xref: /original-bsd/sys/miscfs/union/union_subr.c (revision cf2e4d33)
1 /*
2  * Copyright (c) 1994 Jan-Simon Pendry
3  * Copyright (c) 1994
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Jan-Simon Pendry.
8  *
9  * %sccs.include.redist.c%
10  *
11  *	@(#)union_subr.c	8.12 (Berkeley) 07/28/94
12  */
13 
14 #include <sys/param.h>
15 #include <sys/systm.h>
16 #include <sys/time.h>
17 #include <sys/kernel.h>
18 #include <sys/vnode.h>
19 #include <sys/namei.h>
20 #include <sys/malloc.h>
21 #include <sys/file.h>
22 #include <sys/filedesc.h>
23 #include <sys/queue.h>
24 #include <sys/mount.h>
25 #include <vm/vm.h>		/* for vnode_pager_setsize */
26 #include <miscfs/union/union.h>
27 
28 #ifdef DIAGNOSTIC
29 #include <sys/proc.h>
30 #endif
31 
32 /* must be power of two, otherwise change UNION_HASH() */
33 #define NHASH 32
34 
35 /* unsigned int ... */
36 #define UNION_HASH(u, l) \
37 	(((((unsigned long) (u)) + ((unsigned long) l)) >> 8) & (NHASH-1))
38 
39 static LIST_HEAD(unhead, union_node) unhead[NHASH];
40 static int unvplock[NHASH];
41 
42 int
43 union_init()
44 {
45 	int i;
46 
47 	for (i = 0; i < NHASH; i++)
48 		LIST_INIT(&unhead[i]);
49 	bzero((caddr_t) unvplock, sizeof(unvplock));
50 }
51 
52 static int
53 union_list_lock(ix)
54 	int ix;
55 {
56 
57 	if (unvplock[ix] & UN_LOCKED) {
58 		unvplock[ix] |= UN_WANT;
59 		sleep((caddr_t) &unvplock[ix], PINOD);
60 		return (1);
61 	}
62 
63 	unvplock[ix] |= UN_LOCKED;
64 
65 	return (0);
66 }
67 
68 static void
69 union_list_unlock(ix)
70 	int ix;
71 {
72 
73 	unvplock[ix] &= ~UN_LOCKED;
74 
75 	if (unvplock[ix] & UN_WANT) {
76 		unvplock[ix] &= ~UN_WANT;
77 		wakeup((caddr_t) &unvplock[ix]);
78 	}
79 }
80 
81 void
82 union_updatevp(un, uppervp, lowervp)
83 	struct union_node *un;
84 	struct vnode *uppervp;
85 	struct vnode *lowervp;
86 {
87 	int ohash = UNION_HASH(un->un_uppervp, un->un_lowervp);
88 	int nhash = UNION_HASH(uppervp, lowervp);
89 	int docache = (lowervp != NULLVP || uppervp != NULLVP);
90 
91 	/*
92 	 * Ensure locking is ordered from lower to higher
93 	 * to avoid deadlocks.
94 	 */
95 	if (nhash < ohash) {
96 		int t = ohash;
97 		ohash = nhash;
98 		nhash = t;
99 	}
100 
101 	if (ohash != nhash)
102 		while (union_list_lock(ohash))
103 			continue;
104 
105 	while (union_list_lock(nhash))
106 		continue;
107 
108 	if (ohash != nhash || !docache) {
109 		if (un->un_flags & UN_CACHED) {
110 			un->un_flags &= ~UN_CACHED;
111 			LIST_REMOVE(un, un_cache);
112 		}
113 	}
114 
115 	if (ohash != nhash)
116 		union_list_unlock(ohash);
117 
118 	if (un->un_lowervp != lowervp) {
119 		if (un->un_lowervp) {
120 			vrele(un->un_lowervp);
121 			if (un->un_path) {
122 				free(un->un_path, M_TEMP);
123 				un->un_path = 0;
124 			}
125 			if (un->un_dirvp) {
126 				vrele(un->un_dirvp);
127 				un->un_dirvp = NULLVP;
128 			}
129 		}
130 		un->un_lowervp = lowervp;
131 		un->un_lowersz = VNOVAL;
132 	}
133 
134 	if (un->un_uppervp != uppervp) {
135 		if (un->un_uppervp)
136 			vrele(un->un_uppervp);
137 
138 		un->un_uppervp = uppervp;
139 		un->un_uppersz = VNOVAL;
140 	}
141 
142 	if (docache && (ohash != nhash)) {
143 		LIST_INSERT_HEAD(&unhead[nhash], un, un_cache);
144 		un->un_flags |= UN_CACHED;
145 	}
146 
147 	union_list_unlock(nhash);
148 }
149 
150 void
151 union_newlower(un, lowervp)
152 	struct union_node *un;
153 	struct vnode *lowervp;
154 {
155 
156 	union_updatevp(un, un->un_uppervp, lowervp);
157 }
158 
159 void
160 union_newupper(un, uppervp)
161 	struct union_node *un;
162 	struct vnode *uppervp;
163 {
164 
165 	union_updatevp(un, uppervp, un->un_lowervp);
166 }
167 
168 /*
169  * Keep track of size changes in the underlying vnodes.
170  * If the size changes, then callback to the vm layer
171  * giving priority to the upper layer size.
172  */
173 void
174 union_newsize(vp, uppersz, lowersz)
175 	struct vnode *vp;
176 	off_t uppersz, lowersz;
177 {
178 	struct union_node *un;
179 	off_t sz;
180 
181 	/* only interested in regular files */
182 	if (vp->v_type != VREG)
183 		return;
184 
185 	un = VTOUNION(vp);
186 	sz = VNOVAL;
187 
188 	if ((uppersz != VNOVAL) && (un->un_uppersz != uppersz)) {
189 		un->un_uppersz = uppersz;
190 		if (sz == VNOVAL)
191 			sz = un->un_uppersz;
192 	}
193 
194 	if ((lowersz != VNOVAL) && (un->un_lowersz != lowersz)) {
195 		un->un_lowersz = lowersz;
196 		if (sz == VNOVAL)
197 			sz = un->un_lowersz;
198 	}
199 
200 	if (sz != VNOVAL) {
201 #ifdef UNION_DIAGNOSTIC
202 		printf("union: %s size now %ld\n",
203 			uppersz != VNOVAL ? "upper" : "lower", (long) sz);
204 #endif
205 		vnode_pager_setsize(vp, sz);
206 	}
207 }
208 
209 /*
210  * allocate a union_node/vnode pair.  the vnode is
211  * referenced and locked.  the new vnode is returned
212  * via (vpp).  (mp) is the mountpoint of the union filesystem,
213  * (dvp) is the parent directory where the upper layer object
214  * should exist (but doesn't) and (cnp) is the componentname
215  * information which is partially copied to allow the upper
216  * layer object to be created at a later time.  (uppervp)
217  * and (lowervp) reference the upper and lower layer objects
218  * being mapped.  either, but not both, can be nil.
219  * if supplied, (uppervp) is locked.
220  * the reference is either maintained in the new union_node
221  * object which is allocated, or they are vrele'd.
222  *
223  * all union_nodes are maintained on a singly-linked
224  * list.  new nodes are only allocated when they cannot
225  * be found on this list.  entries on the list are
226  * removed when the vfs reclaim entry is called.
227  *
228  * a single lock is kept for the entire list.  this is
229  * needed because the getnewvnode() function can block
230  * waiting for a vnode to become free, in which case there
231  * may be more than one process trying to get the same
232  * vnode.  this lock is only taken if we are going to
233  * call getnewvnode, since the kernel itself is single-threaded.
234  *
235  * if an entry is found on the list, then call vget() to
236  * take a reference.  this is done because there may be
237  * zero references to it and so it needs to removed from
238  * the vnode free list.
239  */
240 int
241 union_allocvp(vpp, mp, undvp, dvp, cnp, uppervp, lowervp)
242 	struct vnode **vpp;
243 	struct mount *mp;
244 	struct vnode *undvp;		/* parent union vnode */
245 	struct vnode *dvp;		/* may be null */
246 	struct componentname *cnp;	/* may be null */
247 	struct vnode *uppervp;		/* may be null */
248 	struct vnode *lowervp;		/* may be null */
249 {
250 	int error;
251 	struct union_node *un;
252 	struct union_node **pp;
253 	struct vnode *xlowervp = NULLVP;
254 	struct union_mount *um = MOUNTTOUNIONMOUNT(mp);
255 	int hash;
256 	int vflag;
257 	int try;
258 
259 	if (uppervp == NULLVP && lowervp == NULLVP)
260 		panic("union: unidentifiable allocation");
261 
262 	if (uppervp && lowervp && (uppervp->v_type != lowervp->v_type)) {
263 		xlowervp = lowervp;
264 		lowervp = NULLVP;
265 	}
266 
267 	/* detect the root vnode (and aliases) */
268 	vflag = 0;
269 	if ((uppervp == um->um_uppervp) &&
270 	    ((lowervp == NULLVP) || lowervp == um->um_lowervp)) {
271 		if (lowervp == NULLVP) {
272 			lowervp = um->um_lowervp;
273 			if (lowervp != NULLVP)
274 				VREF(lowervp);
275 		}
276 		vflag = VROOT;
277 	}
278 
279 loop:
280 	for (try = 0; try < 3; try++) {
281 		switch (try) {
282 		case 0:
283 			if (lowervp == NULLVP)
284 				continue;
285 			hash = UNION_HASH(uppervp, lowervp);
286 			break;
287 
288 		case 1:
289 			if (uppervp == NULLVP)
290 				continue;
291 			hash = UNION_HASH(uppervp, NULLVP);
292 			break;
293 
294 		case 2:
295 			if (lowervp == NULLVP)
296 				continue;
297 			hash = UNION_HASH(NULLVP, lowervp);
298 			break;
299 		}
300 
301 		while (union_list_lock(hash))
302 			continue;
303 
304 		for (un = unhead[hash].lh_first; un != 0;
305 					un = un->un_cache.le_next) {
306 			if ((un->un_lowervp == lowervp ||
307 			     un->un_lowervp == NULLVP) &&
308 			    (un->un_uppervp == uppervp ||
309 			     un->un_uppervp == NULLVP) &&
310 			    (UNIONTOV(un)->v_mount == mp)) {
311 				if (vget(UNIONTOV(un), 0)) {
312 					union_list_unlock(hash);
313 					goto loop;
314 				}
315 				break;
316 			}
317 		}
318 
319 		union_list_unlock(hash);
320 
321 		if (un)
322 			break;
323 	}
324 
325 	if (un) {
326 		/*
327 		 * Obtain a lock on the union_node.
328 		 * uppervp is locked, though un->un_uppervp
329 		 * may not be.  this doesn't break the locking
330 		 * hierarchy since in the case that un->un_uppervp
331 		 * is not yet locked it will be vrele'd and replaced
332 		 * with uppervp.
333 		 */
334 
335 		if ((dvp != NULLVP) && (uppervp == dvp)) {
336 			/*
337 			 * Access ``.'', so (un) will already
338 			 * be locked.  Since this process has
339 			 * the lock on (uppervp) no other
340 			 * process can hold the lock on (un).
341 			 */
342 #ifdef DIAGNOSTIC
343 			if ((un->un_flags & UN_LOCKED) == 0)
344 				panic("union: . not locked");
345 			else if (curproc && un->un_pid != curproc->p_pid &&
346 				    un->un_pid > -1 && curproc->p_pid > -1)
347 				panic("union: allocvp not lock owner");
348 #endif
349 		} else {
350 			if (un->un_flags & UN_LOCKED) {
351 				vrele(UNIONTOV(un));
352 				un->un_flags |= UN_WANT;
353 				sleep((caddr_t) &un->un_flags, PINOD);
354 				goto loop;
355 			}
356 			un->un_flags |= UN_LOCKED;
357 
358 #ifdef DIAGNOSTIC
359 			if (curproc)
360 				un->un_pid = curproc->p_pid;
361 			else
362 				un->un_pid = -1;
363 #endif
364 		}
365 
366 		/*
367 		 * At this point, the union_node is locked,
368 		 * un->un_uppervp may not be locked, and uppervp
369 		 * is locked or nil.
370 		 */
371 
372 		/*
373 		 * Save information about the upper layer.
374 		 */
375 		if (uppervp != un->un_uppervp) {
376 			union_newupper(un, uppervp);
377 		} else if (uppervp) {
378 			vrele(uppervp);
379 		}
380 
381 		if (un->un_uppervp) {
382 			un->un_flags |= UN_ULOCK;
383 			un->un_flags &= ~UN_KLOCK;
384 		}
385 
386 		/*
387 		 * Save information about the lower layer.
388 		 * This needs to keep track of pathname
389 		 * and directory information which union_vn_create
390 		 * might need.
391 		 */
392 		if (lowervp != un->un_lowervp) {
393 			union_newlower(un, lowervp);
394 			if (cnp && (lowervp != NULLVP)) {
395 				un->un_hash = cnp->cn_hash;
396 				un->un_path = malloc(cnp->cn_namelen+1,
397 						M_TEMP, M_WAITOK);
398 				bcopy(cnp->cn_nameptr, un->un_path,
399 						cnp->cn_namelen);
400 				un->un_path[cnp->cn_namelen] = '\0';
401 				VREF(dvp);
402 				un->un_dirvp = dvp;
403 			}
404 		} else if (lowervp) {
405 			vrele(lowervp);
406 		}
407 		*vpp = UNIONTOV(un);
408 		return (0);
409 	}
410 
411 	/*
412 	 * otherwise lock the vp list while we call getnewvnode
413 	 * since that can block.
414 	 */
415 	hash = UNION_HASH(uppervp, lowervp);
416 
417 	if (union_list_lock(hash))
418 		goto loop;
419 
420 	error = getnewvnode(VT_UNION, mp, union_vnodeop_p, vpp);
421 	if (error) {
422 		if (uppervp) {
423 			if (dvp == uppervp)
424 				vrele(uppervp);
425 			else
426 				vput(uppervp);
427 		}
428 		if (lowervp)
429 			vrele(lowervp);
430 
431 		goto out;
432 	}
433 
434 	MALLOC((*vpp)->v_data, void *, sizeof(struct union_node),
435 		M_TEMP, M_WAITOK);
436 
437 	(*vpp)->v_flag |= vflag;
438 	if (uppervp)
439 		(*vpp)->v_type = uppervp->v_type;
440 	else
441 		(*vpp)->v_type = lowervp->v_type;
442 	un = VTOUNION(*vpp);
443 	un->un_vnode = *vpp;
444 	un->un_uppervp = uppervp;
445 	un->un_uppersz = VNOVAL;
446 	un->un_lowervp = lowervp;
447 	un->un_lowersz = VNOVAL;
448 	un->un_pvp = undvp;
449 	if (undvp != NULLVP)
450 		VREF(undvp);
451 	un->un_openl = 0;
452 	un->un_flags = UN_LOCKED;
453 	if (un->un_uppervp)
454 		un->un_flags |= UN_ULOCK;
455 #ifdef DIAGNOSTIC
456 	if (curproc)
457 		un->un_pid = curproc->p_pid;
458 	else
459 		un->un_pid = -1;
460 #endif
461 	if (cnp && (lowervp != NULLVP)) {
462 		un->un_hash = cnp->cn_hash;
463 		un->un_path = malloc(cnp->cn_namelen+1, M_TEMP, M_WAITOK);
464 		bcopy(cnp->cn_nameptr, un->un_path, cnp->cn_namelen);
465 		un->un_path[cnp->cn_namelen] = '\0';
466 		VREF(dvp);
467 		un->un_dirvp = dvp;
468 	} else {
469 		un->un_hash = 0;
470 		un->un_path = 0;
471 		un->un_dirvp = 0;
472 	}
473 
474 	LIST_INSERT_HEAD(&unhead[hash], un, un_cache);
475 	un->un_flags |= UN_CACHED;
476 
477 	if (xlowervp)
478 		vrele(xlowervp);
479 
480 out:
481 	union_list_unlock(hash);
482 
483 	return (error);
484 }
485 
486 int
487 union_freevp(vp)
488 	struct vnode *vp;
489 {
490 	struct union_node *un = VTOUNION(vp);
491 
492 	if (un->un_flags & UN_CACHED) {
493 		un->un_flags &= ~UN_CACHED;
494 		LIST_REMOVE(un, un_cache);
495 	}
496 
497 	if (un->un_pvp != NULLVP)
498 		vrele(un->un_pvp);
499 	if (un->un_uppervp != NULLVP)
500 		vrele(un->un_uppervp);
501 	if (un->un_lowervp != NULLVP)
502 		vrele(un->un_lowervp);
503 	if (un->un_dirvp != NULLVP)
504 		vrele(un->un_dirvp);
505 	if (un->un_path)
506 		free(un->un_path, M_TEMP);
507 
508 	FREE(vp->v_data, M_TEMP);
509 	vp->v_data = 0;
510 
511 	return (0);
512 }
513 
514 /*
515  * copyfile.  copy the vnode (fvp) to the vnode (tvp)
516  * using a sequence of reads and writes.  both (fvp)
517  * and (tvp) are locked on entry and exit.
518  */
519 int
520 union_copyfile(fvp, tvp, cred, p)
521 	struct vnode *fvp;
522 	struct vnode *tvp;
523 	struct ucred *cred;
524 	struct proc *p;
525 {
526 	char *buf;
527 	struct uio uio;
528 	struct iovec iov;
529 	int error = 0;
530 
531 	/*
532 	 * strategy:
533 	 * allocate a buffer of size MAXBSIZE.
534 	 * loop doing reads and writes, keeping track
535 	 * of the current uio offset.
536 	 * give up at the first sign of trouble.
537 	 */
538 
539 	uio.uio_procp = p;
540 	uio.uio_segflg = UIO_SYSSPACE;
541 	uio.uio_offset = 0;
542 
543 	VOP_UNLOCK(fvp);				/* XXX */
544 	LEASE_CHECK(fvp, p, cred, LEASE_READ);
545 	VOP_LOCK(fvp);					/* XXX */
546 	VOP_UNLOCK(tvp);				/* XXX */
547 	LEASE_CHECK(tvp, p, cred, LEASE_WRITE);
548 	VOP_LOCK(tvp);					/* XXX */
549 
550 	buf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
551 
552 	/* ugly loop follows... */
553 	do {
554 		off_t offset = uio.uio_offset;
555 
556 		uio.uio_iov = &iov;
557 		uio.uio_iovcnt = 1;
558 		iov.iov_base = buf;
559 		iov.iov_len = MAXBSIZE;
560 		uio.uio_resid = iov.iov_len;
561 		uio.uio_rw = UIO_READ;
562 		error = VOP_READ(fvp, &uio, 0, cred);
563 
564 		if (error == 0) {
565 			uio.uio_iov = &iov;
566 			uio.uio_iovcnt = 1;
567 			iov.iov_base = buf;
568 			iov.iov_len = MAXBSIZE - uio.uio_resid;
569 			uio.uio_offset = offset;
570 			uio.uio_rw = UIO_WRITE;
571 			uio.uio_resid = iov.iov_len;
572 
573 			if (uio.uio_resid == 0)
574 				break;
575 
576 			do {
577 				error = VOP_WRITE(tvp, &uio, 0, cred);
578 			} while ((uio.uio_resid > 0) && (error == 0));
579 		}
580 
581 	} while (error == 0);
582 
583 	free(buf, M_TEMP);
584 	return (error);
585 }
586 
587 /*
588  * (un) is assumed to be locked on entry and remains
589  * locked on exit.
590  */
591 int
592 union_copyup(un, docopy, cred, p)
593 	struct union_node *un;
594 	int docopy;
595 	struct ucred *cred;
596 	struct proc *p;
597 {
598 	int error;
599 	struct vnode *lvp, *uvp;
600 
601 	error = union_vn_create(&uvp, un, p);
602 	if (error)
603 		return (error);
604 
605 	/* at this point, uppervp is locked */
606 	union_newupper(un, uvp);
607 	un->un_flags |= UN_ULOCK;
608 
609 	lvp = un->un_lowervp;
610 
611 	if (docopy) {
612 		/*
613 		 * XX - should not ignore errors
614 		 * from VOP_CLOSE
615 		 */
616 		VOP_LOCK(lvp);
617 		error = VOP_OPEN(lvp, FREAD, cred, p);
618 		if (error == 0) {
619 			error = union_copyfile(lvp, uvp, cred, p);
620 			VOP_UNLOCK(lvp);
621 			(void) VOP_CLOSE(lvp, FREAD);
622 		}
623 #ifdef UNION_DIAGNOSTIC
624 		if (error == 0)
625 			uprintf("union: copied up %s\n", un->un_path);
626 #endif
627 
628 	}
629 	un->un_flags &= ~UN_ULOCK;
630 	VOP_UNLOCK(uvp);
631 	union_vn_close(uvp, FWRITE, cred, p);
632 	VOP_LOCK(uvp);
633 	un->un_flags |= UN_ULOCK;
634 
635 	/*
636 	 * Subsequent IOs will go to the top layer, so
637 	 * call close on the lower vnode and open on the
638 	 * upper vnode to ensure that the filesystem keeps
639 	 * its references counts right.  This doesn't do
640 	 * the right thing with (cred) and (FREAD) though.
641 	 * Ignoring error returns is not right, either.
642 	 */
643 	if (error == 0) {
644 		int i;
645 
646 		for (i = 0; i < un->un_openl; i++) {
647 			(void) VOP_CLOSE(lvp, FREAD);
648 			(void) VOP_OPEN(uvp, FREAD, cred, p);
649 		}
650 		un->un_openl = 0;
651 	}
652 
653 	return (error);
654 
655 }
656 
657 static int
658 union_relookup(um, dvp, vpp, cnp, cn, path)
659 	struct union_mount *um;
660 	struct vnode *dvp;
661 	struct vnode **vpp;
662 	struct componentname *cnp;
663 	struct componentname *cn;
664 	char *path;
665 {
666 	int error;
667 
668 	/*
669 	 * A new componentname structure must be faked up because
670 	 * there is no way to know where the upper level cnp came
671 	 * from or what it is being used for.  This must duplicate
672 	 * some of the work done by NDINIT, some of the work done
673 	 * by namei, some of the work done by lookup and some of
674 	 * the work done by VOP_LOOKUP when given a CREATE flag.
675 	 * Conclusion: Horrible.
676 	 *
677 	 * The pathname buffer will be FREEed by VOP_MKDIR.
678 	 */
679 	cn->cn_namelen = strlen(path);
680 	cn->cn_pnbuf = malloc(cn->cn_namelen+1, M_NAMEI, M_WAITOK);
681 	bcopy(path, cn->cn_pnbuf, cn->cn_namelen);
682 	cn->cn_pnbuf[cn->cn_namelen] = '\0';
683 
684 	cn->cn_nameiop = CREATE;
685 	cn->cn_flags = (LOCKPARENT|HASBUF|SAVENAME|SAVESTART|ISLASTCN);
686 	cn->cn_proc = cnp->cn_proc;
687 	if (um->um_op == UNMNT_ABOVE)
688 		cn->cn_cred = cnp->cn_cred;
689 	else
690 		cn->cn_cred = um->um_cred;
691 	cn->cn_nameptr = cn->cn_pnbuf;
692 	cn->cn_hash = cnp->cn_hash;
693 	cn->cn_consume = cnp->cn_consume;
694 
695 	VREF(dvp);
696 	error = relookup(dvp, vpp, cn);
697 	if (!error)
698 		vrele(dvp);
699 
700 	return (error);
701 }
702 
703 /*
704  * Create a shadow directory in the upper layer.
705  * The new vnode is returned locked.
706  *
707  * (um) points to the union mount structure for access to the
708  * the mounting process's credentials.
709  * (dvp) is the directory in which to create the shadow directory.
710  * it is unlocked on entry and exit.
711  * (cnp) is the componentname to be created.
712  * (vpp) is the returned newly created shadow directory, which
713  * is returned locked.
714  */
715 int
716 union_mkshadow(um, dvp, cnp, vpp)
717 	struct union_mount *um;
718 	struct vnode *dvp;
719 	struct componentname *cnp;
720 	struct vnode **vpp;
721 {
722 	int error;
723 	struct vattr va;
724 	struct proc *p = cnp->cn_proc;
725 	struct componentname cn;
726 
727 	error = union_relookup(um, dvp, vpp, cnp, &cn, cnp->cn_nameptr);
728 	if (error)
729 		return (error);
730 
731 	if (*vpp) {
732 		VOP_ABORTOP(dvp, &cn);
733 		VOP_UNLOCK(dvp);
734 		vrele(*vpp);
735 		*vpp = NULLVP;
736 		return (EEXIST);
737 	}
738 
739 	/*
740 	 * policy: when creating the shadow directory in the
741 	 * upper layer, create it owned by the user who did
742 	 * the mount, group from parent directory, and mode
743 	 * 777 modified by umask (ie mostly identical to the
744 	 * mkdir syscall).  (jsp, kb)
745 	 */
746 
747 	VATTR_NULL(&va);
748 	va.va_type = VDIR;
749 	va.va_mode = um->um_cmode;
750 
751 	/* LEASE_CHECK: dvp is locked */
752 	LEASE_CHECK(dvp, p, cn.cn_cred, LEASE_WRITE);
753 
754 	error = VOP_MKDIR(dvp, vpp, &cn, &va);
755 	return (error);
756 }
757 
758 /*
759  * Create a whiteout entry in the upper layer.
760  *
761  * (um) points to the union mount structure for access to the
762  * the mounting process's credentials.
763  * (dvp) is the directory in which to create the whiteout.
764  * it is locked on entry and exit.
765  * (cnp) is the componentname to be created.
766  */
767 int
768 union_mkwhiteout(um, dvp, cnp, path)
769 	struct union_mount *um;
770 	struct vnode *dvp;
771 	struct componentname *cnp;
772 	char *path;
773 {
774 	int error;
775 	struct vattr va;
776 	struct proc *p = cnp->cn_proc;
777 	struct vnode **vpp;
778 	struct componentname cn;
779 
780 	VOP_UNLOCK(dvp);
781 	error = union_relookup(um, dvp, vpp, cnp, &cn, path);
782 	if (error)
783 		return (error);
784 
785 	if (*vpp) {
786 		VOP_ABORTOP(dvp, &cn);
787 		vrele(dvp);
788 		vrele(*vpp);
789 		*vpp = NULLVP;
790 		return (EEXIST);
791 	}
792 
793 	/* LEASE_CHECK: dvp is locked */
794 	LEASE_CHECK(dvp, p, p->p_ucred, LEASE_WRITE);
795 
796 	error = VOP_WHITEOUT(dvp, &cn, CREATE);
797 	if (error != 0)
798 		VOP_ABORTOP(dvp, &cn);
799 
800 	vrele(dvp);
801 
802 	return (error);
803 }
804 
805 /*
806  * union_vn_create: creates and opens a new shadow file
807  * on the upper union layer.  this function is similar
808  * in spirit to calling vn_open but it avoids calling namei().
809  * the problem with calling namei is that a) it locks too many
810  * things, and b) it doesn't start at the "right" directory,
811  * whereas relookup is told where to start.
812  */
813 int
814 union_vn_create(vpp, un, p)
815 	struct vnode **vpp;
816 	struct union_node *un;
817 	struct proc *p;
818 {
819 	struct vnode *vp;
820 	struct ucred *cred = p->p_ucred;
821 	struct vattr vat;
822 	struct vattr *vap = &vat;
823 	int fmode = FFLAGS(O_WRONLY|O_CREAT|O_TRUNC|O_EXCL);
824 	int error;
825 	int cmode = UN_FILEMODE & ~p->p_fd->fd_cmask;
826 	char *cp;
827 	struct componentname cn;
828 
829 	*vpp = NULLVP;
830 
831 	/*
832 	 * Build a new componentname structure (for the same
833 	 * reasons outlines in union_mkshadow).
834 	 * The difference here is that the file is owned by
835 	 * the current user, rather than by the person who
836 	 * did the mount, since the current user needs to be
837 	 * able to write the file (that's why it is being
838 	 * copied in the first place).
839 	 */
840 	cn.cn_namelen = strlen(un->un_path);
841 	cn.cn_pnbuf = (caddr_t) malloc(cn.cn_namelen, M_NAMEI, M_WAITOK);
842 	bcopy(un->un_path, cn.cn_pnbuf, cn.cn_namelen+1);
843 	cn.cn_nameiop = CREATE;
844 	cn.cn_flags = (LOCKPARENT|HASBUF|SAVENAME|SAVESTART|ISLASTCN);
845 	cn.cn_proc = p;
846 	cn.cn_cred = p->p_ucred;
847 	cn.cn_nameptr = cn.cn_pnbuf;
848 	cn.cn_hash = un->un_hash;
849 	cn.cn_consume = 0;
850 
851 	VREF(un->un_dirvp);
852 	if (error = relookup(un->un_dirvp, &vp, &cn))
853 		return (error);
854 	vrele(un->un_dirvp);
855 
856 	if (vp) {
857 		VOP_ABORTOP(un->un_dirvp, &cn);
858 		if (un->un_dirvp == vp)
859 			vrele(un->un_dirvp);
860 		else
861 			vput(un->un_dirvp);
862 		vrele(vp);
863 		return (EEXIST);
864 	}
865 
866 	/*
867 	 * Good - there was no race to create the file
868 	 * so go ahead and create it.  The permissions
869 	 * on the file will be 0666 modified by the
870 	 * current user's umask.  Access to the file, while
871 	 * it is unioned, will require access to the top *and*
872 	 * bottom files.  Access when not unioned will simply
873 	 * require access to the top-level file.
874 	 * TODO: confirm choice of access permissions.
875 	 */
876 	VATTR_NULL(vap);
877 	vap->va_type = VREG;
878 	vap->va_mode = cmode;
879 	LEASE_CHECK(un->un_dirvp, p, cred, LEASE_WRITE);
880 	if (error = VOP_CREATE(un->un_dirvp, &vp, &cn, vap))
881 		return (error);
882 
883 	if (error = VOP_OPEN(vp, fmode, cred, p)) {
884 		vput(vp);
885 		return (error);
886 	}
887 
888 	vp->v_writecount++;
889 	*vpp = vp;
890 	return (0);
891 }
892 
893 int
894 union_vn_close(vp, fmode, cred, p)
895 	struct vnode *vp;
896 	int fmode;
897 	struct ucred *cred;
898 	struct proc *p;
899 {
900 
901 	if (fmode & FWRITE)
902 		--vp->v_writecount;
903 	return (VOP_CLOSE(vp, fmode));
904 }
905 
906 void
907 union_removed_upper(un)
908 	struct union_node *un;
909 {
910 
911 	if (un->un_flags & UN_ULOCK) {
912 		un->un_flags &= ~UN_ULOCK;
913 		VOP_UNLOCK(un->un_uppervp);
914 	}
915 
916 	if (un->un_flags & UN_CACHED) {
917 		un->un_flags &= ~UN_CACHED;
918 		LIST_REMOVE(un, un_cache);
919 	}
920 }
921 
922 struct vnode *
923 union_lowervp(vp)
924 	struct vnode *vp;
925 {
926 	struct union_node *un = VTOUNION(vp);
927 
928 	if ((un->un_lowervp != NULLVP) &&
929 	    (vp->v_type == un->un_lowervp->v_type)) {
930 		if (vget(un->un_lowervp, 0) == 0)
931 			return (un->un_lowervp);
932 	}
933 
934 	return (NULLVP);
935 }
936