xref: /original-bsd/sys/kern/vfs_cluster.c (revision 333da485)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)vfs_cluster.c	8.5 (Berkeley) 01/12/94
8  */
9 
10 #include <sys/param.h>
11 #include <sys/proc.h>
12 #include <sys/buf.h>
13 #include <sys/vnode.h>
14 #include <sys/mount.h>
15 #include <sys/trace.h>
16 #include <sys/malloc.h>
17 #include <sys/resourcevar.h>
18 #include <libkern/libkern.h>
19 
20 /*
21  * Local declarations
22  */
23 struct buf *cluster_newbuf __P((struct vnode *, struct buf *, long, daddr_t,
24 	    daddr_t, long, int));
25 struct buf *cluster_rbuild __P((struct vnode *, u_quad_t, struct buf *,
26 	    daddr_t, daddr_t, long, int, long));
27 void	    cluster_wbuild __P((struct vnode *, struct buf *, long,
28 	    daddr_t, int, daddr_t));
29 
30 #ifdef DIAGNOSTIC
31 /*
32  * Set to 1 if reads of block zero should cause readahead to be done.
33  * Set to 0 treats a read of block zero as a non-sequential read.
34  *
35  * Setting to one assumes that most reads of block zero of files are due to
36  * sequential passes over the files (e.g. cat, sum) where additional blocks
37  * will soon be needed.  Setting to zero assumes that the majority are
38  * surgical strikes to get particular info (e.g. size, file) where readahead
39  * blocks will not be used and, in fact, push out other potentially useful
40  * blocks from the cache.  The former seems intuitive, but some quick tests
41  * showed that the latter performed better from a system-wide point of view.
42  */
43 int	doclusterraz = 0;
44 #define ISSEQREAD(vp, blk) \
45 	(((blk) != 0 || doclusterraz) && \
46 	 ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
47 #else
48 #define ISSEQREAD(vp, blk) \
49 	((blk) != 0 && ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
50 #endif
51 
52 /*
53  * This replaces bread.  If this is a bread at the beginning of a file and
54  * lastr is 0, we assume this is the first read and we'll read up to two
55  * blocks if they are sequential.  After that, we'll do regular read ahead
56  * in clustered chunks.
57  *
58  * There are 4 or 5 cases depending on how you count:
59  *	Desired block is in the cache:
60  *	    1 Not sequential access (0 I/Os).
61  *	    2 Access is sequential, do read-ahead (1 ASYNC).
62  *	Desired block is not in cache:
63  *	    3 Not sequential access (1 SYNC).
64  *	    4 Sequential access, next block is contiguous (1 SYNC).
65  *	    5 Sequential access, next block is not contiguous (1 SYNC, 1 ASYNC)
66  *
67  * There are potentially two buffers that require I/O.
68  * 	bp is the block requested.
69  *	rbp is the read-ahead block.
70  *	If either is NULL, then you don't have to do the I/O.
71  */
72 cluster_read(vp, filesize, lblkno, size, cred, bpp)
73 	struct vnode *vp;
74 	u_quad_t filesize;
75 	daddr_t lblkno;
76 	long size;
77 	struct ucred *cred;
78 	struct buf **bpp;
79 {
80 	struct buf *bp, *rbp;
81 	daddr_t blkno, ioblkno;
82 	long flags;
83 	int error, num_ra, alreadyincore;
84 
85 #ifdef DIAGNOSTIC
86 	if (size == 0)
87 		panic("cluster_read: size = 0");
88 #endif
89 
90 	error = 0;
91 	flags = B_READ;
92 	*bpp = bp = getblk(vp, lblkno, size, 0, 0);
93 	if (bp->b_flags & B_CACHE) {
94 		/*
95 		 * Desired block is in cache; do any readahead ASYNC.
96 		 * Case 1, 2.
97 		 */
98 		trace(TR_BREADHIT, pack(vp, size), lblkno);
99 		flags |= B_ASYNC;
100 		ioblkno = lblkno + (vp->v_ralen ? vp->v_ralen : 1);
101 		alreadyincore = (int)incore(vp, ioblkno);
102 		bp = NULL;
103 	} else {
104 		/* Block wasn't in cache, case 3, 4, 5. */
105 		trace(TR_BREADMISS, pack(vp, size), lblkno);
106 		bp->b_flags |= B_READ;
107 		ioblkno = lblkno;
108 		alreadyincore = 0;
109 		curproc->p_stats->p_ru.ru_inblock++;		/* XXX */
110 	}
111 	/*
112 	 * XXX
113 	 * Replace 1 with a window size based on some permutation of
114 	 * maxcontig and rot_delay.  This will let you figure out how
115 	 * many blocks you should read-ahead (case 2, 4, 5).
116 	 *
117 	 * If the access isn't sequential, reset the window to 1.
118 	 * Note that a read to the same block is considered sequential.
119 	 * This catches the case where the file is being read sequentially,
120 	 * but at smaller than the filesystem block size.
121 	 */
122 	rbp = NULL;
123 	if (!ISSEQREAD(vp, lblkno)) {
124 		vp->v_ralen = 0;
125 		vp->v_maxra = lblkno;
126 	} else if ((ioblkno + 1) * size <= filesize && !alreadyincore &&
127 	    !(error = VOP_BMAP(vp, ioblkno, NULL, &blkno, &num_ra)) &&
128 	    blkno != -1) {
129 		/*
130 		 * Reading sequentially, and the next block is not in the
131 		 * cache.  We are going to try reading ahead.
132 		 */
133 		if (num_ra) {
134 			/*
135 			 * If our desired readahead block had been read
136 			 * in a previous readahead but is no longer in
137 			 * core, then we may be reading ahead too far
138 			 * or are not using our readahead very rapidly.
139 			 * In this case we scale back the window.
140 			 */
141 			if (!alreadyincore && ioblkno <= vp->v_maxra)
142 				vp->v_ralen = max(vp->v_ralen >> 1, 1);
143 			/*
144 			 * There are more sequential blocks than our current
145 			 * window allows, scale up.  Ideally we want to get
146 			 * in sync with the filesystem maxcontig value.
147 			 */
148 			else if (num_ra > vp->v_ralen && lblkno != vp->v_lastr)
149 				vp->v_ralen = vp->v_ralen ?
150 					min(num_ra, vp->v_ralen << 1) : 1;
151 
152 			if (num_ra > vp->v_ralen)
153 				num_ra = vp->v_ralen;
154 		}
155 
156 		if (num_ra)				/* case 2, 4 */
157 			rbp = cluster_rbuild(vp, filesize,
158 			    bp, ioblkno, blkno, size, num_ra, flags);
159 		else if (ioblkno == lblkno) {
160 			bp->b_blkno = blkno;
161 			/* Case 5: check how many blocks to read ahead */
162 			++ioblkno;
163 			if ((ioblkno + 1) * size > filesize ||
164 			    incore(vp, ioblkno) || (error = VOP_BMAP(vp,
165 			     ioblkno, NULL, &blkno, &num_ra)) || blkno == -1)
166 				goto skip_readahead;
167 			/*
168 			 * Adjust readahead as above
169 			 */
170 			if (num_ra) {
171 				if (!alreadyincore && ioblkno <= vp->v_maxra)
172 					vp->v_ralen = max(vp->v_ralen >> 1, 1);
173 				else if (num_ra > vp->v_ralen &&
174 					 lblkno != vp->v_lastr)
175 					vp->v_ralen = vp->v_ralen ?
176 						min(num_ra,vp->v_ralen<<1) : 1;
177 				if (num_ra > vp->v_ralen)
178 					num_ra = vp->v_ralen;
179 			}
180 			flags |= B_ASYNC;
181 			if (num_ra)
182 				rbp = cluster_rbuild(vp, filesize,
183 				    NULL, ioblkno, blkno, size, num_ra, flags);
184 			else {
185 				rbp = getblk(vp, ioblkno, size, 0, 0);
186 				rbp->b_flags |= flags;
187 				rbp->b_blkno = blkno;
188 			}
189 		} else {
190 			/* case 2; read ahead single block */
191 			rbp = getblk(vp, ioblkno, size, 0, 0);
192 			rbp->b_flags |= flags;
193 			rbp->b_blkno = blkno;
194 		}
195 
196 		if (rbp == bp)			/* case 4 */
197 			rbp = NULL;
198 		else if (rbp) {			/* case 2, 5 */
199 			trace(TR_BREADMISSRA,
200 			    pack(vp, (num_ra + 1) * size), ioblkno);
201 			curproc->p_stats->p_ru.ru_inblock++;	/* XXX */
202 		}
203 	}
204 
205 	/* XXX Kirk, do we need to make sure the bp has creds? */
206 skip_readahead:
207 	if (bp)
208 		if (bp->b_flags & (B_DONE | B_DELWRI))
209 			panic("cluster_read: DONE bp");
210 		else
211 			error = VOP_STRATEGY(bp);
212 
213 	if (rbp)
214 		if (error || rbp->b_flags & (B_DONE | B_DELWRI)) {
215 			rbp->b_flags &= ~(B_ASYNC | B_READ);
216 			brelse(rbp);
217 		} else
218 			(void) VOP_STRATEGY(rbp);
219 
220 	/*
221 	 * Recalculate our maximum readahead
222 	 */
223 	if (rbp == NULL)
224 		rbp = bp;
225 	if (rbp)
226 		vp->v_maxra = rbp->b_lblkno + (rbp->b_bufsize / size) - 1;
227 
228 	if (bp)
229 		return(biowait(bp));
230 	return(error);
231 }
232 
233 /*
234  * If blocks are contiguous on disk, use this to provide clustered
235  * read ahead.  We will read as many blocks as possible sequentially
236  * and then parcel them up into logical blocks in the buffer hash table.
237  */
238 struct buf *
239 cluster_rbuild(vp, filesize, bp, lbn, blkno, size, run, flags)
240 	struct vnode *vp;
241 	u_quad_t filesize;
242 	struct buf *bp;
243 	daddr_t lbn;
244 	daddr_t blkno;
245 	long size;
246 	int run;
247 	long flags;
248 {
249 	struct cluster_save *b_save;
250 	struct buf *tbp;
251 	daddr_t bn;
252 	int i, inc;
253 
254 #ifdef DIAGNOSTIC
255 	if (size != vp->v_mount->mnt_stat.f_iosize)
256 		panic("cluster_rbuild: size %d != filesize %d\n",
257 			size, vp->v_mount->mnt_stat.f_iosize);
258 #endif
259 	if (size * (lbn + run + 1) > filesize)
260 		--run;
261 	if (run == 0) {
262 		if (!bp) {
263 			bp = getblk(vp, lbn, size, 0, 0);
264 			bp->b_blkno = blkno;
265 			bp->b_flags |= flags;
266 		}
267 		return(bp);
268 	}
269 
270 	bp = cluster_newbuf(vp, bp, flags, blkno, lbn, size, run + 1);
271 	if (bp->b_flags & (B_DONE | B_DELWRI))
272 		return (bp);
273 
274 	b_save = malloc(sizeof(struct buf *) * run + sizeof(struct cluster_save),
275 	    M_SEGMENT, M_WAITOK);
276 	b_save->bs_bufsize = b_save->bs_bcount = size;
277 	b_save->bs_nchildren = 0;
278 	b_save->bs_children = (struct buf **)(b_save + 1);
279 	b_save->bs_saveaddr = bp->b_saveaddr;
280 	bp->b_saveaddr = (caddr_t) b_save;
281 
282 	inc = btodb(size);
283 	for (bn = blkno + inc, i = 1; i <= run; ++i, bn += inc) {
284 		if (incore(vp, lbn + i)) {
285 			if (i == 1) {
286 				bp->b_saveaddr = b_save->bs_saveaddr;
287 				bp->b_flags &= ~B_CALL;
288 				bp->b_iodone = NULL;
289 				allocbuf(bp, size);
290 				free(b_save, M_SEGMENT);
291 			} else
292 				allocbuf(bp, size * i);
293 			break;
294 		}
295 		tbp = getblk(vp, lbn + i, 0, 0, 0);
296 		/*
297 		 * getblk may return some memory in the buffer if there were
298 		 * no empty buffers to shed it to.  If there is currently
299 		 * memory in the buffer, we move it down size bytes to make
300 		 * room for the valid pages that cluster_callback will insert.
301 		 * We do this now so we don't have to do it at interrupt time
302 		 * in the callback routine.
303 		 */
304 		if (tbp->b_bufsize != 0) {
305 			caddr_t bdata = (char *)tbp->b_data;
306 
307 			if (tbp->b_bufsize + size > MAXBSIZE)
308 				panic("cluster_rbuild: too much memory");
309 			if (tbp->b_bufsize > size) {
310 				/*
311 				 * XXX if the source and destination regions
312 				 * overlap we have to copy backward to avoid
313 				 * clobbering any valid pages (i.e. pagemove
314 				 * implementations typically can't handle
315 				 * overlap).
316 				 */
317 				bdata += tbp->b_bufsize;
318 				while (bdata > (char *)tbp->b_data) {
319 					bdata -= CLBYTES;
320 					pagemove(bdata, bdata + size, CLBYTES);
321 				}
322 			} else
323 				pagemove(bdata, bdata + size, tbp->b_bufsize);
324 		}
325 		tbp->b_blkno = bn;
326 		tbp->b_flags |= flags | B_READ | B_ASYNC;
327 		++b_save->bs_nchildren;
328 		b_save->bs_children[i - 1] = tbp;
329 	}
330 	return(bp);
331 }
332 
333 /*
334  * Either get a new buffer or grow the existing one.
335  */
336 struct buf *
337 cluster_newbuf(vp, bp, flags, blkno, lblkno, size, run)
338 	struct vnode *vp;
339 	struct buf *bp;
340 	long flags;
341 	daddr_t blkno;
342 	daddr_t lblkno;
343 	long size;
344 	int run;
345 {
346 	if (!bp) {
347 		bp = getblk(vp, lblkno, size, 0, 0);
348 		if (bp->b_flags & (B_DONE | B_DELWRI)) {
349 			bp->b_blkno = blkno;
350 			return(bp);
351 		}
352 	}
353 	allocbuf(bp, run * size);
354 	bp->b_blkno = blkno;
355 	bp->b_iodone = cluster_callback;
356 	bp->b_flags |= flags | B_CALL;
357 	return(bp);
358 }
359 
360 /*
361  * Cleanup after a clustered read or write.
362  * This is complicated by the fact that any of the buffers might have
363  * extra memory (if there were no empty buffer headers at allocbuf time)
364  * that we will need to shift around.
365  */
366 void
367 cluster_callback(bp)
368 	struct buf *bp;
369 {
370 	struct cluster_save *b_save;
371 	struct buf **bpp, *tbp;
372 	long bsize;
373 	caddr_t cp;
374 	int error = 0;
375 
376 	/*
377 	 * Must propogate errors to all the components.
378 	 */
379 	if (bp->b_flags & B_ERROR)
380 		error = bp->b_error;
381 
382 	b_save = (struct cluster_save *)(bp->b_saveaddr);
383 	bp->b_saveaddr = b_save->bs_saveaddr;
384 
385 	bsize = b_save->bs_bufsize;
386 	cp = (char *)bp->b_data + bsize;
387 	/*
388 	 * Move memory from the large cluster buffer into the component
389 	 * buffers and mark IO as done on these.
390 	 */
391 	for (bpp = b_save->bs_children; b_save->bs_nchildren--; ++bpp) {
392 		tbp = *bpp;
393 		pagemove(cp, tbp->b_data, bsize);
394 		tbp->b_bufsize += bsize;
395 		tbp->b_bcount = bsize;
396 		if (error) {
397 			tbp->b_flags |= B_ERROR;
398 			tbp->b_error = error;
399 		}
400 		biodone(tbp);
401 		bp->b_bufsize -= bsize;
402 		cp += bsize;
403 	}
404 	/*
405 	 * If there was excess memory in the cluster buffer,
406 	 * slide it up adjacent to the remaining valid data.
407 	 */
408 	if (bp->b_bufsize != bsize) {
409 		if (bp->b_bufsize < bsize)
410 			panic("cluster_callback: too little memory");
411 		pagemove(cp, (char *)bp->b_data + bsize, bp->b_bufsize - bsize);
412 	}
413 	bp->b_bcount = bsize;
414 	bp->b_iodone = NULL;
415 	free(b_save, M_SEGMENT);
416 	if (bp->b_flags & B_ASYNC)
417 		brelse(bp);
418 	else {
419 		bp->b_flags &= ~B_WANTED;
420 		wakeup((caddr_t)bp);
421 	}
422 }
423 
424 /*
425  * Do clustered write for FFS.
426  *
427  * Three cases:
428  *	1. Write is not sequential (write asynchronously)
429  *	Write is sequential:
430  *	2.	beginning of cluster - begin cluster
431  *	3.	middle of a cluster - add to cluster
432  *	4.	end of a cluster - asynchronously write cluster
433  */
434 void
435 cluster_write(bp, filesize)
436         struct buf *bp;
437 	u_quad_t filesize;
438 {
439         struct vnode *vp;
440         daddr_t lbn;
441         int clen;
442 
443         vp = bp->b_vp;
444         lbn = bp->b_lblkno;
445 
446 	/* Initialize vnode to beginning of file. */
447 	if (lbn == 0)
448 		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
449 
450         if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
451 	    (bp->b_blkno != vp->v_lasta + btodb(bp->b_bcount))) {
452 		if (vp->v_clen != 0)
453 			/*
454 			 * Write is not sequential.
455 			 */
456 			cluster_wbuild(vp, NULL, bp->b_bcount, vp->v_cstart,
457 			    vp->v_lastw - vp->v_cstart + 1, lbn);
458 		/*
459 		 * Consider beginning a cluster.
460 		 */
461 		if ((lbn + 1) * bp->b_bcount == filesize)
462 			/* End of file, make cluster as large as possible */
463 			clen = MAXBSIZE / vp->v_mount->mnt_stat.f_iosize - 1;
464 		else if (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &clen) ||
465 			    bp->b_blkno == -1) {
466 			bawrite(bp);
467 			vp->v_clen = 0;
468 			vp->v_lasta = bp->b_blkno;
469 			vp->v_cstart = lbn + 1;
470 			vp->v_lastw = lbn;
471 			return;
472 		}
473                 vp->v_clen = clen;
474                 if (clen == 0) {		/* I/O not contiguous */
475 			vp->v_cstart = lbn + 1;
476                         bawrite(bp);
477                 } else {			/* Wait for rest of cluster */
478 			vp->v_cstart = lbn;
479                         bdwrite(bp);
480 		}
481 	} else if (lbn == vp->v_cstart + vp->v_clen) {
482 		/*
483 		 * At end of cluster, write it out.
484 		 */
485 		cluster_wbuild(vp, bp, bp->b_bcount, vp->v_cstart,
486 		    vp->v_clen + 1, lbn);
487 		vp->v_clen = 0;
488 		vp->v_cstart = lbn + 1;
489 	} else
490 		/*
491 		 * In the middle of a cluster, so just delay the
492 		 * I/O for now.
493 		 */
494 		bdwrite(bp);
495 	vp->v_lastw = lbn;
496 	vp->v_lasta = bp->b_blkno;
497 }
498 
499 
500 /*
501  * This is an awful lot like cluster_rbuild...wish they could be combined.
502  * The last lbn argument is the current block on which I/O is being
503  * performed.  Check to see that it doesn't fall in the middle of
504  * the current block (if last_bp == NULL).
505  */
506 void
507 cluster_wbuild(vp, last_bp, size, start_lbn, len, lbn)
508 	struct vnode *vp;
509 	struct buf *last_bp;
510 	long size;
511 	daddr_t start_lbn;
512 	int len;
513 	daddr_t	lbn;
514 {
515 	struct cluster_save *b_save;
516 	struct buf *bp, *tbp;
517 	caddr_t	cp;
518 	int i, s;
519 
520 #ifdef DIAGNOSTIC
521 	if (size != vp->v_mount->mnt_stat.f_iosize)
522 		panic("cluster_wbuild: size %d != filesize %d\n",
523 			size, vp->v_mount->mnt_stat.f_iosize);
524 #endif
525 redo:
526 	while ((!incore(vp, start_lbn) || start_lbn == lbn) && len) {
527 		++start_lbn;
528 		--len;
529 	}
530 
531 	/* Get more memory for current buffer */
532 	if (len <= 1) {
533 		if (last_bp) {
534 			bawrite(last_bp);
535 		} else if (len) {
536 			bp = getblk(vp, start_lbn, size, 0, 0);
537 			bawrite(bp);
538 		}
539 		return;
540 	}
541 
542 	bp = getblk(vp, start_lbn, size, 0, 0);
543 	if (!(bp->b_flags & B_DELWRI)) {
544 		++start_lbn;
545 		--len;
546 		brelse(bp);
547 		goto redo;
548 	}
549 
550 	/*
551 	 * Extra memory in the buffer, punt on this buffer.
552 	 * XXX we could handle this in most cases, but we would have to
553 	 * push the extra memory down to after our max possible cluster
554 	 * size and then potentially pull it back up if the cluster was
555 	 * terminated prematurely--too much hassle.
556 	 */
557 	if (bp->b_bcount != bp->b_bufsize) {
558 		++start_lbn;
559 		--len;
560 		bawrite(bp);
561 		goto redo;
562 	}
563 
564 	--len;
565 	b_save = malloc(sizeof(struct buf *) * len + sizeof(struct cluster_save),
566 	    M_SEGMENT, M_WAITOK);
567 	b_save->bs_bcount = bp->b_bcount;
568 	b_save->bs_bufsize = bp->b_bufsize;
569 	b_save->bs_nchildren = 0;
570 	b_save->bs_children = (struct buf **)(b_save + 1);
571 	b_save->bs_saveaddr = bp->b_saveaddr;
572 	bp->b_saveaddr = (caddr_t) b_save;
573 
574 	bp->b_flags |= B_CALL;
575 	bp->b_iodone = cluster_callback;
576 	cp = (char *)bp->b_data + size;
577 	for (++start_lbn, i = 0; i < len; ++i, ++start_lbn) {
578 		/*
579 		 * Block is not in core or the non-sequential block
580 		 * ending our cluster was part of the cluster (in which
581 		 * case we don't want to write it twice).
582 		 */
583 		if (!incore(vp, start_lbn) ||
584 		    last_bp == NULL && start_lbn == lbn)
585 			break;
586 
587 		/*
588 		 * Get the desired block buffer (unless it is the final
589 		 * sequential block whose buffer was passed in explictly
590 		 * as last_bp).
591 		 */
592 		if (last_bp == NULL || start_lbn != lbn) {
593 			tbp = getblk(vp, start_lbn, size, 0, 0);
594 			if (!(tbp->b_flags & B_DELWRI)) {
595 				brelse(tbp);
596 				break;
597 			}
598 		} else
599 			tbp = last_bp;
600 
601 		++b_save->bs_nchildren;
602 
603 		/* Move memory from children to parent */
604 		if (tbp->b_blkno != (bp->b_blkno + btodb(bp->b_bufsize))) {
605 			printf("Clustered Block: %d addr %x bufsize: %d\n",
606 			    bp->b_lblkno, bp->b_blkno, bp->b_bufsize);
607 			printf("Child Block: %d addr: %x\n", tbp->b_lblkno,
608 			    tbp->b_blkno);
609 			panic("Clustered write to wrong blocks");
610 		}
611 
612 		pagemove(tbp->b_data, cp, size);
613 		bp->b_bcount += size;
614 		bp->b_bufsize += size;
615 
616 		tbp->b_bufsize -= size;
617 		tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
618 		tbp->b_flags |= (B_ASYNC | B_AGE);
619 		s = splbio();
620 		reassignbuf(tbp, tbp->b_vp);		/* put on clean list */
621 		++tbp->b_vp->v_numoutput;
622 		splx(s);
623 		b_save->bs_children[i] = tbp;
624 
625 		cp += size;
626 	}
627 
628 	if (i == 0) {
629 		/* None to cluster */
630 		bp->b_saveaddr = b_save->bs_saveaddr;
631 		bp->b_flags &= ~B_CALL;
632 		bp->b_iodone = NULL;
633 		free(b_save, M_SEGMENT);
634 	}
635 	bawrite(bp);
636 	if (i < len) {
637 		len -= i + 1;
638 		start_lbn += 1;
639 		goto redo;
640 	}
641 }
642