xref: /original-bsd/sys/kern/uipc_socket2.c (revision f51da917)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)uipc_socket2.c	8.1 (Berkeley) 06/10/93
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/proc.h>
13 #include <sys/file.h>
14 #include <sys/buf.h>
15 #include <sys/malloc.h>
16 #include <sys/mbuf.h>
17 #include <sys/protosw.h>
18 #include <sys/socket.h>
19 #include <sys/socketvar.h>
20 
21 /*
22  * Primitive routines for operating on sockets and socket buffers
23  */
24 
25 /* strings for sleep message: */
26 char	netio[] = "netio";
27 char	netcon[] = "netcon";
28 char	netcls[] = "netcls";
29 
30 u_long	sb_max = SB_MAX;		/* patchable */
31 
32 /*
33  * Procedures to manipulate state flags of socket
34  * and do appropriate wakeups.  Normal sequence from the
35  * active (originating) side is that soisconnecting() is
36  * called during processing of connect() call,
37  * resulting in an eventual call to soisconnected() if/when the
38  * connection is established.  When the connection is torn down
39  * soisdisconnecting() is called during processing of disconnect() call,
40  * and soisdisconnected() is called when the connection to the peer
41  * is totally severed.  The semantics of these routines are such that
42  * connectionless protocols can call soisconnected() and soisdisconnected()
43  * only, bypassing the in-progress calls when setting up a ``connection''
44  * takes no time.
45  *
46  * From the passive side, a socket is created with
47  * two queues of sockets: so_q0 for connections in progress
48  * and so_q for connections already made and awaiting user acceptance.
49  * As a protocol is preparing incoming connections, it creates a socket
50  * structure queued on so_q0 by calling sonewconn().  When the connection
51  * is established, soisconnected() is called, and transfers the
52  * socket structure to so_q, making it available to accept().
53  *
54  * If a socket is closed with sockets on either
55  * so_q0 or so_q, these sockets are dropped.
56  *
57  * If higher level protocols are implemented in
58  * the kernel, the wakeups done here will sometimes
59  * cause software-interrupt process scheduling.
60  */
61 
62 soisconnecting(so)
63 	register struct socket *so;
64 {
65 
66 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
67 	so->so_state |= SS_ISCONNECTING;
68 }
69 
70 soisconnected(so)
71 	register struct socket *so;
72 {
73 	register struct socket *head = so->so_head;
74 
75 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
76 	so->so_state |= SS_ISCONNECTED;
77 	if (head && soqremque(so, 0)) {
78 		soqinsque(head, so, 1);
79 		sorwakeup(head);
80 		wakeup((caddr_t)&head->so_timeo);
81 	} else {
82 		wakeup((caddr_t)&so->so_timeo);
83 		sorwakeup(so);
84 		sowwakeup(so);
85 	}
86 }
87 
88 soisdisconnecting(so)
89 	register struct socket *so;
90 {
91 
92 	so->so_state &= ~SS_ISCONNECTING;
93 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
94 	wakeup((caddr_t)&so->so_timeo);
95 	sowwakeup(so);
96 	sorwakeup(so);
97 }
98 
99 soisdisconnected(so)
100 	register struct socket *so;
101 {
102 
103 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
104 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
105 	wakeup((caddr_t)&so->so_timeo);
106 	sowwakeup(so);
107 	sorwakeup(so);
108 }
109 
110 /*
111  * When an attempt at a new connection is noted on a socket
112  * which accepts connections, sonewconn is called.  If the
113  * connection is possible (subject to space constraints, etc.)
114  * then we allocate a new structure, propoerly linked into the
115  * data structure of the original socket, and return this.
116  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
117  *
118  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
119  * to catch calls that are missing the (new) second parameter.
120  */
121 struct socket *
122 sonewconn1(head, connstatus)
123 	register struct socket *head;
124 	int connstatus;
125 {
126 	register struct socket *so;
127 	int soqueue = connstatus ? 1 : 0;
128 
129 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
130 		return ((struct socket *)0);
131 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
132 	if (so == NULL)
133 		return ((struct socket *)0);
134 	bzero((caddr_t)so, sizeof(*so));
135 	so->so_type = head->so_type;
136 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
137 	so->so_linger = head->so_linger;
138 	so->so_state = head->so_state | SS_NOFDREF;
139 	so->so_proto = head->so_proto;
140 	so->so_timeo = head->so_timeo;
141 	so->so_pgid = head->so_pgid;
142 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
143 	soqinsque(head, so, soqueue);
144 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
145 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
146 		(void) soqremque(so, soqueue);
147 		(void) free((caddr_t)so, M_SOCKET);
148 		return ((struct socket *)0);
149 	}
150 	if (connstatus) {
151 		sorwakeup(head);
152 		wakeup((caddr_t)&head->so_timeo);
153 		so->so_state |= connstatus;
154 	}
155 	return (so);
156 }
157 
158 soqinsque(head, so, q)
159 	register struct socket *head, *so;
160 	int q;
161 {
162 
163 	register struct socket **prev;
164 	so->so_head = head;
165 	if (q == 0) {
166 		head->so_q0len++;
167 		so->so_q0 = 0;
168 		for (prev = &(head->so_q0); *prev; )
169 			prev = &((*prev)->so_q0);
170 	} else {
171 		head->so_qlen++;
172 		so->so_q = 0;
173 		for (prev = &(head->so_q); *prev; )
174 			prev = &((*prev)->so_q);
175 	}
176 	*prev = so;
177 }
178 
179 soqremque(so, q)
180 	register struct socket *so;
181 	int q;
182 {
183 	register struct socket *head, *prev, *next;
184 
185 	head = so->so_head;
186 	prev = head;
187 	for (;;) {
188 		next = q ? prev->so_q : prev->so_q0;
189 		if (next == so)
190 			break;
191 		if (next == 0)
192 			return (0);
193 		prev = next;
194 	}
195 	if (q == 0) {
196 		prev->so_q0 = next->so_q0;
197 		head->so_q0len--;
198 	} else {
199 		prev->so_q = next->so_q;
200 		head->so_qlen--;
201 	}
202 	next->so_q0 = next->so_q = 0;
203 	next->so_head = 0;
204 	return (1);
205 }
206 
207 /*
208  * Socantsendmore indicates that no more data will be sent on the
209  * socket; it would normally be applied to a socket when the user
210  * informs the system that no more data is to be sent, by the protocol
211  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
212  * will be received, and will normally be applied to the socket by a
213  * protocol when it detects that the peer will send no more data.
214  * Data queued for reading in the socket may yet be read.
215  */
216 
217 socantsendmore(so)
218 	struct socket *so;
219 {
220 
221 	so->so_state |= SS_CANTSENDMORE;
222 	sowwakeup(so);
223 }
224 
225 socantrcvmore(so)
226 	struct socket *so;
227 {
228 
229 	so->so_state |= SS_CANTRCVMORE;
230 	sorwakeup(so);
231 }
232 
233 /*
234  * Wait for data to arrive at/drain from a socket buffer.
235  */
236 sbwait(sb)
237 	struct sockbuf *sb;
238 {
239 
240 	sb->sb_flags |= SB_WAIT;
241 	return (tsleep((caddr_t)&sb->sb_cc,
242 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
243 	    sb->sb_timeo));
244 }
245 
246 /*
247  * Lock a sockbuf already known to be locked;
248  * return any error returned from sleep (EINTR).
249  */
250 sb_lock(sb)
251 	register struct sockbuf *sb;
252 {
253 	int error;
254 
255 	while (sb->sb_flags & SB_LOCK) {
256 		sb->sb_flags |= SB_WANT;
257 		if (error = tsleep((caddr_t)&sb->sb_flags,
258 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
259 		    netio, 0))
260 			return (error);
261 	}
262 	sb->sb_flags |= SB_LOCK;
263 	return (0);
264 }
265 
266 /*
267  * Wakeup processes waiting on a socket buffer.
268  * Do asynchronous notification via SIGIO
269  * if the socket has the SS_ASYNC flag set.
270  */
271 sowakeup(so, sb)
272 	register struct socket *so;
273 	register struct sockbuf *sb;
274 {
275 	struct proc *p;
276 
277 	selwakeup(&sb->sb_sel);
278 	sb->sb_flags &= ~SB_SEL;
279 	if (sb->sb_flags & SB_WAIT) {
280 		sb->sb_flags &= ~SB_WAIT;
281 		wakeup((caddr_t)&sb->sb_cc);
282 	}
283 	if (so->so_state & SS_ASYNC) {
284 		if (so->so_pgid < 0)
285 			gsignal(-so->so_pgid, SIGIO);
286 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
287 			psignal(p, SIGIO);
288 	}
289 }
290 
291 /*
292  * Socket buffer (struct sockbuf) utility routines.
293  *
294  * Each socket contains two socket buffers: one for sending data and
295  * one for receiving data.  Each buffer contains a queue of mbufs,
296  * information about the number of mbufs and amount of data in the
297  * queue, and other fields allowing select() statements and notification
298  * on data availability to be implemented.
299  *
300  * Data stored in a socket buffer is maintained as a list of records.
301  * Each record is a list of mbufs chained together with the m_next
302  * field.  Records are chained together with the m_nextpkt field. The upper
303  * level routine soreceive() expects the following conventions to be
304  * observed when placing information in the receive buffer:
305  *
306  * 1. If the protocol requires each message be preceded by the sender's
307  *    name, then a record containing that name must be present before
308  *    any associated data (mbuf's must be of type MT_SONAME).
309  * 2. If the protocol supports the exchange of ``access rights'' (really
310  *    just additional data associated with the message), and there are
311  *    ``rights'' to be received, then a record containing this data
312  *    should be present (mbuf's must be of type MT_RIGHTS).
313  * 3. If a name or rights record exists, then it must be followed by
314  *    a data record, perhaps of zero length.
315  *
316  * Before using a new socket structure it is first necessary to reserve
317  * buffer space to the socket, by calling sbreserve().  This should commit
318  * some of the available buffer space in the system buffer pool for the
319  * socket (currently, it does nothing but enforce limits).  The space
320  * should be released by calling sbrelease() when the socket is destroyed.
321  */
322 
323 soreserve(so, sndcc, rcvcc)
324 	register struct socket *so;
325 	u_long sndcc, rcvcc;
326 {
327 
328 	if (sbreserve(&so->so_snd, sndcc) == 0)
329 		goto bad;
330 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
331 		goto bad2;
332 	if (so->so_rcv.sb_lowat == 0)
333 		so->so_rcv.sb_lowat = 1;
334 	if (so->so_snd.sb_lowat == 0)
335 		so->so_snd.sb_lowat = MCLBYTES;
336 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
337 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
338 	return (0);
339 bad2:
340 	sbrelease(&so->so_snd);
341 bad:
342 	return (ENOBUFS);
343 }
344 
345 /*
346  * Allot mbufs to a sockbuf.
347  * Attempt to scale mbmax so that mbcnt doesn't become limiting
348  * if buffering efficiency is near the normal case.
349  */
350 sbreserve(sb, cc)
351 	struct sockbuf *sb;
352 	u_long cc;
353 {
354 
355 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
356 		return (0);
357 	sb->sb_hiwat = cc;
358 	sb->sb_mbmax = min(cc * 2, sb_max);
359 	if (sb->sb_lowat > sb->sb_hiwat)
360 		sb->sb_lowat = sb->sb_hiwat;
361 	return (1);
362 }
363 
364 /*
365  * Free mbufs held by a socket, and reserved mbuf space.
366  */
367 sbrelease(sb)
368 	struct sockbuf *sb;
369 {
370 
371 	sbflush(sb);
372 	sb->sb_hiwat = sb->sb_mbmax = 0;
373 }
374 
375 /*
376  * Routines to add and remove
377  * data from an mbuf queue.
378  *
379  * The routines sbappend() or sbappendrecord() are normally called to
380  * append new mbufs to a socket buffer, after checking that adequate
381  * space is available, comparing the function sbspace() with the amount
382  * of data to be added.  sbappendrecord() differs from sbappend() in
383  * that data supplied is treated as the beginning of a new record.
384  * To place a sender's address, optional access rights, and data in a
385  * socket receive buffer, sbappendaddr() should be used.  To place
386  * access rights and data in a socket receive buffer, sbappendrights()
387  * should be used.  In either case, the new data begins a new record.
388  * Note that unlike sbappend() and sbappendrecord(), these routines check
389  * for the caller that there will be enough space to store the data.
390  * Each fails if there is not enough space, or if it cannot find mbufs
391  * to store additional information in.
392  *
393  * Reliable protocols may use the socket send buffer to hold data
394  * awaiting acknowledgement.  Data is normally copied from a socket
395  * send buffer in a protocol with m_copy for output to a peer,
396  * and then removing the data from the socket buffer with sbdrop()
397  * or sbdroprecord() when the data is acknowledged by the peer.
398  */
399 
400 /*
401  * Append mbuf chain m to the last record in the
402  * socket buffer sb.  The additional space associated
403  * the mbuf chain is recorded in sb.  Empty mbufs are
404  * discarded and mbufs are compacted where possible.
405  */
406 sbappend(sb, m)
407 	struct sockbuf *sb;
408 	struct mbuf *m;
409 {
410 	register struct mbuf *n;
411 
412 	if (m == 0)
413 		return;
414 	if (n = sb->sb_mb) {
415 		while (n->m_nextpkt)
416 			n = n->m_nextpkt;
417 		do {
418 			if (n->m_flags & M_EOR) {
419 				sbappendrecord(sb, m); /* XXXXXX!!!! */
420 				return;
421 			}
422 		} while (n->m_next && (n = n->m_next));
423 	}
424 	sbcompress(sb, m, n);
425 }
426 
427 #ifdef SOCKBUF_DEBUG
428 sbcheck(sb)
429 	register struct sockbuf *sb;
430 {
431 	register struct mbuf *m;
432 	register int len = 0, mbcnt = 0;
433 
434 	for (m = sb->sb_mb; m; m = m->m_next) {
435 		len += m->m_len;
436 		mbcnt += MSIZE;
437 		if (m->m_flags & M_EXT)
438 			mbcnt += m->m_ext.ext_size;
439 		if (m->m_nextpkt)
440 			panic("sbcheck nextpkt");
441 	}
442 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
443 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
444 		    mbcnt, sb->sb_mbcnt);
445 		panic("sbcheck");
446 	}
447 }
448 #endif
449 
450 /*
451  * As above, except the mbuf chain
452  * begins a new record.
453  */
454 sbappendrecord(sb, m0)
455 	register struct sockbuf *sb;
456 	register struct mbuf *m0;
457 {
458 	register struct mbuf *m;
459 
460 	if (m0 == 0)
461 		return;
462 	if (m = sb->sb_mb)
463 		while (m->m_nextpkt)
464 			m = m->m_nextpkt;
465 	/*
466 	 * Put the first mbuf on the queue.
467 	 * Note this permits zero length records.
468 	 */
469 	sballoc(sb, m0);
470 	if (m)
471 		m->m_nextpkt = m0;
472 	else
473 		sb->sb_mb = m0;
474 	m = m0->m_next;
475 	m0->m_next = 0;
476 	if (m && (m0->m_flags & M_EOR)) {
477 		m0->m_flags &= ~M_EOR;
478 		m->m_flags |= M_EOR;
479 	}
480 	sbcompress(sb, m, m0);
481 }
482 
483 /*
484  * As above except that OOB data
485  * is inserted at the beginning of the sockbuf,
486  * but after any other OOB data.
487  */
488 sbinsertoob(sb, m0)
489 	register struct sockbuf *sb;
490 	register struct mbuf *m0;
491 {
492 	register struct mbuf *m;
493 	register struct mbuf **mp;
494 
495 	if (m0 == 0)
496 		return;
497 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
498 	    again:
499 		switch (m->m_type) {
500 
501 		case MT_OOBDATA:
502 			continue;		/* WANT next train */
503 
504 		case MT_CONTROL:
505 			if (m = m->m_next)
506 				goto again;	/* inspect THIS train further */
507 		}
508 		break;
509 	}
510 	/*
511 	 * Put the first mbuf on the queue.
512 	 * Note this permits zero length records.
513 	 */
514 	sballoc(sb, m0);
515 	m0->m_nextpkt = *mp;
516 	*mp = m0;
517 	m = m0->m_next;
518 	m0->m_next = 0;
519 	if (m && (m0->m_flags & M_EOR)) {
520 		m0->m_flags &= ~M_EOR;
521 		m->m_flags |= M_EOR;
522 	}
523 	sbcompress(sb, m, m0);
524 }
525 
526 /*
527  * Append address and data, and optionally, control (ancillary) data
528  * to the receive queue of a socket.  If present,
529  * m0 must include a packet header with total length.
530  * Returns 0 if no space in sockbuf or insufficient mbufs.
531  */
532 sbappendaddr(sb, asa, m0, control)
533 	register struct sockbuf *sb;
534 	struct sockaddr *asa;
535 	struct mbuf *m0, *control;
536 {
537 	register struct mbuf *m, *n;
538 	int space = asa->sa_len;
539 
540 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
541 panic("sbappendaddr");
542 	if (m0)
543 		space += m0->m_pkthdr.len;
544 	for (n = control; n; n = n->m_next) {
545 		space += n->m_len;
546 		if (n->m_next == 0)	/* keep pointer to last control buf */
547 			break;
548 	}
549 	if (space > sbspace(sb))
550 		return (0);
551 	if (asa->sa_len > MLEN)
552 		return (0);
553 	MGET(m, M_DONTWAIT, MT_SONAME);
554 	if (m == 0)
555 		return (0);
556 	m->m_len = asa->sa_len;
557 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
558 	if (n)
559 		n->m_next = m0;		/* concatenate data to control */
560 	else
561 		control = m0;
562 	m->m_next = control;
563 	for (n = m; n; n = n->m_next)
564 		sballoc(sb, n);
565 	if (n = sb->sb_mb) {
566 		while (n->m_nextpkt)
567 			n = n->m_nextpkt;
568 		n->m_nextpkt = m;
569 	} else
570 		sb->sb_mb = m;
571 	return (1);
572 }
573 
574 sbappendcontrol(sb, m0, control)
575 	struct sockbuf *sb;
576 	struct mbuf *control, *m0;
577 {
578 	register struct mbuf *m, *n;
579 	int space = 0;
580 
581 	if (control == 0)
582 		panic("sbappendcontrol");
583 	for (m = control; ; m = m->m_next) {
584 		space += m->m_len;
585 		if (m->m_next == 0)
586 			break;
587 	}
588 	n = m;			/* save pointer to last control buffer */
589 	for (m = m0; m; m = m->m_next)
590 		space += m->m_len;
591 	if (space > sbspace(sb))
592 		return (0);
593 	n->m_next = m0;			/* concatenate data to control */
594 	for (m = control; m; m = m->m_next)
595 		sballoc(sb, m);
596 	if (n = sb->sb_mb) {
597 		while (n->m_nextpkt)
598 			n = n->m_nextpkt;
599 		n->m_nextpkt = control;
600 	} else
601 		sb->sb_mb = control;
602 	return (1);
603 }
604 
605 /*
606  * Compress mbuf chain m into the socket
607  * buffer sb following mbuf n.  If n
608  * is null, the buffer is presumed empty.
609  */
610 sbcompress(sb, m, n)
611 	register struct sockbuf *sb;
612 	register struct mbuf *m, *n;
613 {
614 	register int eor = 0;
615 	register struct mbuf *o;
616 
617 	while (m) {
618 		eor |= m->m_flags & M_EOR;
619 		if (m->m_len == 0 &&
620 		    (eor == 0 ||
621 		     (((o = m->m_next) || (o = n)) &&
622 		      o->m_type == m->m_type))) {
623 			m = m_free(m);
624 			continue;
625 		}
626 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
627 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
628 		    n->m_type == m->m_type) {
629 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
630 			    (unsigned)m->m_len);
631 			n->m_len += m->m_len;
632 			sb->sb_cc += m->m_len;
633 			m = m_free(m);
634 			continue;
635 		}
636 		if (n)
637 			n->m_next = m;
638 		else
639 			sb->sb_mb = m;
640 		sballoc(sb, m);
641 		n = m;
642 		m->m_flags &= ~M_EOR;
643 		m = m->m_next;
644 		n->m_next = 0;
645 	}
646 	if (eor) {
647 		if (n)
648 			n->m_flags |= eor;
649 		else
650 			printf("semi-panic: sbcompress\n");
651 	}
652 }
653 
654 /*
655  * Free all mbufs in a sockbuf.
656  * Check that all resources are reclaimed.
657  */
658 sbflush(sb)
659 	register struct sockbuf *sb;
660 {
661 
662 	if (sb->sb_flags & SB_LOCK)
663 		panic("sbflush");
664 	while (sb->sb_mbcnt)
665 		sbdrop(sb, (int)sb->sb_cc);
666 	if (sb->sb_cc || sb->sb_mb)
667 		panic("sbflush 2");
668 }
669 
670 /*
671  * Drop data from (the front of) a sockbuf.
672  */
673 sbdrop(sb, len)
674 	register struct sockbuf *sb;
675 	register int len;
676 {
677 	register struct mbuf *m, *mn;
678 	struct mbuf *next;
679 
680 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
681 	while (len > 0) {
682 		if (m == 0) {
683 			if (next == 0)
684 				panic("sbdrop");
685 			m = next;
686 			next = m->m_nextpkt;
687 			continue;
688 		}
689 		if (m->m_len > len) {
690 			m->m_len -= len;
691 			m->m_data += len;
692 			sb->sb_cc -= len;
693 			break;
694 		}
695 		len -= m->m_len;
696 		sbfree(sb, m);
697 		MFREE(m, mn);
698 		m = mn;
699 	}
700 	while (m && m->m_len == 0) {
701 		sbfree(sb, m);
702 		MFREE(m, mn);
703 		m = mn;
704 	}
705 	if (m) {
706 		sb->sb_mb = m;
707 		m->m_nextpkt = next;
708 	} else
709 		sb->sb_mb = next;
710 }
711 
712 /*
713  * Drop a record off the front of a sockbuf
714  * and move the next record to the front.
715  */
716 sbdroprecord(sb)
717 	register struct sockbuf *sb;
718 {
719 	register struct mbuf *m, *mn;
720 
721 	m = sb->sb_mb;
722 	if (m) {
723 		sb->sb_mb = m->m_nextpkt;
724 		do {
725 			sbfree(sb, m);
726 			MFREE(m, mn);
727 		} while (m = mn);
728 	}
729 }
730