xref: /original-bsd/sys/netccitt/pk_input.c (revision 3705696b)
1 /*
2  * Copyright (c) University of British Columbia, 1984
3  * Copyright (C) Computer Science Department IV,
4  * 		 University of Erlangen-Nuremberg, Germany, 1992
5  * Copyright (c) 1991, 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by the
9  * Laboratory for Computation Vision and the Computer Science Department
10  * of the the University of British Columbia and the Computer Science
11  * Department (IV) of the University of Erlangen-Nuremberg, Germany.
12  *
13  * %sccs.include.redist.c%
14  *
15  *	@(#)pk_input.c	8.1 (Berkeley) 06/10/93
16  */
17 
18 #include <sys/param.h>
19 #include <sys/systm.h>
20 #include <sys/mbuf.h>
21 #include <sys/socket.h>
22 #include <sys/protosw.h>
23 #include <sys/socketvar.h>
24 #include <sys/errno.h>
25 
26 #include <net/if.h>
27 #include <net/if_dl.h>
28 #include <net/if_llc.h>
29 #include <net/route.h>
30 
31 #include <netccitt/dll.h>
32 #include <netccitt/x25.h>
33 #include <netccitt/pk.h>
34 #include <netccitt/pk_var.h>
35 #include <netccitt/llc_var.h>
36 
37 struct pkcb_q pkcb_q = {&pkcb_q, &pkcb_q};
38 
39 /*
40  * ccittintr() is the generic interrupt handler for HDLC, LLC2, and X.25. This
41  * allows to have kernel running X.25 but no HDLC or LLC2 or both (in case we
42  * employ boards that do all the stuff themselves, e.g. ADAX X.25 or TPS ISDN.)
43  */
44 void
45 ccittintr ()
46 {
47 	extern struct ifqueue pkintrq;
48 	extern struct ifqueue hdintrq;
49 	extern struct ifqueue llcintrq;
50 
51 #ifdef HDLC
52 	if (hdintrq.ifq_len)
53 		hdintr ();
54 #endif
55 #ifdef LLC
56 	if (llcintrq.ifq_len)
57 		llcintr ();
58 #endif
59 	if (pkintrq.ifq_len)
60 		pkintr ();
61 }
62 
63 struct pkcb *
64 pk_newlink (ia, llnext)
65 struct x25_ifaddr *ia;
66 caddr_t llnext;
67 {
68 	register struct x25config *xcp = &ia -> ia_xc;
69 	register struct pkcb *pkp;
70 	register struct pklcd *lcp;
71 	register struct protosw *pp;
72 	unsigned size;
73 
74 	pp = pffindproto (AF_CCITT, (int) xcp -> xc_lproto, 0);
75 	if (pp == 0 || pp -> pr_output == 0) {
76 		pk_message (0, xcp, "link level protosw error");
77 		return ((struct pkcb *)0);
78 	}
79 	/*
80 	 * Allocate a network control block structure
81 	 */
82 	size = sizeof (struct pkcb);
83 	pkp = (struct pkcb *) malloc (size, M_PCB, M_WAITOK);
84 	if (pkp == 0)
85 		return ((struct pkcb *)0);
86 	bzero ((caddr_t) pkp, size);
87 	pkp -> pk_lloutput = pp -> pr_output;
88 	pkp -> pk_llctlinput = (caddr_t (*)()) pp -> pr_ctlinput;
89 	pkp -> pk_xcp = xcp;
90 	pkp -> pk_ia = ia;
91 	pkp -> pk_state = DTE_WAITING;
92 	pkp -> pk_llnext = llnext;
93 	insque (pkp, &pkcb_q);
94 
95 	/*
96 	 * set defaults
97 	 */
98 
99 	if (xcp -> xc_pwsize == 0)
100 		xcp -> xc_pwsize = DEFAULT_WINDOW_SIZE;
101 	if (xcp -> xc_psize == 0)
102 		xcp -> xc_psize = X25_PS128;
103 	/*
104 	 * Allocate logical channel descriptor vector
105 	 */
106 
107 	(void) pk_resize (pkp);
108 	return (pkp);
109 }
110 
111 
112 pk_dellink (pkp)
113 register struct pkcb *pkp;
114 {
115 	register int i;
116 	register struct protosw *pp;
117 
118 	/*
119 	 * Essentially we have the choice to
120 	 * (a) go ahead and let the route be deleted and
121 	 *     leave the pkcb associated with that route
122 	 *     as it is, i.e. the connections stay open
123 	 * (b) do a pk_disconnect() on all channels associated
124 	 *     with the route via the pkcb and then proceed.
125 	 *
126 	 * For the time being we stick with (b)
127 	 */
128 
129 	for (i = 1; i < pkp -> pk_maxlcn; ++i)
130 		if (pkp -> pk_chan[i])
131 			pk_disconnect (pkp -> pk_chan[i]);
132 
133 	/*
134 	 * Free the pkcb
135 	 */
136 
137 	/*
138 	 * First find the protoswitch to get hold of the link level
139 	 * protocol to be notified that the packet level entity is
140 	 * dissolving ...
141 	 */
142 	pp = pffindproto (AF_CCITT, (int) pkp -> pk_xcp -> xc_lproto, 0);
143 	if (pp == 0 || pp -> pr_output == 0) {
144 		pk_message (0, pkp -> pk_xcp, "link level protosw error");
145 		return (EPROTONOSUPPORT);
146 	}
147 
148 	pkp -> pk_refcount--;
149 	if (!pkp -> pk_refcount) {
150 		struct dll_ctlinfo ctlinfo;
151 
152 		remque (pkp);
153 		if (pkp -> pk_rt -> rt_llinfo == (caddr_t) pkp)
154 			pkp -> pk_rt -> rt_llinfo = (caddr_t) NULL;
155 
156 		/*
157 		 * Tell the link level that the pkcb is dissolving
158 		 */
159 		if (pp -> pr_ctlinput && pkp -> pk_llnext) {
160 			ctlinfo.dlcti_pcb = pkp -> pk_llnext;
161 			ctlinfo.dlcti_rt = pkp -> pk_rt;
162 			(pp -> pr_ctlinput)(PRC_DISCONNECT_REQUEST,
163 					    pkp -> pk_xcp, &ctlinfo);
164 		}
165 		free ((caddr_t) pkp -> pk_chan, M_IFADDR);
166 		free ((caddr_t) pkp, M_PCB);
167 	}
168 
169 	return (0);
170 }
171 
172 
173 pk_resize (pkp)
174 register struct pkcb *pkp;
175 {
176 	struct pklcd *dev_lcp = 0;
177 	struct x25config *xcp = pkp -> pk_xcp;
178 	if (pkp -> pk_chan &&
179 	    (pkp -> pk_maxlcn != xcp -> xc_maxlcn)) {
180 		pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
181 		dev_lcp = pkp -> pk_chan[0];
182 		free ((caddr_t) pkp -> pk_chan, M_IFADDR);
183 		pkp -> pk_chan = 0;
184 	}
185 	if (pkp -> pk_chan == 0) {
186 		unsigned size;
187 		pkp -> pk_maxlcn = xcp -> xc_maxlcn;
188 		size = (pkp -> pk_maxlcn + 1) * sizeof (struct pklcd *);
189 		pkp -> pk_chan =
190 			(struct pklcd **) malloc (size, M_IFADDR, M_WAITOK);
191 		if (pkp -> pk_chan) {
192 			bzero ((caddr_t) pkp -> pk_chan, size);
193 			/*
194 			 * Allocate a logical channel descriptor for lcn 0
195 			 */
196 			if (dev_lcp == 0 &&
197 			    (dev_lcp = pk_attach ((struct socket *)0)) == 0)
198 				return (ENOBUFS);
199 			dev_lcp -> lcd_state = READY;
200 			dev_lcp -> lcd_pkp = pkp;
201 			pkp -> pk_chan[0] = dev_lcp;
202 		} else {
203 			if (dev_lcp)
204 				pk_close (dev_lcp);
205 			return (ENOBUFS);
206 		}
207 	}
208 	return 0;
209 }
210 
211 /*
212  *  This procedure is called by the link level whenever the link
213  *  becomes operational, is reset, or when the link goes down.
214  */
215 /*VARARGS*/
216 caddr_t
217 pk_ctlinput (code, src, addr)
218 	struct sockaddr *src;
219 	caddr_t addr;
220 {
221 	register struct pkcb *pkp = (struct pkcb *) addr;
222 
223 	switch (code) {
224 	case PRC_LINKUP:
225 		if (pkp -> pk_state == DTE_WAITING)
226 			pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
227 		break;
228 
229 	case PRC_LINKDOWN:
230 		pk_restart (pkp, -1);	/* Clear all active circuits */
231 		pkp -> pk_state = DTE_WAITING;
232 		break;
233 
234 	case PRC_LINKRESET:
235 		pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION);
236 		break;
237 
238 	case PRC_CONNECT_INDICATION: {
239 		struct rtentry *llrt;
240 
241 		if ((llrt = rtalloc1(src, 0)) == 0)
242 			return 0;
243 		else llrt -> rt_refcnt--;
244 
245 		pkp = (((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt) ?
246 			(struct pkcb *)(((struct npaidbentry *) llrt -> rt_llinfo) -> np_rt -> rt_llinfo) : (struct pkcb *) 0;
247 		if (pkp == (struct pkcb *) 0)
248 			return 0;
249 		pkp -> pk_llnext = addr;
250 
251 		return ((caddr_t) pkp);
252 	}
253 	case PRC_DISCONNECT_INDICATION:
254 		pk_restart (pkp, -1) ;  /* Clear all active circuits */
255 		pkp -> pk_state = DTE_WAITING;
256 		pkp -> pk_llnext = (caddr_t) 0;
257 	}
258 	return (0);
259 }
260 struct ifqueue pkintrq;
261 /*
262  * This routine is called if there are semi-smart devices that do HDLC
263  * in hardware and want to queue the packet and call level 3 directly
264  */
265 pkintr ()
266 {
267 	register struct mbuf *m;
268 	register struct ifaddr *ifa;
269 	register struct ifnet *ifp;
270 	register int s;
271 
272 	for (;;) {
273 		s = splimp ();
274 		IF_DEQUEUE (&pkintrq, m);
275 		splx (s);
276 		if (m == 0)
277 			break;
278 		if (m -> m_len < PKHEADERLN) {
279 			printf ("pkintr: packet too short (len=%d)\n",
280 				m -> m_len);
281 			m_freem (m);
282 			continue;
283 		}
284 		pk_input (m);
285 	}
286 }
287 struct mbuf *pk_bad_packet;
288 struct mbuf_cache pk_input_cache = {0 };
289 /*
290  *  X.25 PACKET INPUT
291  *
292  *  This procedure is called by a link level procedure whenever
293  *  an information frame is received. It decodes the packet and
294  *  demultiplexes based on the logical channel number.
295  *
296  *  We change the original conventions of the UBC code here --
297  *  since there may be multiple pkcb's for a given interface
298  *  of type 802.2 class 2, we retrieve which one it is from
299  *  m_pkthdr.rcvif (which has been overwritten by lower layers);
300  *  That field is then restored for the benefit of upper layers which
301  *  may make use of it, such as CLNP.
302  *
303  */
304 
305 #define RESTART_DTE_ORIGINATED(xp) (((xp) -> packet_cause == X25_RESTART_DTE_ORIGINATED) || \
306 			    ((xp) -> packet_cause >= X25_RESTART_DTE_ORIGINATED2))
307 
308 pk_input (m)
309 register struct mbuf *m;
310 {
311 	register struct x25_packet *xp;
312 	register struct pklcd *lcp;
313 	register struct socket *so = 0;
314 	register struct pkcb *pkp;
315 	int  ptype, lcn, lcdstate = LISTEN;
316 
317 	if (pk_input_cache.mbc_size || pk_input_cache.mbc_oldsize)
318 		mbuf_cache (&pk_input_cache, m);
319 	if ((m -> m_flags & M_PKTHDR) == 0)
320 		panic ("pkintr");
321 
322 	if ((pkp = (struct pkcb *) m -> m_pkthdr.rcvif) == 0)
323 		return;
324 	xp = mtod (m, struct x25_packet *);
325 	ptype = pk_decode (xp);
326 	lcn = LCN(xp);
327 	lcp = pkp -> pk_chan[lcn];
328 
329 	/*
330 	 *  If the DTE is in Restart  state, then it will ignore data,
331 	 *  interrupt, call setup and clearing, flow control and reset
332 	 *  packets.
333 	 */
334 	if (lcn < 0 || lcn > pkp -> pk_maxlcn) {
335 		pk_message (lcn, pkp -> pk_xcp, "illegal lcn");
336 		m_freem (m);
337 		return;
338 	}
339 
340 	pk_trace (pkp -> pk_xcp, m, "P-In");
341 
342 	if (pkp -> pk_state != DTE_READY && ptype != RESTART && ptype != RESTART_CONF) {
343 		m_freem (m);
344 		return;
345 	}
346 	if (lcp) {
347 		so = lcp -> lcd_so;
348 		lcdstate = lcp -> lcd_state;
349 	} else {
350 		if (ptype == CLEAR) {	/* idle line probe (Datapac specific) */
351 			/* send response on lcd 0's output queue */
352 			lcp = pkp -> pk_chan[0];
353 			lcp -> lcd_template = pk_template (lcn, X25_CLEAR_CONFIRM);
354 			pk_output (lcp);
355 			m_freem (m);
356 			return;
357 		}
358 		if (ptype != CALL)
359 			ptype = INVALID_PACKET;
360 	}
361 
362 	if (lcn == 0 && ptype != RESTART && ptype != RESTART_CONF) {
363 		pk_message (0, pkp -> pk_xcp, "illegal ptype (%d, %s) on lcn 0",
364 			ptype, pk_name[ptype / MAXSTATES]);
365 		if (pk_bad_packet)
366 			m_freem (pk_bad_packet);
367 		pk_bad_packet = m;
368 		return;
369 	}
370 
371 	m -> m_pkthdr.rcvif = pkp -> pk_ia -> ia_ifp;
372 
373 	switch (ptype + lcdstate) {
374 	/*
375 	 *  Incoming Call packet received.
376 	 */
377 	case CALL + LISTEN:
378 		pk_incoming_call (pkp, m);
379 		break;
380 
381 	/*
382 	 *  Call collision: Just throw this "incoming call" away since
383 	 *  the DCE will ignore it anyway.
384 	 */
385 	case CALL + SENT_CALL:
386 		pk_message ((int) lcn, pkp -> pk_xcp,
387 			"incoming call collision");
388 		break;
389 
390 	/*
391 	 *  Call confirmation packet received. This usually means our
392 	 *  previous connect request is now complete.
393 	 */
394 	case CALL_ACCEPTED + SENT_CALL:
395 		MCHTYPE(m, MT_CONTROL);
396 		pk_call_accepted (lcp, m);
397 		break;
398 
399 	/*
400 	 *  This condition can only happen if the previous state was
401 	 *  SENT_CALL. Just ignore the packet, eventually a clear
402 	 *  confirmation should arrive.
403 	 */
404 	case CALL_ACCEPTED + SENT_CLEAR:
405 		break;
406 
407 	/*
408 	 *  Clear packet received. This requires a complete tear down
409 	 *  of the virtual circuit.  Free buffers and control blocks.
410 	 *  and send a clear confirmation.
411 	 */
412 	case CLEAR + READY:
413 	case CLEAR + RECEIVED_CALL:
414 	case CLEAR + SENT_CALL:
415 	case CLEAR + DATA_TRANSFER:
416 		lcp -> lcd_state = RECEIVED_CLEAR;
417 		lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR_CONFIRM);
418 		pk_output (lcp);
419 		pk_clearcause (pkp, xp);
420 		if (lcp -> lcd_upper) {
421 			MCHTYPE(m, MT_CONTROL);
422 			lcp -> lcd_upper (lcp, m);
423 		}
424 		pk_close (lcp);
425 		lcp = 0;
426 		break;
427 
428 	/*
429 	 *  Clear collision: Treat this clear packet as a confirmation.
430 	 */
431 	case CLEAR + SENT_CLEAR:
432 		pk_close (lcp);
433 		break;
434 
435 	/*
436 	 *  Clear confirmation received. This usually means the virtual
437 	 *  circuit is now completely removed.
438 	 */
439 	case CLEAR_CONF + SENT_CLEAR:
440 		pk_close (lcp);
441 		break;
442 
443 	/*
444 	 *  A clear confirmation on an unassigned logical channel - just
445 	 *  ignore it. Note: All other packets on an unassigned channel
446 	 *  results in a clear.
447 	 */
448 	case CLEAR_CONF + READY:
449 	case CLEAR_CONF + LISTEN:
450 		break;
451 
452 	/*
453 	 *  Data packet received. Pass on to next level. Move the Q and M
454 	 *  bits into the data portion for the next level.
455 	 */
456 	case DATA + DATA_TRANSFER:
457 		if (lcp -> lcd_reset_condition) {
458 			ptype = DELETE_PACKET;
459 			break;
460 		}
461 
462 		/*
463 		 *  Process the P(S) flow control information in this Data packet.
464 		 *  Check that the packets arrive in the correct sequence and that
465 		 *  they are within the "lcd_input_window". Input window rotation is
466 		 *  initiated by the receive interface.
467 		 */
468 
469 		if (PS(xp) != ((lcp -> lcd_rsn + 1) % MODULUS) ||
470 			PS(xp) == ((lcp -> lcd_input_window + lcp -> lcd_windowsize) % MODULUS)) {
471 			m_freem (m);
472 			pk_procerror (RESET, lcp, "p(s) flow control error", 1);
473 			break;
474 		}
475 		lcp -> lcd_rsn = PS(xp);
476 
477 		if (pk_ack (lcp, PR(xp)) != PACKET_OK) {
478 			m_freem (m);
479 			break;
480 		}
481 		m -> m_data += PKHEADERLN;
482 		m -> m_len -= PKHEADERLN;
483 		m -> m_pkthdr.len -= PKHEADERLN;
484 
485 		lcp -> lcd_rxcnt++;
486 		if (lcp -> lcd_flags & X25_MBS_HOLD) {
487 			register struct mbuf *n = lcp -> lcd_cps;
488 			int mbit = MBIT(xp);
489 			octet q_and_d_bits;
490 
491 			if (n) {
492 				n -> m_pkthdr.len += m -> m_pkthdr.len;
493 				while (n -> m_next)
494 					n = n -> m_next;
495 				n -> m_next = m;
496 				m = lcp -> lcd_cps;
497 
498 				if (lcp -> lcd_cpsmax &&
499 				    n -> m_pkthdr.len > lcp -> lcd_cpsmax) {
500 					pk_procerror (RESET, lcp,
501 						"C.P.S. overflow", 128);
502 					return;
503 				}
504 				q_and_d_bits = 0xc0 & *(octet *) xp;
505 				xp = (struct x25_packet *)
506 					(mtod (m, octet *) - PKHEADERLN);
507 				*(octet *) xp |= q_and_d_bits;
508 			}
509 			if (mbit) {
510 				lcp -> lcd_cps = m;
511 				pk_flowcontrol (lcp, 0, 1);
512 				return;
513 			}
514 			lcp -> lcd_cps = 0;
515 		}
516 		if (so == 0)
517 			break;
518 		if (lcp -> lcd_flags & X25_MQBIT) {
519 			octet t = (X25GBITS(xp -> bits, q_bit)) ? t = 0x80 : 0;
520 
521 			if (MBIT(xp))
522 				t |= 0x40;
523 			m -> m_data -= 1;
524 			m -> m_len += 1;
525 			m -> m_pkthdr.len += 1;
526 			*mtod (m, octet *) = t;
527 		}
528 
529 		/*
530 		 * Discard Q-BIT packets if the application
531 		 * doesn't want to be informed of M and Q bit status
532 		 */
533 		if (X25GBITS(xp -> bits, q_bit)
534 		    && (lcp -> lcd_flags & X25_MQBIT) == 0) {
535 			m_freem (m);
536 			/*
537 			 * NB.  This is dangerous: sending a RR here can
538 			 * cause sequence number errors if a previous data
539 			 * packet has not yet been passed up to the application
540 			 * (RR's are normally generated via PRU_RCVD).
541 			 */
542 			pk_flowcontrol (lcp, 0, 1);
543 		} else {
544 			sbappendrecord (&so -> so_rcv, m);
545 			sorwakeup (so);
546 		}
547 		break;
548 
549 	/*
550 	 *  Interrupt packet received.
551 	 */
552 	case INTERRUPT + DATA_TRANSFER:
553 		if (lcp -> lcd_reset_condition)
554 			break;
555 		lcp -> lcd_intrdata = xp -> packet_data;
556 		lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_INTERRUPT_CONFIRM);
557 		pk_output (lcp);
558 		m -> m_data += PKHEADERLN;
559 		m -> m_len -= PKHEADERLN;
560 		m -> m_pkthdr.len -= PKHEADERLN;
561 		MCHTYPE(m, MT_OOBDATA);
562 		if (so) {
563 			if (so -> so_options & SO_OOBINLINE)
564 				sbinsertoob (&so -> so_rcv, m);
565 			else
566 				m_freem (m);
567 			sohasoutofband (so);
568 		}
569 		break;
570 
571 	/*
572 	 *  Interrupt confirmation packet received.
573 	 */
574 	case INTERRUPT_CONF + DATA_TRANSFER:
575 		if (lcp -> lcd_reset_condition)
576 			break;
577 		if (lcp -> lcd_intrconf_pending == TRUE)
578 			lcp -> lcd_intrconf_pending = FALSE;
579 		else
580 			pk_procerror (RESET, lcp, "unexpected packet", 43);
581 		break;
582 
583 	/*
584 	 *  Receiver ready received. Rotate the output window and output
585 	 *  any data packets waiting transmission.
586 	 */
587 	case RR + DATA_TRANSFER:
588 		if (lcp -> lcd_reset_condition ||
589 		    pk_ack (lcp, PR(xp)) != PACKET_OK) {
590 			ptype = DELETE_PACKET;
591 			break;
592 		}
593 		if (lcp -> lcd_rnr_condition == TRUE)
594 			lcp -> lcd_rnr_condition = FALSE;
595 		pk_output (lcp);
596 		break;
597 
598 	/*
599 	 *  Receiver Not Ready received. Packets up to the P(R) can be
600 	 *  be sent. Condition is cleared with a RR.
601 	 */
602 	case RNR + DATA_TRANSFER:
603 		if (lcp -> lcd_reset_condition ||
604 		    pk_ack (lcp, PR(xp)) != PACKET_OK) {
605 			ptype = DELETE_PACKET;
606 			break;
607 		}
608 		lcp -> lcd_rnr_condition = TRUE;
609 		break;
610 
611 	/*
612 	 *  Reset packet received. Set state to FLOW_OPEN.  The Input and
613 	 *  Output window edges ar set to zero. Both the send and receive
614 	 *  numbers are reset. A confirmation is returned.
615 	 */
616 	case RESET + DATA_TRANSFER:
617 		if (lcp -> lcd_reset_condition)
618 			/* Reset collision. Just ignore packet. */
619 			break;
620 
621 		pk_resetcause (pkp, xp);
622 		lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
623 			lcp -> lcd_intrconf_pending = FALSE;
624 		lcp -> lcd_output_window = lcp -> lcd_input_window =
625 			lcp -> lcd_last_transmitted_pr = 0;
626 		lcp -> lcd_ssn = 0;
627 		lcp -> lcd_rsn = MODULUS - 1;
628 
629 		lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET_CONFIRM);
630 		pk_output (lcp);
631 
632 		pk_flush (lcp);
633 		if (so == 0)
634 			break;
635 		wakeup ((caddr_t) & so -> so_timeo);
636 		sorwakeup (so);
637 		sowwakeup (so);
638 		break;
639 
640 	/*
641 	 *  Reset confirmation received.
642 	 */
643 	case RESET_CONF + DATA_TRANSFER:
644 		if (lcp -> lcd_reset_condition) {
645 			lcp -> lcd_reset_condition = FALSE;
646 			pk_output (lcp);
647 		}
648 		else
649 			pk_procerror (RESET, lcp, "unexpected packet", 32);
650 		break;
651 
652 	case DATA + SENT_CLEAR:
653 		ptype = DELETE_PACKET;
654 	case RR + SENT_CLEAR:
655 	case RNR + SENT_CLEAR:
656 	case INTERRUPT + SENT_CLEAR:
657 	case INTERRUPT_CONF + SENT_CLEAR:
658 	case RESET + SENT_CLEAR:
659 	case RESET_CONF + SENT_CLEAR:
660 		/* Just ignore p if we have sent a CLEAR already.
661 		   */
662 		break;
663 
664 	/*
665 	 *  Restart sets all the permanent virtual circuits to the "Data
666 	 *  Transfer" stae and  all the switched virtual circuits to the
667 	 *  "Ready" state.
668 	 */
669 	case RESTART + READY:
670 		switch (pkp -> pk_state) {
671 		case DTE_SENT_RESTART:
672 			/*
673 			 * Restart collision.
674 			 * If case the restart cause is "DTE originated" we
675 			 * have a DTE-DTE situation and are trying to resolve
676 			 * who is going to play DTE/DCE [ISO 8208:4.2-4.5]
677 			 */
678 			if (RESTART_DTE_ORIGINATED(xp)) {
679 				pk_restart (pkp, X25_RESTART_DTE_ORIGINATED);
680 				pk_message (0, pkp -> pk_xcp,
681 					    "RESTART collision");
682 				if ((pkp -> pk_restartcolls++) > MAXRESTARTCOLLISIONS) {
683 					pk_message (0, pkp -> pk_xcp,
684 						    "excessive RESTART collisions");
685 					pkp -> pk_restartcolls = 0;
686 				}
687 				break;
688 			}
689 			pkp -> pk_state = DTE_READY;
690 			pkp -> pk_dxerole |= DTE_PLAYDTE;
691 			pkp -> pk_dxerole &= ~DTE_PLAYDCE;
692 			pk_message (0, pkp -> pk_xcp,
693 				"Packet level operational");
694 			pk_message (0, pkp -> pk_xcp,
695 				    "Assuming DTE role");
696 			if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
697 				pk_callcomplete (pkp);
698 			break;
699 
700 		default:
701 			pk_restart (pkp, -1);
702 			pk_restartcause (pkp, xp);
703 			pkp -> pk_chan[0] -> lcd_template = pk_template (0,
704 				X25_RESTART_CONFIRM);
705 			pk_output (pkp -> pk_chan[0]);
706 			pkp -> pk_state = DTE_READY;
707 			pkp -> pk_dxerole |= RESTART_DTE_ORIGINATED(xp) ? DTE_PLAYDCE :
708 				DTE_PLAYDTE;
709 			if (pkp -> pk_dxerole & DTE_PLAYDTE) {
710 				pkp -> pk_dxerole &= ~DTE_PLAYDCE;
711 				pk_message (0, pkp -> pk_xcp,
712 					    "Assuming DTE role");
713 			} else {
714 				pkp -> pk_dxerole &= ~DTE_PLAYDTE;
715 				pk_message (0, pkp -> pk_xcp,
716 					 "Assuming DCE role");
717 			}
718 			if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
719 				pk_callcomplete (pkp);
720 		}
721 		break;
722 
723 	/*
724 	 *  Restart confirmation received. All logical channels are set
725 	 *  to READY.
726 	 */
727 	case RESTART_CONF + READY:
728 		switch (pkp -> pk_state) {
729 		case DTE_SENT_RESTART:
730 			pkp -> pk_state = DTE_READY;
731 			pkp -> pk_dxerole |= DTE_PLAYDTE;
732 			pkp -> pk_dxerole &= ~DTE_PLAYDCE;
733 			pk_message (0, pkp -> pk_xcp,
734 				    "Packet level operational");
735 			pk_message (0, pkp -> pk_xcp,
736 				    "Assuming DTE role");
737 			if (pkp -> pk_dxerole & DTE_CONNECTPENDING)
738 				pk_callcomplete (pkp);
739 			break;
740 
741 		default:
742 			/* Restart local procedure error. */
743 			pk_restart (pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR);
744 			pkp -> pk_state = DTE_SENT_RESTART;
745 			pkp -> pk_dxerole &= ~(DTE_PLAYDTE | DTE_PLAYDCE);
746 		}
747 		break;
748 
749 	default:
750 		if (lcp) {
751 			pk_procerror (CLEAR, lcp, "unknown packet error", 33);
752 			pk_message (lcn, pkp -> pk_xcp,
753 				"\"%s\" unexpected in \"%s\" state",
754 				pk_name[ptype/MAXSTATES], pk_state[lcdstate]);
755 		} else
756 			pk_message (lcn, pkp -> pk_xcp,
757 				"packet arrived on unassigned lcn");
758 		break;
759 	}
760 	if (so == 0 && lcp && lcp -> lcd_upper && lcdstate == DATA_TRANSFER) {
761 		if (ptype != DATA && ptype != INTERRUPT)
762 			MCHTYPE(m, MT_CONTROL);
763 		lcp -> lcd_upper (lcp, m);
764 	} else if (ptype != DATA && ptype != INTERRUPT)
765 		m_freem (m);
766 }
767 
768 static
769 prune_dnic (from, to, dnicname, xcp)
770 char *from, *to, *dnicname;
771 register struct x25config *xcp;
772 {
773 	register char *cp1 = from, *cp2 = from;
774 	if (xcp -> xc_prepnd0 && *cp1 == '0') {
775 		from = ++cp1;
776 		goto copyrest;
777 	}
778 	if (xcp -> xc_nodnic) {
779 		for (cp1 = dnicname; *cp2 = *cp1++;)
780 			cp2++;
781 		cp1 = from;
782 	}
783 copyrest:
784 	for (cp1 = dnicname; *cp2 = *cp1++;)
785 		cp2++;
786 }
787 /* static */
788 pk_simple_bsd (from, to, lower, len)
789 register octet *from, *to;
790 register len, lower;
791 {
792 	register int c;
793 	while (--len >= 0) {
794 		c = *from;
795 		if (lower & 0x01)
796 			*from++;
797 		else
798 			c >>= 4;
799 		c &= 0x0f; c |= 0x30; *to++ = c; lower++;
800 	}
801 	*to = 0;
802 }
803 
804 /*static octet * */
805 pk_from_bcd (a, iscalling, sa, xcp)
806 register struct x25_calladdr *a;
807 register struct sockaddr_x25 *sa;
808 register struct x25config *xcp;
809 {
810 	octet buf[MAXADDRLN+1];
811 	octet *cp;
812 	unsigned count;
813 
814 	bzero ((caddr_t) sa, sizeof (*sa));
815 	sa -> x25_len = sizeof (*sa);
816 	sa -> x25_family = AF_CCITT;
817 	if (iscalling) {
818 		cp = a -> address_field + (X25GBITS(a -> addrlens, called_addrlen) / 2);
819 		count = X25GBITS(a -> addrlens, calling_addrlen);
820 		pk_simple_bsd (cp, buf, X25GBITS(a -> addrlens, called_addrlen), count);
821 	} else {
822 		count = X25GBITS(a -> addrlens, called_addrlen);
823 		pk_simple_bsd (a -> address_field, buf, 0, count);
824 	}
825 	if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
826 		octet dnicname[sizeof (long) * NBBY/3 + 2];
827 
828 		sprintf ((char *) dnicname, "%d", xcp -> xc_addr.x25_net);
829 		prune_dnic ((char *) buf, sa -> x25_addr, dnicname, xcp);
830 	} else
831 		bcopy ((caddr_t) buf, (caddr_t) sa -> x25_addr, count + 1);
832 }
833 
834 static
835 save_extra (m0, fp, so)
836 struct mbuf *m0;
837 octet *fp;
838 struct socket *so;
839 {
840 	register struct mbuf *m;
841 	struct cmsghdr cmsghdr;
842 	if (m = m_copy (m, 0, (int)M_COPYALL)) {
843 		int off = fp - mtod (m0, octet *);
844 		int len = m -> m_pkthdr.len - off + sizeof (cmsghdr);
845 		cmsghdr.cmsg_len = len;
846 		cmsghdr.cmsg_level = AF_CCITT;
847 		cmsghdr.cmsg_type = PK_FACILITIES;
848 		m_adj (m, off);
849 		M_PREPEND (m, sizeof (cmsghdr), M_DONTWAIT);
850 		if (m == 0)
851 			return;
852 		bcopy ((caddr_t)&cmsghdr, mtod (m, caddr_t), sizeof (cmsghdr));
853 		MCHTYPE(m, MT_CONTROL);
854 		sbappendrecord (&so -> so_rcv, m);
855 	}
856 }
857 
858 /*
859  * This routine handles incoming call packets. It matches the protocol
860  * field on the Call User Data field (usually the first four bytes) with
861  * sockets awaiting connections.
862  */
863 
864 pk_incoming_call (pkp, m0)
865 struct mbuf *m0;
866 struct pkcb *pkp;
867 {
868 	register struct pklcd *lcp = 0, *l;
869 	register struct sockaddr_x25 *sa;
870 	register struct x25_calladdr *a;
871 	register struct socket *so = 0;
872 	struct	x25_packet *xp = mtod (m0, struct x25_packet *);
873 	struct	mbuf *m;
874 	struct	x25config *xcp = pkp -> pk_xcp;
875 	int len = m0 -> m_pkthdr.len;
876 	unsigned udlen;
877 	char *errstr = "server unavailable";
878 	octet *u, *facp;
879 	int lcn = LCN(xp);
880 
881 	/* First, copy the data from the incoming call packet to a X25 address
882 	   descriptor. It is to be regretted that you have
883 	   to parse the facilities into a sockaddr to determine
884 	   if reverse charging is being requested */
885 	if ((m = m_get (M_DONTWAIT, MT_SONAME)) == 0)
886 		return;
887 	sa = mtod (m, struct sockaddr_x25 *);
888 	a = (struct x25_calladdr *) &xp -> packet_data;
889 	facp = u = (octet *) (a -> address_field +
890 		((X25GBITS(a -> addrlens, called_addrlen) + X25GBITS(a -> addrlens, calling_addrlen) + 1) / 2));
891 	u += *u + 1;
892 	udlen = min (16, ((octet *) xp) + len - u);
893 	if (udlen < 0)
894 		udlen = 0;
895 	pk_from_bcd (a, 1, sa, pkp -> pk_xcp); /* get calling address */
896 	pk_parse_facilities (facp, sa);
897 	bcopy ((caddr_t) u, sa -> x25_udata, udlen);
898 	sa -> x25_udlen = udlen;
899 
900 	/*
901 	 * Now, loop through the listen sockets looking for a match on the
902 	 * PID. That is the first few octets of the user data field.
903 	 * This is the closest thing to a port number for X.25 packets.
904 	 * It does provide a way of multiplexing services at the user level.
905 	 */
906 
907 	for (l = pk_listenhead; l; l = l -> lcd_listen) {
908 		struct sockaddr_x25 *sxp = l -> lcd_ceaddr;
909 
910 		if (bcmp (sxp -> x25_udata, u, sxp -> x25_udlen))
911 			continue;
912 		if (sxp -> x25_net &&
913 		    sxp -> x25_net != xcp -> xc_addr.x25_net)
914 			continue;
915 		/*
916 		 * don't accept incoming calls with the D-Bit on
917 		 * unless the server agrees
918 		 */
919 		if (X25GBITS(xp -> bits, d_bit) && !(sxp -> x25_opts.op_flags & X25_DBIT)) {
920 			errstr = "incoming D-Bit mismatch";
921 			break;
922 		}
923 		/*
924 		 * don't accept incoming collect calls unless
925 		 * the server sets the reverse charging option.
926 		 */
927 		if ((sxp -> x25_opts.op_flags & (X25_OLDSOCKADDR|X25_REVERSE_CHARGE)) == 0 &&
928 			sa -> x25_opts.op_flags & X25_REVERSE_CHARGE) {
929 			errstr = "incoming collect call refused";
930 			break;
931 		}
932 		if (l -> lcd_so) {
933 			if (so = sonewconn (l -> lcd_so, SS_ISCONNECTED))
934 				    lcp = (struct pklcd *) so -> so_pcb;
935 		} else
936 			lcp = pk_attach ((struct socket *) 0);
937 		if (lcp == 0) {
938 			/*
939 			 * Insufficient space or too many unaccepted
940 			 * connections.  Just throw the call away.
941 			 */
942 			errstr = "server malfunction";
943 			break;
944 		}
945 		lcp -> lcd_upper = l -> lcd_upper;
946 		lcp -> lcd_upnext = l -> lcd_upnext;
947 		lcp -> lcd_lcn = lcn;
948 		lcp -> lcd_state = RECEIVED_CALL;
949 		sa -> x25_opts.op_flags |= (sxp -> x25_opts.op_flags &
950 			~X25_REVERSE_CHARGE) | l -> lcd_flags;
951 		pk_assoc (pkp, lcp, sa);
952 		lcp -> lcd_faddr = *sa;
953 		lcp -> lcd_laddr.x25_udlen = sxp -> x25_udlen;
954 		lcp -> lcd_craddr = &lcp -> lcd_faddr;
955 		lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL_ACCEPTED);
956 		if (lcp -> lcd_flags & X25_DBIT) {
957 			if (X25GBITS(xp -> bits, d_bit))
958 				X25SBITS(mtod (lcp -> lcd_template,
959 					struct x25_packet *) -> bits, d_bit, 1);
960 			else
961 				lcp -> lcd_flags &= ~X25_DBIT;
962 		}
963 		if (so) {
964 			pk_output (lcp);
965 			soisconnected (so);
966 			if (so -> so_options & SO_OOBINLINE)
967 				save_extra (m0, facp, so);
968 		} else if (lcp -> lcd_upper) {
969 			(*lcp -> lcd_upper) (lcp, m0);
970 		}
971 		(void) m_free (m);
972 		return;
973 	}
974 
975 	/*
976 	 * If the call fails for whatever reason, we still need to build a
977 	 * skeleton LCD in order to be able to properly  receive the CLEAR
978 	 * CONFIRMATION.
979 	 */
980 #ifdef WATERLOO		/* be explicit */
981 	if (l == 0 && bcmp (sa -> x25_udata, "ean", 3) == 0)
982 		pk_message (lcn, pkp -> pk_xcp, "host=%s ean%c: %s",
983 			sa -> x25_addr, sa -> x25_udata[3] & 0xff, errstr);
984 	else if (l == 0 && bcmp (sa -> x25_udata, "\1\0\0\0", 4) == 0)
985 		pk_message (lcn, pkp -> pk_xcp, "host=%s x29d: %s",
986 			sa -> x25_addr, errstr);
987 	else
988 #endif
989 	pk_message (lcn, pkp -> pk_xcp, "host=%s pid=%x %x %x %x: %s",
990 		sa -> x25_addr, sa -> x25_udata[0] & 0xff,
991 		sa -> x25_udata[1] & 0xff, sa -> x25_udata[2] & 0xff,
992 		sa -> x25_udata[3] & 0xff, errstr);
993 	if ((lcp = pk_attach ((struct socket *)0)) == 0) {
994 		(void) m_free (m);
995 		return;
996 	}
997 	lcp -> lcd_lcn = lcn;
998 	lcp -> lcd_state = RECEIVED_CALL;
999 	pk_assoc (pkp, lcp, sa);
1000 	(void) m_free (m);
1001 	pk_clear (lcp, 0, 1);
1002 }
1003 
1004 pk_call_accepted (lcp, m)
1005 struct pklcd *lcp;
1006 struct mbuf *m;
1007 {
1008 	register struct x25_calladdr *ap;
1009 	register octet *fcp;
1010 	struct x25_packet *xp = mtod (m, struct x25_packet *);
1011 	int len = m -> m_len;
1012 
1013 	lcp -> lcd_state = DATA_TRANSFER;
1014 	if (lcp -> lcd_so)
1015 		soisconnected (lcp -> lcd_so);
1016 	if ((lcp -> lcd_flags & X25_DBIT) && (X25GBITS(xp -> bits, d_bit) == 0))
1017 		lcp -> lcd_flags &= ~X25_DBIT;
1018 	if (len > 3) {
1019 		ap = (struct x25_calladdr *) &xp -> packet_data;
1020 		fcp = (octet *) ap -> address_field + (X25GBITS(ap -> addrlens, calling_addrlen) +
1021 			X25GBITS(ap -> addrlens, called_addrlen) + 1) / 2;
1022 		if (fcp + *fcp <= ((octet *) xp) + len)
1023 			pk_parse_facilities (fcp, lcp -> lcd_ceaddr);
1024 	}
1025 	pk_assoc (lcp -> lcd_pkp, lcp, lcp -> lcd_ceaddr);
1026 	if (lcp -> lcd_so == 0 && lcp -> lcd_upper)
1027 		lcp -> lcd_upper (lcp, m);
1028 }
1029 
1030 pk_parse_facilities (fcp, sa)
1031 register octet *fcp;
1032 register struct sockaddr_x25 *sa;
1033 {
1034 	register octet *maxfcp;
1035 
1036 	maxfcp = fcp + *fcp;
1037 	fcp++;
1038 	while (fcp < maxfcp) {
1039 		/*
1040 		 * Ignore national DCE or DTE facilities
1041 		 */
1042 		if (*fcp == 0 || *fcp == 0xff)
1043 			break;
1044 		switch (*fcp) {
1045 		case FACILITIES_WINDOWSIZE:
1046 			sa -> x25_opts.op_wsize = fcp[1];
1047 			fcp += 3;
1048 			break;
1049 
1050 		case FACILITIES_PACKETSIZE:
1051 			sa -> x25_opts.op_psize = fcp[1];
1052 			fcp += 3;
1053 			break;
1054 
1055 		case FACILITIES_THROUGHPUT:
1056 			sa -> x25_opts.op_speed = fcp[1];
1057 			fcp += 2;
1058 			break;
1059 
1060 		case FACILITIES_REVERSE_CHARGE:
1061 			if (fcp[1] & 01)
1062 				sa -> x25_opts.op_flags |= X25_REVERSE_CHARGE;
1063 			/*
1064 			 * Datapac specific: for a X.25(1976) DTE, bit 2
1065 			 * indicates a "hi priority" (eg. international) call.
1066 			 */
1067 			if (fcp[1] & 02 && sa -> x25_opts.op_psize == 0)
1068 				sa -> x25_opts.op_psize = X25_PS128;
1069 			fcp += 2;
1070 			break;
1071 
1072 		default:
1073 /*printf("unknown facility %x, class=%d\n", *fcp, (*fcp & 0xc0) >> 6);*/
1074 			switch ((*fcp & 0xc0) >> 6) {
1075 			case 0:			/* class A */
1076 				fcp += 2;
1077 				break;
1078 
1079 			case 1:
1080 				fcp += 3;
1081 				break;
1082 
1083 			case 2:
1084 				fcp += 4;
1085 				break;
1086 
1087 			case 3:
1088 				fcp++;
1089 				fcp += *fcp;
1090 			}
1091 		}
1092 	}
1093 }
1094