer.
216  */
217 sbselqueue(sb)
218 	struct sockbuf *sb;
219 {
220 	register struct proc *p;
221 
222 	if ((p = sb->sb_sel) && p->p_wchan == (caddr_t)&selwait)
223 		sb->sb_flags |= SB_COLL;
224 	else
225 		sb->sb_sel = u.u_procp;
226 }
227 
228 /*
229  * Wait for data to arrive at/drain from a socket buffer.
230  */
231 sbwait(sb)
232 	struct sockbuf *sb;
233 {
234 
235 	sb->sb_flags |= SB_WAIT;
236 	sleep((caddr_t)&sb->sb_cc, PZERO+1);
237 }
238 
239 /*
240  * Wakeup processes waiting on a socket buffer.
241  */
242 sbwakeup(sb)
243 	register struct sockbuf *sb;
244 {
245 
246 	if (sb->sb_sel) {
247 		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
248 		sb->sb_sel = 0;
249 		sb->sb_flags &= ~SB_COLL;
250 	}
251 	if (sb->sb_flags & SB_WAIT) {
252 		sb->sb_flags &= ~SB_WAIT;
253 		wakeup((caddr_t)&sb->sb_cc);
254 	}
255 }
256 
257 /*
258  * Wakeup socket readers and writers.
259  * Do asynchronous notification via SIGIO
260  * if the socket has the SS_ASYNC flag set.
261  */
262 sowakeup(so, sb)
263 	register struct socket *so;
264 	struct sockbuf *sb;
265 {
266 	register struct proc *p;
267 
268 	sbwakeup(sb);
269 	if (so->so_state & SS_ASYNC) {
270 		if (so->so_pgrp == 0)
271 			return;
272 		else if (so->so_pgrp > 0)
273 			gsignal(so->so_pgrp, SIGIO);
274 		else if ((p = pfind(-so->so_pgrp)) != 0)
275 			psignal(p, SIGIO);
276 	}
277 }
278 
279 /*
280  * Socket buffer (struct sockbuf) utility routines.
281  *
282  * Each socket contains two socket buffers: one for sending data and
283  * one for receiving data.  Each buffer contains a queue of mbufs,
284  * information about the number of mbufs and amount of data in the
285  * queue, and other fields allowing select() statements and notification
286  * on data availability to be implemented.
287  *
288  * Before using a new socket structure it is first necessary to reserve
289  * buffer space to the socket, by calling sbreserve.  This commits
290  * some of the available buffer space in the system buffer pool for the
291  * socket.  The space should be released by calling sbrelease when the
292  * socket is destroyed.
293  *
294  * The routine sbappend() is normally called to append new mbufs
295  * to a socket buffer, after checking that adequate space is available
296  * comparing the function spspace() with the amount of data to be added.
297  * Data is normally removed from a socket buffer in a protocol by
298  * first calling m_copy on the socket buffer mbuf chain and sending this
299  * to a peer, and then removing the data from the socket buffer with
300  * sbdrop when the data is acknowledged by the peer (or immediately
301  * in the case of unreliable protocols.)
302  *
303  * Protocols which do not require connections place both source address
304  * and data information in socket buffer queues.  The source addresses
305  * are stored in single mbufs after each data item, and are easily found
306  * as the data items are all marked with end of record markers.  The
307  * sbappendaddr() routine stores a datum and associated address in
308  * a socket buffer.  Note that, unlike sbappend(), this routine checks
309  * for the caller that there will be enough space to store the data.
310  * It fails if there is not enough space, or if it cannot find
311  * a mbuf to store the address in.
312  *
313  * The higher-level routines sosend and soreceive (in socket.c)
314  * also add data to, and remove data from socket buffers repectively.
315  */
316 
317 soreserve(so, sndcc, rcvcc)
318 	register struct socket *so;
319 	int sndcc, rcvcc;
320 {
321 
322 	if (sbreserve(&so->so_snd, sndcc) == 0)
323 		goto bad;
324 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
325 		goto bad2;
326 	return (0);
327 bad2:
328 	sbrelease(&so->so_snd);
329 bad:
330 	return (ENOBUFS);
331 }
332 
333 /*
334  * Allot mbufs to a sockbuf.
335  */
336 sbreserve(sb, cc)
337 	struct sockbuf *sb;
338 {
339 
340 	/* someday maybe this routine will fail... */
341 	sb->sb_hiwat = cc;
342 	/* * 2 implies names can be no more than 1 mbuf each */
343 	sb->sb_mbmax = cc<<1;
344 	return (1);
345 }
346 
347 /*
348  * Free mbufs held by a socket, and reserved mbuf space.
349  */
350 sbrelease(sb)
351 	struct sockbuf *sb;
352 {
353 
354 	sbflush(sb);
355 	sb->sb_hiwat = sb->sb_mbmax = 0;
356 }
357 
358 /*
359  * Routines to add (at the end) and remove (from the beginning)
360  * data from a mbuf queue.
361  */
362 
363 /*
364  * Append mbuf queue m to sockbuf sb.
365  */
366 sbappend(sb, m)
367 	register struct mbuf *m;
368 	register struct sockbuf *sb;
369 {
370 	register struct mbuf *n;
371 
372 	n = sb->sb_mb;
373 	if (n)
374 		while (n->m_next)
375 			n = n->m_next;
376 	while (m) {
377 		if (m->m_len == 0 && (int)m->m_act == 0) {
378 			m = m_free(m);
379 			continue;
380 		}
381 		if (n && n->m_off <= MMAXOFF && m->m_off <= MMAXOFF &&
382 		   (int)n->m_act == 0 && (int)m->m_act == 0 &&
383 		   (n->m_off + n->m_len + m->m_len) <= MMAXOFF) {
384 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
385 			    (unsigned)m->m_len);
386 			n->m_len += m->m_len;
387 			sb->sb_cc += m->m_len;
388 			m = m_free(m);
389 			continue;
390 		}
391 		sballoc(sb, m);
392 		if (n == 0)
393 			sb->sb_mb = m;
394 		else
395 			n->m_next = m;
396 		n = m;
397 		m = m->m_next;
398 		n->m_next = 0;
399 	}
400 }
401 
402 /*
403  * Append data and address.
404  * Return 0 if no space in sockbuf or if
405  * can't get mbuf to stuff address in.
406  */
407 sbappendaddr(sb, asa, m0, rights0)
408 	struct sockbuf *sb;
409 	struct sockaddr *asa;
410 	struct mbuf *m0, *rights0;
411 {
412 	register struct mbuf *m;
413 	register int len = sizeof (struct sockaddr);
414 	register struct mbuf *rights;
415 
416 	if (rights0)
417 		len += rights0->m_len;
418 	m = m0;
419 	if (m == 0)
420 		panic("sbappendaddr");
421 	for (;;) {
422 		len += m->m_len;
423 		if (m->m_next == 0) {
424 			m->m_act = (struct mbuf *)1;
425 			break;
426 		}
427 		m = m->m_next;
428 	}
429 	if (len > sbspace(sb))
430 		return (0);
431 	m = m_get(M_DONTWAIT, MT_SONAME);
432 	if (m == NULL)
433 		return (0);
434 	m->m_len = sizeof (struct sockaddr);
435 	m->m_act = (struct mbuf *)1;
436 	*mtod(m, struct sockaddr *) = *asa;
437 	if (rights0 == 0 || rights0->m_len == 0) {
438 		rights = m_get(M_DONTWAIT, MT_SONAME);
439 		if (rights)
440 			rights->m_len = 0;
441 	} else
442 		rights = m_copy(rights0, 0, rights0->m_len);
443 	if (rights == 0) {
444 		m_freem(m);
445 		return (0);
446 	}
447 	rights->m_act = (struct mbuf *)1;
448 	m->m_next = rights;
449 	rights->m_next = m0;
450 	sbappend(sb, m);
451 	return (1);
452 }
453 
454 /*
455  * Free all mbufs on a sockbuf mbuf chain.
456  * Check that resource allocations return to 0.
457  */
458 sbflush(sb)
459 	register struct sockbuf *sb;
460 {
461 
462 	if (sb->sb_flags & SB_LOCK)
463 		panic("sbflush");
464 	if (sb->sb_cc)
465 		sbdrop(sb, sb->sb_cc);
466 	if (sb->sb_cc || sb->sb_mbcnt || sb->sb_mb)
467 		panic("sbflush 2");
468 }
469 
470 /*
471  * Drop data from (the front of) a sockbuf chain.
472  */
473 sbdrop(sb, len)
474 	register struct sockbuf *sb;
475 	register int len;
476 {
477 	register struct mbuf *m = sb->sb_mb, *mn;
478 
479 	while (len > 0) {
480 		if (m == 0)
481 			panic("sbdrop");
482 		if (m->m_len > len) {
483 			m->m_len -= len;
484 			m->m_off += len;
485 			sb->sb_cc -= len;
486 			break;
487 		}
488 		len -= m->m_len;
489 		sbfree(sb, m);
490 		MFREE(m, mn);
491 		m = mn;
492 	}
493 	sb->sb_mb = m;
494 }
495