xref: /original-bsd/sys/kern/vfs_cluster.c (revision 56abee86)
1 /*	vfs_cluster.c	4.17	81/03/09	*/
2 
3 #include "../h/param.h"
4 #include "../h/systm.h"
5 #include "../h/dir.h"
6 #include "../h/user.h"
7 #include "../h/buf.h"
8 #include "../h/conf.h"
9 #include "../h/proc.h"
10 #include "../h/seg.h"
11 #include "../h/pte.h"
12 #include "../h/vm.h"
13 #include "../h/trace.h"
14 
15 /*
16  * The following several routines allocate and free
17  * buffers with various side effects.  In general the
18  * arguments to an allocate routine are a device and
19  * a block number, and the value is a pointer to
20  * to the buffer header; the buffer is marked "busy"
21  * so that no one else can touch it.  If the block was
22  * already in core, no I/O need be done; if it is
23  * already busy, the process waits until it becomes free.
24  * The following routines allocate a buffer:
25  *	getblk
26  *	bread
27  *	breada
28  *	baddr	(if it is incore)
29  * Eventually the buffer must be released, possibly with the
30  * side effect of writing it out, by using one of
31  *	bwrite
32  *	bdwrite
33  *	bawrite
34  *	brelse
35  */
36 
37 struct	buf bfreelist[BQUEUES];
38 struct	buf bswlist, *bclnlist;
39 
40 #define	BUFHSZ	63
41 struct	bufhd bufhash[BUFHSZ];
42 #define	BUFHASH(dev, dblkno)	\
43 		((struct buf *)&bufhash[((int)(dev)+(int)(dblkno)) % BUFHSZ])
44 
45 /*
46  * Initialize hash links for buffers.
47  */
48 bhinit()
49 {
50 	register int i;
51 	register struct bufhd *bp;
52 
53 	for (bp = bufhash, i = 0; i < BUFHSZ; i++, bp++)
54 		bp->b_forw = bp->b_back = (struct buf *)bp;
55 }
56 
57 /* #define	DISKMON	1 */
58 
59 #ifdef	DISKMON
60 struct {
61 	int	nbuf;
62 	long	nread;
63 	long	nreada;
64 	long	ncache;
65 	long	nwrite;
66 	long	bufcount[64];
67 } io_info;
68 #endif
69 
70 /*
71  * Swap IO headers -
72  * They contain the necessary information for the swap I/O.
73  * At any given time, a swap header can be in three
74  * different lists. When free it is in the free list,
75  * when allocated and the I/O queued, it is on the swap
76  * device list, and finally, if the operation was a dirty
77  * page push, when the I/O completes, it is inserted
78  * in a list of cleaned pages to be processed by the pageout daemon.
79  */
80 struct	buf *swbuf;
81 short	*swsize;		/* CAN WE JUST USE B_BCOUNT? */
82 int	*swpf;
83 
84 
85 #ifndef	UNFAST
86 #define	notavail(bp) \
87 { \
88 	int s = spl6(); \
89 	(bp)->av_back->av_forw = (bp)->av_forw; \
90 	(bp)->av_forw->av_back = (bp)->av_back; \
91 	(bp)->b_flags |= B_BUSY; \
92 	splx(s); \
93 }
94 #endif
95 
96 /*
97  * Read in (if necessary) the block and return a buffer pointer.
98  */
99 struct buf *
100 bread(dev, blkno)
101 dev_t dev;
102 daddr_t blkno;
103 {
104 	register struct buf *bp;
105 
106 	bp = getblk(dev, blkno);
107 	if (bp->b_flags&B_DONE) {
108 #ifdef	EPAWNJ
109 		trace(TR_BREAD|TR_HIT, dev, blkno);
110 #endif
111 #ifdef	DISKMON
112 		io_info.ncache++;
113 #endif
114 		return(bp);
115 	}
116 	bp->b_flags |= B_READ;
117 	bp->b_bcount = BSIZE;
118 	(*bdevsw[major(dev)].d_strategy)(bp);
119 #ifdef	EPAWNJ
120 	trace(TR_BREAD|TR_MISS, dev, blkno);
121 #endif
122 #ifdef	DISKMON
123 	io_info.nread++;
124 #endif
125 	u.u_vm.vm_inblk++;		/* pay for read */
126 	iowait(bp);
127 	return(bp);
128 }
129 
130 /*
131  * Read in the block, like bread, but also start I/O on the
132  * read-ahead block (which is not allocated to the caller)
133  */
134 struct buf *
135 breada(dev, blkno, rablkno)
136 dev_t dev;
137 daddr_t blkno, rablkno;
138 {
139 	register struct buf *bp, *rabp;
140 
141 	bp = NULL;
142 	if (!incore(dev, blkno)) {
143 		bp = getblk(dev, blkno);
144 		if ((bp->b_flags&B_DONE) == 0) {
145 			bp->b_flags |= B_READ;
146 			bp->b_bcount = BSIZE;
147 			(*bdevsw[major(dev)].d_strategy)(bp);
148 #ifdef	EPAWNJ
149 			trace(TR_BREAD|TR_MISS, dev, blkno);
150 #endif
151 #ifdef	DISKMON
152 			io_info.nread++;
153 #endif
154 			u.u_vm.vm_inblk++;		/* pay for read */
155 		}
156 #ifdef	EPAWNJ
157 		else
158 			trace(TR_BREAD|TR_HIT, dev, blkno);
159 #endif
160 	}
161 	if (rablkno && !incore(dev, rablkno)) {
162 		rabp = getblk(dev, rablkno);
163 		if (rabp->b_flags & B_DONE) {
164 			brelse(rabp);
165 #ifdef	EPAWNJ
166 			trace(TR_BREAD|TR_HIT|TR_RA, dev, blkno);
167 #endif
168 		} else {
169 			rabp->b_flags |= B_READ|B_ASYNC;
170 			rabp->b_bcount = BSIZE;
171 			(*bdevsw[major(dev)].d_strategy)(rabp);
172 #ifdef	EPAWNJ
173 			trace(TR_BREAD|TR_MISS|TR_RA, dev, rablock);
174 #endif
175 #ifdef	DISKMON
176 			io_info.nreada++;
177 #endif
178 			u.u_vm.vm_inblk++;		/* pay in advance */
179 		}
180 	}
181 	if(bp == NULL)
182 		return(bread(dev, blkno));
183 	iowait(bp);
184 	return(bp);
185 }
186 
187 /*
188  * Write the buffer, waiting for completion.
189  * Then release the buffer.
190  */
191 bwrite(bp)
192 register struct buf *bp;
193 {
194 	register flag;
195 
196 	flag = bp->b_flags;
197 	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI | B_AGE);
198 	bp->b_bcount = BSIZE;
199 #ifdef	DISKMON
200 	io_info.nwrite++;
201 #endif
202 	if ((flag&B_DELWRI) == 0)
203 		u.u_vm.vm_oublk++;		/* noone paid yet */
204 #ifdef	EPAWNJ
205 	trace(TR_BWRITE, bp->b_dev, dbtofsb(bp->b_blkno));
206 #endif
207 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
208 	if ((flag&B_ASYNC) == 0) {
209 		iowait(bp);
210 		brelse(bp);
211 	} else if (flag & B_DELWRI)
212 		bp->b_flags |= B_AGE;
213 	else
214 		geterror(bp);
215 }
216 
217 /*
218  * Release the buffer, marking it so that if it is grabbed
219  * for another purpose it will be written out before being
220  * given up (e.g. when writing a partial block where it is
221  * assumed that another write for the same block will soon follow).
222  * This can't be done for magtape, since writes must be done
223  * in the same order as requested.
224  */
225 bdwrite(bp)
226 register struct buf *bp;
227 {
228 	register int flags;
229 
230 	if ((bp->b_flags&B_DELWRI) == 0)
231 		u.u_vm.vm_oublk++;		/* noone paid yet */
232 	flags = bdevsw[major(bp->b_dev)].d_flags;
233 	if(flags & B_TAPE)
234 		bawrite(bp);
235 	else {
236 		bp->b_flags |= B_DELWRI | B_DONE;
237 		brelse(bp);
238 	}
239 }
240 
241 /*
242  * Release the buffer, start I/O on it, but don't wait for completion.
243  */
244 bawrite(bp)
245 register struct buf *bp;
246 {
247 
248 	bp->b_flags |= B_ASYNC;
249 	bwrite(bp);
250 }
251 
252 /*
253  * release the buffer, with no I/O implied.
254  */
255 brelse(bp)
256 register struct buf *bp;
257 {
258 	register struct buf *flist;
259 	register s;
260 
261 	if (bp->b_flags&B_WANTED)
262 		wakeup((caddr_t)bp);
263 	if (bfreelist[0].b_flags&B_WANTED) {
264 		bfreelist[0].b_flags &= ~B_WANTED;
265 		wakeup((caddr_t)bfreelist);
266 	}
267 	if (bp->b_flags&B_ERROR)
268 		if (bp->b_flags & B_LOCKED)
269 			bp->b_flags &= ~B_ERROR;	/* try again later */
270 		else
271 			bp->b_dev = NODEV;  		/* no assoc */
272 	s = spl6();
273 	if (bp->b_flags & (B_ERROR|B_INVAL)) {
274 		/* block has no info ... put at front of most free list */
275 		flist = &bfreelist[BQUEUES-1];
276 		flist->av_forw->av_back = bp;
277 		bp->av_forw = flist->av_forw;
278 		flist->av_forw = bp;
279 		bp->av_back = flist;
280 	} else {
281 		if (bp->b_flags & B_LOCKED)
282 			flist = &bfreelist[BQ_LOCKED];
283 		else if (bp->b_flags & B_AGE)
284 			flist = &bfreelist[BQ_AGE];
285 		else
286 			flist = &bfreelist[BQ_LRU];
287 		flist->av_back->av_forw = bp;
288 		bp->av_back = flist->av_back;
289 		flist->av_back = bp;
290 		bp->av_forw = flist;
291 	}
292 	bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE);
293 	splx(s);
294 }
295 
296 /*
297  * See if the block is associated with some buffer
298  * (mainly to avoid getting hung up on a wait in breada)
299  */
300 incore(dev, blkno)
301 dev_t dev;
302 daddr_t blkno;
303 {
304 	register struct buf *bp;
305 	register struct buf *dp;
306 	register int dblkno = fsbtodb(blkno);
307 
308 	dp = BUFHASH(dev, dblkno);
309 	for (bp = dp->b_forw; bp != dp; bp = bp->b_forw)
310 		if (bp->b_blkno == dblkno && bp->b_dev == dev &&
311 		    !(bp->b_flags & B_INVAL))
312 			return (1);
313 	return (0);
314 }
315 
316 struct buf *
317 baddr(dev, blkno)
318 dev_t dev;
319 daddr_t blkno;
320 {
321 
322 	if (incore(dev, blkno))
323 		return (bread(dev, blkno));
324 	return (0);
325 }
326 
327 /*
328  * Assign a buffer for the given block.  If the appropriate
329  * block is already associated, return it; otherwise search
330  * for the oldest non-busy buffer and reassign it.
331  */
332 struct buf *
333 getblk(dev, blkno)
334 dev_t dev;
335 daddr_t blkno;
336 {
337 	register struct buf *bp, *dp, *ep;
338 	register int dblkno = fsbtodb(blkno);
339 #ifdef	DISKMON
340 	register int i;
341 #endif
342 
343 	if ((unsigned)blkno >= 1 << (sizeof(int)*NBBY-PGSHIFT))
344 		blkno = 1 << ((sizeof(int)*NBBY-PGSHIFT) + 1);
345 	dblkno = fsbtodb(blkno);
346 	dp = BUFHASH(dev, dblkno);
347     loop:
348 	(void) spl0();
349 	for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) {
350 		if (bp->b_blkno != dblkno || bp->b_dev != dev ||
351 		    bp->b_flags&B_INVAL)
352 			continue;
353 		(void) spl6();
354 		if (bp->b_flags&B_BUSY) {
355 			bp->b_flags |= B_WANTED;
356 			sleep((caddr_t)bp, PRIBIO+1);
357 			goto loop;
358 		}
359 		(void) spl0();
360 #ifdef	DISKMON
361 		i = 0;
362 		dp = bp->av_forw;
363 		while ((dp->b_flags & B_HEAD) == 0) {
364 			i++;
365 			dp = dp->av_forw;
366 		}
367 		if (i<64)
368 			io_info.bufcount[i]++;
369 #endif
370 		notavail(bp);
371 		bp->b_flags |= B_CACHE;
372 		return(bp);
373 	}
374 	if (major(dev) >= nblkdev)
375 		panic("blkdev");
376 	(void) spl6();
377 	for (ep = &bfreelist[BQUEUES-1]; ep > bfreelist; ep--)
378 		if (ep->av_forw != ep)
379 			break;
380 	if (ep == bfreelist) {		/* no free blocks at all */
381 		ep->b_flags |= B_WANTED;
382 		sleep((caddr_t)ep, PRIBIO+1);
383 		goto loop;
384 	}
385 	(void) spl0();
386 	bp = ep->av_forw;
387 	notavail(bp);
388 	if (bp->b_flags & B_DELWRI) {
389 		bp->b_flags |= B_ASYNC;
390 		bwrite(bp);
391 		goto loop;
392 	}
393 #ifdef EPAWNJ
394 	trace(TR_BRELSE, bp->b_dev, dbtofsb(bp->b_blkno));
395 #endif
396 	bp->b_flags = B_BUSY;
397 	bp->b_back->b_forw = bp->b_forw;
398 	bp->b_forw->b_back = bp->b_back;
399 	bp->b_forw = dp->b_forw;
400 	bp->b_back = dp;
401 	dp->b_forw->b_back = bp;
402 	dp->b_forw = bp;
403 	bp->b_dev = dev;
404 	bp->b_blkno = dblkno;
405 	return(bp);
406 }
407 
408 /*
409  * get an empty block,
410  * not assigned to any particular device
411  */
412 struct buf *
413 geteblk()
414 {
415 	register struct buf *bp, *dp;
416 
417 loop:
418 	(void) spl6();
419 	for (dp = &bfreelist[BQUEUES-1]; dp > bfreelist; dp--)
420 		if (dp->av_forw != dp)
421 			break;
422 	if (dp == bfreelist) {		/* no free blocks */
423 		dp->b_flags |= B_WANTED;
424 		sleep((caddr_t)dp, PRIBIO+1);
425 		goto loop;
426 	}
427 	(void) spl0();
428 	bp = dp->av_forw;
429 	notavail(bp);
430 	if (bp->b_flags & B_DELWRI) {
431 		bp->b_flags |= B_ASYNC;
432 		bwrite(bp);
433 		goto loop;
434 	}
435 #ifdef EPAWNJ
436 	trace(TR_BRELSE, bp->b_dev, dbtofsb(bp->b_blkno));
437 #endif
438 	bp->b_flags = B_BUSY|B_INVAL;
439 	bp->b_back->b_forw = bp->b_forw;
440 	bp->b_forw->b_back = bp->b_back;
441 	bp->b_forw = dp->b_forw;
442 	bp->b_back = dp;
443 	dp->b_forw->b_back = bp;
444 	dp->b_forw = bp;
445 	bp->b_dev = (dev_t)NODEV;
446 	return(bp);
447 }
448 
449 /*
450  * Wait for I/O completion on the buffer; return errors
451  * to the user.
452  */
453 iowait(bp)
454 register struct buf *bp;
455 {
456 
457 	(void) spl6();
458 	while ((bp->b_flags&B_DONE)==0)
459 		sleep((caddr_t)bp, PRIBIO);
460 	(void) spl0();
461 	geterror(bp);
462 }
463 
464 #ifdef UNFAST
465 /*
466  * Unlink a buffer from the available list and mark it busy.
467  * (internal interface)
468  */
469 notavail(bp)
470 register struct buf *bp;
471 {
472 	register s;
473 
474 	s = spl6();
475 	bp->av_back->av_forw = bp->av_forw;
476 	bp->av_forw->av_back = bp->av_back;
477 	bp->b_flags |= B_BUSY;
478 	splx(s);
479 }
480 #endif
481 
482 /*
483  * Mark I/O complete on a buffer. If the header
484  * indicates a dirty page push completion, the
485  * header is inserted into the ``cleaned'' list
486  * to be processed by the pageout daemon. Otherwise
487  * release it if I/O is asynchronous, and wake
488  * up anyone waiting for it.
489  */
490 iodone(bp)
491 register struct buf *bp;
492 {
493 	register int s;
494 
495 	if (bp->b_flags & B_DONE)
496 		panic("dup iodone");
497 	bp->b_flags |= B_DONE;
498 	if (bp->b_flags & B_DIRTY) {
499 		if (bp->b_flags & B_ERROR)
500 			panic("IO err in push");
501 		s = spl6();
502 		cnt.v_pgout++;
503 		bp->av_forw = bclnlist;
504 		bp->b_bcount = swsize[bp - swbuf];
505 		bp->b_pfcent = swpf[bp - swbuf];
506 		bclnlist = bp;
507 		if (bswlist.b_flags & B_WANTED)
508 			wakeup((caddr_t)&proc[2]);
509 		splx(s);
510 		return;
511 	}
512 	if (bp->b_flags&B_ASYNC)
513 		brelse(bp);
514 	else {
515 		bp->b_flags &= ~B_WANTED;
516 		wakeup((caddr_t)bp);
517 	}
518 }
519 
520 /*
521  * Zero the core associated with a buffer.
522  */
523 clrbuf(bp)
524 struct buf *bp;
525 {
526 	register *p;
527 	register c;
528 
529 	p = bp->b_un.b_words;
530 	c = BSIZE/sizeof(int);
531 	do
532 		*p++ = 0;
533 	while (--c);
534 	bp->b_resid = 0;
535 }
536 
537 /*
538  * swap I/O -
539  *
540  * If the flag indicates a dirty page push initiated
541  * by the pageout daemon, we map the page into the i th
542  * virtual page of process 2 (the daemon itself) where i is
543  * the index of the swap header that has been allocated.
544  * We simply initialize the header and queue the I/O but
545  * do not wait for completion. When the I/O completes,
546  * iodone() will link the header to a list of cleaned
547  * pages to be processed by the pageout daemon.
548  */
549 swap(p, dblkno, addr, nbytes, rdflg, flag, dev, pfcent)
550 	struct proc *p;
551 	swblk_t dblkno;
552 	caddr_t addr;
553 	int flag, nbytes;
554 	dev_t dev;
555 	unsigned pfcent;
556 {
557 	register struct buf *bp;
558 	register int c;
559 	int p2dp;
560 	register struct pte *dpte, *vpte;
561 
562 	(void) spl6();
563 	while (bswlist.av_forw == NULL) {
564 		bswlist.b_flags |= B_WANTED;
565 		sleep((caddr_t)&bswlist, PSWP+1);
566 	}
567 	bp = bswlist.av_forw;
568 	bswlist.av_forw = bp->av_forw;
569 	(void) spl0();
570 
571 	bp->b_flags = B_BUSY | B_PHYS | rdflg | flag;
572 	if ((bp->b_flags & (B_DIRTY|B_PGIN)) == 0)
573 		if (rdflg == B_READ)
574 			sum.v_pswpin += btoc(nbytes);
575 		else
576 			sum.v_pswpout += btoc(nbytes);
577 	bp->b_proc = p;
578 	if (flag & B_DIRTY) {
579 		p2dp = ((bp - swbuf) * CLSIZE) * KLMAX;
580 		dpte = dptopte(&proc[2], p2dp);
581 		vpte = vtopte(p, btop(addr));
582 		for (c = 0; c < nbytes; c += NBPG) {
583 			if (vpte->pg_pfnum == 0 || vpte->pg_fod)
584 				panic("swap bad pte");
585 			*dpte++ = *vpte++;
586 		}
587 		bp->b_un.b_addr = (caddr_t)ctob(p2dp);
588 	} else
589 		bp->b_un.b_addr = addr;
590 	while (nbytes > 0) {
591 		c = imin(ctob(120), nbytes);
592 		bp->b_bcount = c;
593 		bp->b_blkno = dblkno;
594 		bp->b_dev = dev;
595 		if (flag & B_DIRTY) {
596 			swpf[bp - swbuf] = pfcent;
597 			swsize[bp - swbuf] = nbytes;
598 		}
599 		(*bdevsw[major(dev)].d_strategy)(bp);
600 		if (flag & B_DIRTY) {
601 			if (c < nbytes)
602 				panic("big push");
603 			return;
604 		}
605 		(void) spl6();
606 		while((bp->b_flags&B_DONE)==0)
607 			sleep((caddr_t)bp, PSWP);
608 		(void) spl0();
609 		bp->b_un.b_addr += c;
610 		bp->b_flags &= ~B_DONE;
611 		if (bp->b_flags & B_ERROR) {
612 			if ((flag & (B_UAREA|B_PAGET)) || rdflg == B_WRITE)
613 				panic("hard IO err in swap");
614 			swkill(p, (char *)0);
615 		}
616 		nbytes -= c;
617 		dblkno += btoc(c);
618 	}
619 	(void) spl6();
620 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
621 	bp->av_forw = bswlist.av_forw;
622 	bswlist.av_forw = bp;
623 	if (bswlist.b_flags & B_WANTED) {
624 		bswlist.b_flags &= ~B_WANTED;
625 		wakeup((caddr_t)&bswlist);
626 		wakeup((caddr_t)&proc[2]);
627 	}
628 	(void) spl0();
629 }
630 
631 /*
632  * If rout == 0 then killed on swap error, else
633  * rout is the name of the routine where we ran out of
634  * swap space.
635  */
636 swkill(p, rout)
637 	struct proc *p;
638 	char *rout;
639 {
640 	char *mesg;
641 
642 	printf("pid %d: ", p->p_pid);
643 	if (rout)
644 		printf(mesg = "killed due to no swap space\n");
645 	else
646 		printf(mesg = "killed on swap error\n");
647 	uprintf("sorry, pid %d was %s", p->p_pid, mesg);
648 	/*
649 	 * To be sure no looping (e.g. in vmsched trying to
650 	 * swap out) mark process locked in core (as though
651 	 * done by user) after killing it so noone will try
652 	 * to swap it out.
653 	 */
654 	psignal(p, SIGKILL);
655 	p->p_flag |= SULOCK;
656 }
657 
658 /*
659  * make sure all write-behind blocks
660  * on dev (or NODEV for all)
661  * are flushed out.
662  * (from umount and update)
663  */
664 bflush(dev)
665 dev_t dev;
666 {
667 	register struct buf *bp;
668 	register struct buf *flist;
669 
670 loop:
671 	(void) spl6();
672 	for (flist = bfreelist; flist < &bfreelist[BQUEUES]; flist++)
673 	for (bp = flist->av_forw; bp != flist; bp = bp->av_forw) {
674 		if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) {
675 			bp->b_flags |= B_ASYNC;
676 			notavail(bp);
677 			bwrite(bp);
678 			goto loop;
679 		}
680 	}
681 	(void) spl0();
682 }
683 
684 /*
685  * Raw I/O. The arguments are
686  *	The strategy routine for the device
687  *	A buffer, which will always be a special buffer
688  *	  header owned exclusively by the device for this purpose
689  *	The device number
690  *	Read/write flag
691  * Essentially all the work is computing physical addresses and
692  * validating them.
693  * If the user has the proper access privilidges, the process is
694  * marked 'delayed unlock' and the pages involved in the I/O are
695  * faulted and locked. After the completion of the I/O, the above pages
696  * are unlocked.
697  */
698 physio(strat, bp, dev, rw, mincnt)
699 int (*strat)();
700 register struct buf *bp;
701 unsigned (*mincnt)();
702 {
703 	register int c;
704 	char *a;
705 
706 	if (useracc(u.u_base,u.u_count,rw==B_READ?B_WRITE:B_READ) == NULL) {
707 		u.u_error = EFAULT;
708 		return;
709 	}
710 	(void) spl6();
711 	while (bp->b_flags&B_BUSY) {
712 		bp->b_flags |= B_WANTED;
713 		sleep((caddr_t)bp, PRIBIO+1);
714 	}
715 	bp->b_error = 0;
716 	bp->b_proc = u.u_procp;
717 	bp->b_un.b_addr = u.u_base;
718 	while (u.u_count != 0 && bp->b_error==0) {
719 		bp->b_flags = B_BUSY | B_PHYS | rw;
720 		bp->b_dev = dev;
721 		bp->b_blkno = u.u_offset >> PGSHIFT;
722 		bp->b_bcount = u.u_count;
723 		(*mincnt)(bp);
724 		c = bp->b_bcount;
725 		u.u_procp->p_flag |= SPHYSIO;
726 		vslock(a = bp->b_un.b_addr, c);
727 		(*strat)(bp);
728 		(void) spl6();
729 		while ((bp->b_flags&B_DONE) == 0)
730 			sleep((caddr_t)bp, PRIBIO);
731 		vsunlock(a, c, rw);
732 		u.u_procp->p_flag &= ~SPHYSIO;
733 		if (bp->b_flags&B_WANTED)
734 			wakeup((caddr_t)bp);
735 		(void) spl0();
736 		bp->b_un.b_addr += c;
737 		u.u_count -= c;
738 		u.u_offset += c;
739 	}
740 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS);
741 	u.u_count = bp->b_resid;
742 	geterror(bp);
743 }
744 
745 /*ARGSUSED*/
746 unsigned
747 minphys(bp)
748 struct buf *bp;
749 {
750 
751 	if (bp->b_bcount > 60 * 1024)
752 		bp->b_bcount = 60 * 1024;
753 }
754 
755 /*
756  * Pick up the device's error number and pass it to the user;
757  * if there is an error but the number is 0 set a generalized
758  * code.  Actually the latter is always true because devices
759  * don't yet return specific errors.
760  */
761 geterror(bp)
762 register struct buf *bp;
763 {
764 
765 	if (bp->b_flags&B_ERROR)
766 		if ((u.u_error = bp->b_error)==0)
767 			u.u_error = EIO;
768 }
769 
770 /*
771  * Invalidate in core blocks belonging to closed or umounted filesystem
772  *
773  * This is not nicely done at all - the buffer ought to be removed from the
774  * hash chains & have its dev/blkno fields clobbered, but unfortunately we
775  * can't do that here, as it is quite possible that the block is still
776  * being used for i/o. Eventually, all disc drivers should be forced to
777  * have a close routine, which ought ensure that the queue is empty, then
778  * properly flush the queues. Until that happy day, this suffices for
779  * correctness.						... kre
780  */
781 binval(dev)
782 dev_t dev;
783 {
784 	register struct buf *bp;
785 	register struct bufhd *hp;
786 #define dp ((struct buf *)hp)
787 
788 	for (hp = bufhash; hp < &bufhash[BUFHSZ]; hp++)
789 		for (bp = dp->b_forw; bp != dp; bp = bp->b_forw)
790 			if (bp->b_dev == dev)
791 				bp->b_flags |= B_INVAL;
792 }
793