xref: /original-bsd/sys/netccitt/if_x25subr.c (revision 4da674f5)
1 /*
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)if_x25subr.c	7.8 (Berkeley) 01/09/91
8  */
9 
10 #include "param.h"
11 #include "systm.h"
12 #include "malloc.h"
13 #include "mbuf.h"
14 #include "protosw.h"
15 #include "socket.h"
16 #include "socketvar.h"
17 #include "ioctl.h"
18 #include "errno.h"
19 #include "syslog.h"
20 
21 #include "../net/if.h"
22 #include "../net/if_types.h"
23 #include "../net/netisr.h"
24 #include "../net/route.h"
25 
26 #include "x25.h"
27 #include "x25err.h"
28 #include "pk.h"
29 #include "pk_var.h"
30 
31 #include "machine/mtpr.h"
32 
33 #ifdef INET
34 #include "../netinet/in.h"
35 #include "../netinet/in_var.h"
36 #endif
37 
38 #ifdef NS
39 #include "../netns/ns.h"
40 #include "../netns/ns_if.h"
41 #endif
42 
43 #ifdef ISO
44 #include "../netiso/argo_debug.h"
45 #include "../netiso/iso.h"
46 #include "../netiso/iso_var.h"
47 #endif
48 
49 extern	struct ifnet loif;
50 
51 #define senderr(x) {error = x; goto bad;}
52 /*
53  * X.25 output routine.
54  */
55 x25_ifoutput(ifp, m0, dst, rt)
56 struct	ifnet *ifp;
57 struct	mbuf *m0;
58 struct	sockaddr *dst;
59 register struct	rtentry *rt;
60 {
61 	register struct mbuf *m;
62 	register struct llinfo_x25 *lx;
63 	register struct pq *pq;
64 	struct pklcd *lcp;
65 	struct x25_ifaddr *ia;
66 	struct mbuf    *prev;
67 	int             s, error = 0, flags = 0, af;
68 
69 	if ((ifp->if_flags & IFF_UP) == 0)
70 		return (ENETDOWN);
71 	if (rt == 0 ||
72 	    ((rt->rt_flags & RTF_GATEWAY) && (dst = rt->rt_gateway))) {
73 		if ((rt = rtalloc1(dst, 1)) == 0)
74 			return (EHOSTUNREACH);
75 		rt->rt_refcnt++;
76 		flags = LXF_RTHELD;
77 	}
78 	/*
79 	 * Sanity checks.
80 	 */
81 	if ((rt->rt_ifp != ifp) ||
82 	    (rt->rt_flags & (RTF_CLONING | RTF_GATEWAY)) ||
83 	    ((lx = (struct llinfo_x25 *)rt->rt_llinfo) == 0)) {
84 		printf("Inconsistent call to x25_output, should panic\n");
85 		senderr(ENETUNREACH);
86 	}
87     {
88 	register struct ifaddr *ifa;
89 	for (ifa = ifp->if_addrlist; ; ifa = ifa->ifa_next) {
90 		if (ifa == 0)
91 			senderr(ENETDOWN);
92 		if (ifa->ifa_addr->sa_family == AF_CCITT)
93 			break;
94 	}
95 	ia = (struct x25_ifaddr *)ifa;
96     }
97 	switch (lx->lx_state) {
98 
99 	case LXS_CONNECTED:
100 		lcp->lcd_dg_timer = ia->ia_xc.xc_dg_idletimo;
101 		/* FALLTHROUGH */
102 	case LXS_CONNECTING:
103 		if (sbspace(&lcp->lcd_sb) < 0)
104 			senderr(ENOBUFS);
105 		lcp->lcd_send(lcp, m);
106 		break;
107 
108 	case LXS_NEWBORN:
109 		if (dst->sa_family == AF_INET &&
110 		    ia->ia_ifp->if_type == IFT_X25DDN &&
111 		    rt->rt_gateway->sa_family != AF_CCITT)
112 			x25_ddnip_to_ccitt(dst, rt->rt_gateway);
113 		lcp->lcd_flags |= X25_DG_CIRCUIT;
114 		lx->lx_state = LXS_FREE;
115 		if (rt->rt_gateway->sa_family != AF_CCITT) {
116 			/*
117 			 * Need external resolution of dst
118 			 */
119 			if ((rt->rt_flags & RTF_XRESOLVE) == 0)
120 				senderr(ENETUNREACH);
121 			lx->lx_flags |= flags;
122 			flags = 0;
123 			rt_missmsg(RTM_RESOLVE, dst,
124 			    (struct sockaddr *)0, (struct sockaddr *)0,
125 			    (struct sockaddr *)0, 0, 0);
126 			lx->lx_state = LXS_RESOLVING;
127 			/* FALLTHROUGH */
128 	case LXS_RESOLVING:
129 			if (sbspace(&lcp->lcd_sb) < 0)
130 				senderr(ENOBUFS);
131 			pk_fragment(lcp, m, 0, 0, 0);
132 			break;
133 		}
134 		/* FALLTHROUGH */
135 	case LXS_FREE:
136 		lcp->lcd_pkp = &(lx->lx_ia->ia_pkcb);
137 		pk_fragment(lcp, m, 0, 0, 0);
138 		pk_connect(lcp, (struct sockaddr_x25 *)rt->rt_gateway);
139 		break;
140 		/* FALLTHROUGH */
141 	default:
142 		/*
143 		 * We count on the timer routine to close idle
144 		 * connections, if there are not enough circuits to go
145 		 * around.
146 		 *
147 		 * So throw away data for now.
148 		 * After we get it all working, we'll rewrite to handle
149 		 * actively closing connections (other than by timers),
150 		 * when circuits get tight.
151 		 *
152 		 * In the DDN case, the imp itself closes connections
153 		 * under heavy load.
154 		 */
155 		error = ENOBUFS;
156 	bad:
157 		if (m)
158 			m_freem(m);
159 	}
160 out:
161 	if (flags & LXF_RTHELD)
162 		RTFREE(rt);
163 	return (error);
164 }
165 
166 /*
167  * Simpleminded timer routine.
168  */
169 x25_iftimeout(ifp)
170 struct ifnet *ifp;
171 {
172 	register struct pkcb *pkcb = 0;
173 	register struct ifaddr *ifa;
174 	register struct pklcd **lcpp, *lcp;
175 	int s = splimp();
176 
177 	for (ifa = ifp->if_addrlist; ; ifa = ifa->ifa_next) {
178 		if (ifa->ifa_addr->sa_family == AF_CCITT)
179 			break;
180 	}
181 	if (ifa)
182 		pkcb = &((struct x25_ifaddr *)ifa)->ia_pkcb;
183 	if (pkcb)
184 		for (lcpp = pkcb->pk_chan + pkcb->pk_maxlcn;
185 		     --lcpp > pkcb->pk_chan;)
186 			if ((lcp = *lcpp) &&
187 			    lcp->lcd_state == DATA_TRANSFER &&
188 			    (lcp->lcd_flags & X25_DG_CIRCUIT) &&
189 			    (lcp->lcd_dg_timer && --lcp->lcd_dg_timer == 0)) {
190 				pk_disconnect(lcp);
191 			}
192 	splx(s);
193 }
194 
195 /*
196  * Process a x25 packet as datagram;
197  */
198 x25_ifinput(lcp, m)
199 struct pklcd *lcp;
200 register struct mbuf *m;
201 {
202 	struct llinfo_x25 *lx = (struct llinfo_x25 *)lcp->lcd_upnext;
203 	register struct ifnet *ifp = m->m_pkthdr.rcvif;
204 	struct ifqueue *inq;
205 	struct rtentry *rt;
206 	extern struct timeval time;
207 	int s, len;
208 
209 	if (m == 0)
210 		goto trouble;
211 	ifp = m->m_pkthdr.rcvif;
212 	ifp->if_lastchange = time;
213 	switch (m->m_type) {
214 	trouble:
215 	case MT_CONTROL:
216 		if (lcp->lcd_state != DATA_TRANSFER) {
217 			lx->lx_lcd = 0;
218 			if (lx->lx_rt == 0)
219 				FREE(lx, M_PCB);
220 			pk_close(lcp);
221 		}
222 	case MT_OOBDATA:
223 		if (m)
224 			m_freem(m);
225 		return;
226 	}
227 
228 	switch (lx->lx_family) {
229 #ifdef INET
230 	case AF_INET:
231 		schednetisr(NETISR_IP);
232 		inq = &ipintrq;
233 		break;
234 
235 #endif
236 #ifdef NS
237 	case AF_NS:
238 		schednetisr(NETISR_NS);
239 		inq = &nsintrq;
240 		break;
241 
242 #endif
243 #ifdef	ISO
244 	case AF_ISO:
245 		schednetisr(NETISR_ISO);
246 		inq = &clnlintrq;
247 		break;
248 #endif
249 	default:
250 		m_freem(m);
251 		ifp->if_noproto++;
252 		return;
253 	}
254 	s = splimp();
255 	if (IF_QFULL(inq)) {
256 		IF_DROP(inq);
257 		m_freem(m);
258 	} else {
259 		IF_ENQUEUE(inq, m);
260 		ifp->if_ibytes += m->m_pkthdr.len;
261 	}
262 	splx(s);
263 }
264 
265 /*
266  * This routine gets called when validing new routes or deletions of old
267  * ones.
268  */
269 x25_ifrtchange(cmd, rt, dst)
270 register struct rtentry *rt;
271 struct sockaddr *dst;
272 {
273 	register struct llinfo_x25 *lx = (struct llinfo_x25 *)rt->rt_llinfo;
274 	register struct sockaddr_x25 *sa =(struct sockaddr_x25 *)rt->rt_gateway;
275 	register struct pklcd *lcp;
276 	register struct x25_ifaddr *ia;
277 	register struct sockaddr *sa2;
278 	int x25_ifinput();
279 #define SA(p) ((struct sockaddr *)(p))
280 
281 	if (lx == 0) {
282 		MALLOC(lx, struct llinfo_x25 *, sizeof (*lx), M_PCB, M_NOWAIT);
283 		if (lx == 0)
284 			return;
285 		Bzero(lx, sizeof(*lx));
286 		rt->rt_llinfo = (caddr_t)lx;
287 		rt->rt_refcnt++;
288 		lx->lx_rt = rt;
289 		lx->lx_ia = (struct x25_ifaddr *)rt->rt_ifa;
290 	}
291 	lcp = lx->lx_lcd;
292 	if (cmd == RTM_DELETE) {
293 		if (lcp)
294 			pk_disconnect(lcp);
295 		rt->rt_refcnt--;
296 		rt->rt_llinfo = 0;
297 		FREE(lx, M_PCB);
298 		return;
299 	}
300 	if (lcp && lcp->lcd_state != READY) {
301 		pk_disconnect(lcp);
302 		lcp = 0;
303 	}
304 	if (lcp == 0) {
305 		if (rt->rt_flags & RTF_XRESOLVE || sa->x25_family != AF_CCITT)
306 			return;
307 		lx->lx_lcd = lcp = pk_attach((struct socket *)0);
308 		ia = lx->lx_ia;
309 		if (lcp == 0)
310 			return;
311 		lcp->lcd_upnext = (caddr_t)lx;
312 		lcp->lcd_upper = x25_ifinput;
313 		lcp->lcd_packetsize = ia->ia_xc.xc_psize; /* XXX pk_fragment */
314 		lcp->lcd_pkp = &(ia->ia_pkcb);
315 	}
316 	pk_connect(lcp, sa);
317 	if (rt->rt_ifp->if_type == IFT_X25DDN)
318 		return;
319 	sa2 = rt_key(rt);
320 	if (cmd == RTM_CHANGE) {
321 		if (sa->x25_family == AF_CCITT) {
322 			sa->x25_opts.op_speed = sa2->sa_family;
323 			(void) rtrequest(RTM_DELETE, SA(sa), sa2,
324 			       SA(0), RTF_HOST, (struct rtentry **)0);
325 		}
326 		sa = (struct sockaddr_x25 *)dst;
327 		cmd = RTM_ADD;
328 	}
329 	if (sa->x25_family == AF_CCITT) {
330 		sa->x25_opts.op_speed = sa2->sa_family;
331 		(void) rtrequest(cmd, SA(sa), sa2, SA(0), RTF_HOST,
332 							(struct rtentry **)0);
333 		sa->x25_opts.op_speed = 0;
334 	}
335 }
336 
337 static struct sockaddr_x25 blank_x25 = {sizeof blank_x25, AF_CCITT};
338 /*
339  * IP to X25 address routine copyright ACC, used by permission.
340  */
341 union imp_addr {
342 	struct in_addr  ip;
343 	struct imp {
344 		u_char		s_net;
345 		u_char		s_host;
346 		u_char		s_lh;
347 		u_char		s_impno;
348 	}		    imp;
349 };
350 
351 x25_ddnip_to_ccitt(src, dst)
352 struct sockaddr_in *src;
353 register struct sockaddr_x25 *dst;
354 {
355 	union imp_addr imp_addr;
356 	int             imp_no, imp_port, temp;
357 	char *x25addr = dst->x25_addr;
358 
359 
360 	imp_addr.ip = src->sin_addr;
361 	*dst = blank_x25;
362 	if ((imp_addr.imp.s_net & 0x80) == 0x00) {	/* class A */
363 	    imp_no = imp_addr.imp.s_impno;
364 	    imp_port = imp_addr.imp.s_host;
365 	} else if ((imp_addr.imp.s_net & 0xc0) == 0x80) {	/* class B */
366 	    imp_no = imp_addr.imp.s_impno;
367 	    imp_port = imp_addr.imp.s_lh;
368 	} else {		/* class C */
369 	    imp_no = imp_addr.imp.s_impno / 32;
370 	    imp_port = imp_addr.imp.s_impno % 32;
371 	}
372 
373 	x25addr[0] = 12; /* length */
374 	/* DNIC is cleared by struct copy above */
375 
376 	if (imp_port < 64) {	/* Physical:  0000 0 IIIHH00 [SS] *//* s_impno
377 				 *  -> III, s_host -> HH */
378 	    x25addr[5] = 0;	/* set flag bit */
379 	    x25addr[6] = imp_no / 100;
380 	    x25addr[7] = (imp_no % 100) / 10;
381 	    x25addr[8] = imp_no % 10;
382 	    x25addr[9] = imp_port / 10;
383 	    x25addr[10] = imp_port % 10;
384 	} else {		/* Logical:   0000 1 RRRRR00 [SS]	 *//* s
385 				 * _host * 256 + s_impno -> RRRRR */
386 	    temp = (imp_port << 8) + imp_no;
387 	    x25addr[5] = 1;
388 	    x25addr[6] = temp / 10000;
389 	    x25addr[7] = (temp % 10000) / 1000;
390 	    x25addr[8] = (temp % 1000) / 100;
391 	    x25addr[9] = (temp % 100) / 10;
392 	    x25addr[10] = temp % 10;
393 	}
394 }
395 
396 static struct sockaddr_in sin = {sizeof(sin), AF_INET};
397 /*
398  * This routine is a sketch and is not to be believed!!!!!
399  *
400  * This is a utility routine to be called by x25 devices when a
401  * call request is honored with the intent of starting datagram forwarding.
402  */
403 x25_dg_rtinit(dst, ia, af)
404 struct sockaddr_x25 *dst;
405 register struct x25_ifaddr *ia;
406 {
407 	struct sockaddr *sa = 0;
408 	struct rtentry *rt;
409 	struct in_addr my_addr;
410 
411 	if (ia->ia_ifp->if_type == IFT_X25DDN && af == AF_INET) {
412 	/*
413 	 * Inverse X25 to IP mapping copyright and courtesy ACC.
414 	 */
415 		int             imp_no, imp_port, temp;
416 		union imp_addr imp_addr;
417 	    {
418 		/*
419 		 * First determine our IP addr for network
420 		 */
421 		register struct in_ifaddr *ina;
422 		extern struct in_ifaddr *in_ifaddr;
423 
424 		for (ina = in_ifaddr; ina; ina = ina->ia_next)
425 			if (ina->ia_ifp == ia->ia_ifp) {
426 				my_addr = ina->ia_addr.sin_addr;
427 				break;
428 			}
429 	    }
430 	    {
431 
432 		register char *x25addr = dst->x25_addr;
433 
434 		switch (x25addr[5] & 0x0f) {
435 		  case 0:	/* Physical:  0000 0 IIIHH00 [SS]	 */
436 		    imp_no =
437 			((int) (x25addr[6] & 0x0f) * 100) +
438 			((int) (x25addr[7] & 0x0f) * 10) +
439 			((int) (x25addr[8] & 0x0f));
440 
441 
442 		    imp_port =
443 			((int) (x25addr[9] & 0x0f) * 10) +
444 			((int) (x25addr[10] & 0x0f));
445 		    break;
446 		  case 1:	/* Logical:   0000 1 RRRRR00 [SS]	 */
447 		    temp = ((int) (x25addr[6] & 0x0f) * 10000)
448 			+ ((int) (x25addr[7] & 0x0f) * 1000)
449 			+ ((int) (x25addr[8] & 0x0f) * 100)
450 			+ ((int) (x25addr[9] & 0x0f) * 10)
451 			+ ((int) (x25addr[10] & 0x0f));
452 
453 		    imp_port = temp >> 8;
454 		    imp_no = temp & 0xff;
455 		    break;
456 		  default:
457 		    return (0L);
458 		}
459 		imp_addr.ip = my_addr;
460 		if ((imp_addr.imp.s_net & 0x80) == 0x00) {
461 		/* class A */
462 		    imp_addr.imp.s_host = imp_port;
463 		    imp_addr.imp.s_impno = imp_no;
464 		    imp_addr.imp.s_lh = 0;
465 		} else if ((imp_addr.imp.s_net & 0xc0) == 0x80) {
466 		/* class B */
467 		    imp_addr.imp.s_lh = imp_port;
468 		    imp_addr.imp.s_impno = imp_no;
469 		} else {
470 		/* class C */
471 		    imp_addr.imp.s_impno = (imp_no << 5) + imp_port;
472 		}
473 	    }
474 		sin.sin_addr = imp_addr.ip;
475 		sa = (struct sockaddr *)&sin;
476 	} else {
477 		/*
478 		 * This uses the X25 routing table to do inverse
479 		 * lookup of x25 address to sockaddr.
480 		 */
481 		dst->x25_opts.op_speed = af;
482 		if (rt = rtalloc1(dst, 0)) {
483 			sa = rt->rt_gateway;
484 			rt->rt_refcnt--;
485 		}
486 		dst->x25_opts.op_speed = 0;
487 	}
488 	/*
489 	 * Call to rtalloc1 will create rtentry for reverse path
490 	 * to callee by virtue of cloning magic and will allocate
491 	 * space for local control block.
492 	 */
493 	if (sa && (rt = rtalloc1(sa, 1)))
494 		rt->rt_refcnt--;
495 }
496 
497 struct radix_tree_head *x25_rnhead;
498 
499 pk_init()
500 {
501 	/*
502 	 * warning, sizeof (struct sockaddr_x25) > 32,
503 	 * but contains no data of interest beyond 32
504 	 */
505 	rn_inithead(&x25_rnhead, 16, AF_CCITT);
506 }
507