xref: /original-bsd/sys/netccitt/pk_subr.c (revision de3f5c4e)
1 /*
2  * Copyright (c) University of British Columbia, 1984
3  * Copyright (c) 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Laboratory for Computation Vision and the Computer Science Department
8  * of the University of British Columbia.
9  *
10  * %sccs.include.redist.c%
11  *
12  *	@(#)pk_subr.c	7.14 (Berkeley) 05/16/91
13  */
14 
15 #include "param.h"
16 #include "systm.h"
17 #include "mbuf.h"
18 #include "socket.h"
19 #include "protosw.h"
20 #include "socketvar.h"
21 #include "errno.h"
22 #include "time.h"
23 #include "kernel.h"
24 
25 #include "../net/if.h"
26 
27 #include "x25.h"
28 #include "pk.h"
29 #include "pk_var.h"
30 #include "x25err.h"
31 
32 int     pk_sendspace = 1024 * 2 + 8;
33 int     pk_recvspace = 1024 * 2 + 8;
34 
35 struct pklcd_q pklcd_q = {&pklcd_q, &pklcd_q};
36 
37 /*
38  *  Attach X.25 protocol to socket, allocate logical channel descripter
39  *  and buffer space, and enter LISTEN state if we are to accept
40  *  IN-COMMING CALL packets.
41  *
42  */
43 
44 struct pklcd *
45 pk_attach (so)
46 struct socket *so;
47 {
48 	register struct pklcd *lcp;
49 	register int error = ENOBUFS;
50 	int pk_output();
51 
52 	MALLOC(lcp, struct pklcd *, sizeof (*lcp), M_PCB, M_NOWAIT);
53 	if (lcp) {
54 		bzero ((caddr_t)lcp, sizeof (*lcp));
55 		insque (&lcp -> lcd_q, &pklcd_q);
56 		lcp -> lcd_state = READY;
57 		lcp -> lcd_send = pk_output;
58 		if (so) {
59 			error = soreserve (so, pk_sendspace, pk_recvspace);
60 			lcp -> lcd_so = so;
61 			if (so -> so_options & SO_ACCEPTCONN)
62 				lcp -> lcd_state = LISTEN;
63 		} else
64 			sbreserve (&lcp -> lcd_sb, pk_sendspace);
65 	}
66 	if (so) {
67 		so -> so_pcb = (caddr_t) lcp;
68 		so -> so_error = error;
69 	}
70 	return (lcp);
71 }
72 
73 /*
74  *  Disconnect X.25 protocol from socket.
75  */
76 
77 pk_disconnect (lcp)
78 register struct pklcd *lcp;
79 {
80 	register struct socket *so = lcp -> lcd_so;
81 	register struct pklcd *l, *p;
82 
83 	switch (lcp -> lcd_state) {
84 	case LISTEN:
85 		for (p = 0, l = pk_listenhead; l && l != lcp; p = l, l = l -> lcd_listen);
86 		if (p == 0) {
87 			if (l != 0)
88 				pk_listenhead = l -> lcd_listen;
89 		}
90 		else
91 		if (l != 0)
92 			p -> lcd_listen = l -> lcd_listen;
93 		pk_close (lcp);
94 		break;
95 
96 	case READY:
97 		pk_acct (lcp);
98 		pk_close (lcp);
99 		break;
100 
101 	case SENT_CLEAR:
102 	case RECEIVED_CLEAR:
103 		break;
104 
105 	default:
106 		pk_acct (lcp);
107 		if (so) {
108 			soisdisconnecting (so);
109 			sbflush (&so -> so_rcv);
110 		}
111 		pk_clear (lcp, 241, 0); /* Normal Disconnect */
112 
113 	}
114 }
115 
116 /*
117  *  Close an X.25 Logical Channel. Discard all space held by the
118  *  connection and internal descriptors. Wake up any sleepers.
119  */
120 
121 pk_close (lcp)
122 struct pklcd *lcp;
123 {
124 	register struct socket *so = lcp -> lcd_so;
125 
126 	pk_freelcd (lcp);
127 
128 	if (so == NULL)
129 		return;
130 
131 	so -> so_pcb = 0;
132 	soisdisconnected (so);
133 	/* sofree (so);	/* gak!!! you can't do that here */
134 }
135 
136 /*
137  *  Create a template to be used to send X.25 packets on a logical
138  *  channel. It allocates an mbuf and fills in a skeletal packet
139  *  depending on its type. This packet is passed to pk_output where
140  *  the remainer of the packet is filled in.
141 */
142 
143 struct mbuf *
144 pk_template (lcn, type)
145 int lcn, type;
146 {
147 	register struct mbuf *m;
148 	register struct x25_packet *xp;
149 
150 	MGETHDR (m, M_DONTWAIT, MT_HEADER);
151 	if (m == 0)
152 		panic ("pk_template");
153 	m -> m_act = 0;
154 
155 	/*
156 	 * Efficiency hack: leave a four byte gap at the beginning
157 	 * of the packet level header with the hope that this will
158 	 * be enough room for the link level to insert its header.
159 	 */
160 	m -> m_data += max_linkhdr;
161 	m -> m_pkthdr.len = m -> m_len = PKHEADERLN;
162 
163 	xp = mtod (m, struct x25_packet *);
164 	*(long *)xp = 0;		/* ugly, but fast */
165 /*	xp -> q_bit = 0;*/
166 	xp -> fmt_identifier = 1;
167 /*	xp -> lc_group_number = 0;*/
168 
169 	SET_LCN(xp, lcn);
170 	xp -> packet_type = type;
171 
172 	return (m);
173 }
174 
175 /*
176  *  This routine restarts all the virtual circuits. Actually,
177  *  the virtual circuits are not "restarted" as such. Instead,
178  *  any active switched circuit is simply returned to READY
179  *  state.
180  */
181 
182 pk_restart (pkp, restart_cause)
183 register struct pkcb *pkp;
184 int restart_cause;
185 {
186 	register struct mbuf *m;
187 	register struct pklcd *lcp;
188 	register int i;
189 
190 	/* Restart all logical channels. */
191 	if (pkp -> pk_chan == 0)
192 		return;
193 	for (i = 1; i <= pkp -> pk_maxlcn; ++i)
194 		if ((lcp = pkp -> pk_chan[i]) != NULL) {
195 			if (lcp -> lcd_so) {
196 				lcp -> lcd_so -> so_error = ENETRESET;
197 				pk_close (lcp);
198 			} else {
199 				pk_flush (lcp);
200 				lcp -> lcd_state = READY;
201 				if (lcp -> lcd_upper)
202 					lcp -> lcd_upper (lcp, 0);
203 			}
204 		}
205 
206 	if (restart_cause < 0)
207 		return;
208 
209 	pkp -> pk_state = DTE_SENT_RESTART;
210 	lcp = pkp -> pk_chan[0];
211 	m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESTART);
212 	m -> m_pkthdr.len = m -> m_len += 2;
213 	mtod (m, struct x25_packet *) -> packet_data = 0;	/* DTE only */
214 	mtod (m, octet *)[4]  = restart_cause;
215 	pk_output (lcp);
216 }
217 
218 
219 /*
220  *  This procedure frees up the Logical Channel Descripter.
221  */
222 
223 pk_freelcd (lcp)
224 register struct pklcd *lcp;
225 {
226 	if (lcp == NULL)
227 		return;
228 
229 	if (lcp -> lcd_lcn > 0)
230 		lcp -> lcd_pkp -> pk_chan[lcp -> lcd_lcn] = NULL;
231 
232 	pk_flush (lcp);
233 	remque (&lcp -> lcd_q);
234 	free ((caddr_t)lcp, M_PCB);
235 }
236 
237 
238 /*
239  *  Bind a address and protocol value to a socket.  The important
240  *  part is the protocol value - the first four characters of the
241  *  Call User Data field.
242  */
243 
244 pk_bind (lcp, nam)
245 struct pklcd *lcp;
246 struct mbuf *nam;
247 {
248 	register struct pkcb *pkp;
249 	register struct pklcd *pp;
250 	register struct sockaddr_x25 *sa;
251 
252 	if (nam == NULL)
253 		return (EADDRNOTAVAIL);
254 	if (lcp -> lcd_ceaddr)				/* XXX */
255 		return (EADDRINUSE);
256 	if (pk_checksockaddr (nam))
257 		return (EINVAL);
258 	sa = mtod (nam, struct sockaddr_x25 *);
259 
260 	/*
261 	 * If the user wishes to accept calls only from a particular
262 	 * net (net != 0), make sure the net is known
263 	 */
264 
265 	if (sa -> x25_net)
266 		for (pkp = pkcbhead; ; pkp = pkp -> pk_next) {
267 			if (pkp == 0)
268 				return (ENETUNREACH);
269 			if (pkp -> pk_xcp -> xc_addr.x25_net == sa -> x25_net)
270 				break;
271 		}
272 
273 	/*
274 	 * For ISO's sake permit default listeners, but only one such . . .
275 	 */
276 	for (pp = pk_listenhead; pp; pp = pp -> lcd_listen) {
277 		register struct sockaddr_x25 *sa2 = pp -> lcd_ceaddr;
278 		if ((sa2 -> x25_udlen == sa -> x25_udlen) &&
279 		    (sa2 -> x25_udlen == 0 ||
280 		     (bcmp (sa2 -> x25_udata, sa -> x25_udata,
281 			    min (sa2 -> x25_udlen, sa -> x25_udlen)) == 0)))
282 				return (EADDRINUSE);
283 	}
284 	lcp -> lcd_laddr = *sa;
285 	lcp -> lcd_ceaddr = &lcp -> lcd_laddr;
286 	return (0);
287 }
288 
289 /*
290  * Include a bound control block in the list of listeners.
291  */
292 pk_listen (lcp)
293 register struct pklcd *lcp;
294 {
295 	register struct pklcd **pp;
296 
297 	if (lcp -> lcd_ceaddr == 0)
298 		return (EDESTADDRREQ);
299 
300 	lcp -> lcd_state = LISTEN;
301 	/*
302 	 * Add default listener at end, any others at start.
303 	 */
304 	if (lcp -> lcd_ceaddr -> x25_udlen == 0) {
305 		for (pp = &pk_listenhead; *pp; )
306 			pp = &((*pp) -> lcd_listen);
307 		*pp = lcp;
308 	} else {
309 		lcp -> lcd_listen = pk_listenhead;
310 		pk_listenhead = lcp;
311 	}
312 	return (0);
313 }
314 /*
315  * Include a listening control block for the benefit of other protocols.
316  */
317 pk_protolisten (spi, spilen, callee)
318 int (*callee) ();
319 {
320 	register struct pklcd *lcp = pk_attach ((struct socket *)0);
321 	register struct mbuf *nam;
322 	register struct sockaddr_x25 *sa;
323 	int error = ENOBUFS;
324 
325 	if (lcp) {
326 		if (nam = m_getclr (MT_SONAME, M_DONTWAIT)) {
327 			sa = mtod (nam, struct sockaddr_x25 *);
328 			sa -> x25_family = AF_CCITT;
329 			sa -> x25_len = nam -> m_len = sizeof (*sa);
330 			sa -> x25_udlen = spilen;
331 			sa -> x25_udata[0] = spi;
332 			lcp -> lcd_upper = callee;
333 			lcp -> lcd_flags = X25_MBS_HOLD;
334 			error = pk_bind (lcp, nam) || pk_listen (lcp);
335 			(void) m_free (nam);
336 		}
337 		if (error)
338 			pk_freelcd (lcp);
339 	}
340 	return error; /* Hopefully Zero !*/
341 }
342 
343 /*
344  * Associate a logical channel descriptor with a network.
345  * Fill in the default network specific parameters and then
346  * set any parameters explicitly specified by the user or
347  * by the remote DTE.
348  */
349 
350 pk_assoc (pkp, lcp, sa)
351 register struct pkcb *pkp;
352 register struct pklcd *lcp;
353 register struct sockaddr_x25 *sa;
354 {
355 
356 	lcp -> lcd_pkp = pkp;
357 	lcp -> lcd_packetsize = pkp -> pk_xcp -> xc_psize;
358 	lcp -> lcd_windowsize = pkp -> pk_xcp -> xc_pwsize;
359 	lcp -> lcd_rsn = MODULUS - 1;
360 	pkp -> pk_chan[lcp -> lcd_lcn] = lcp;
361 
362 	if (sa -> x25_opts.op_psize)
363 		lcp -> lcd_packetsize = sa -> x25_opts.op_psize;
364 	else
365 		sa -> x25_opts.op_psize = lcp -> lcd_packetsize;
366 	if (sa -> x25_opts.op_wsize)
367 		lcp -> lcd_windowsize = sa -> x25_opts.op_wsize;
368 	else
369 		sa -> x25_opts.op_wsize = lcp -> lcd_windowsize;
370 	sa -> x25_net = pkp -> pk_xcp -> xc_addr.x25_net;
371 	lcp -> lcd_flags = sa -> x25_opts.op_flags;
372 	lcp -> lcd_stime = time.tv_sec;
373 }
374 
375 pk_connect (lcp, sa)
376 register struct pklcd *lcp;
377 register struct sockaddr_x25 *sa;
378 {
379 	register struct pkcb *pkp;
380 
381 	if (sa -> x25_addr[0] == '\0')
382 		return (EDESTADDRREQ);
383 	if (lcp -> lcd_pkp == 0)
384 	    for (pkp = pkcbhead; ; pkp = pkp -> pk_next) {
385 		if (pkp == 0)
386 			return (ENETUNREACH);
387 		/*
388 		 * use first net configured (last in list
389 		 * headed by pkcbhead) if net is zero
390 		 */
391 		if (sa -> x25_net == 0 && pkp -> pk_next == 0)
392 			break;
393 		if (sa -> x25_net == pkp -> pk_xcp -> xc_addr.x25_net)
394 			break;
395 	}
396 
397 	if (pkp -> pk_state != DTE_READY)
398 		return (ENETDOWN);
399 	if ((lcp -> lcd_lcn = pk_getlcn (pkp)) == 0)
400 		return (EMFILE);
401 	lcp -> lcd_faddr = *sa;
402 	lcp -> lcd_ceaddr = & lcp -> lcd_faddr;
403 	pk_assoc (pkp, lcp, lcp -> lcd_ceaddr);
404 	if (lcp -> lcd_so)
405 		soisconnecting (lcp -> lcd_so);
406 	lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL);
407 	pk_callrequest (lcp, lcp -> lcd_ceaddr, pkp -> pk_xcp);
408 	return (*pkp -> pk_start) (lcp);
409 }
410 
411 struct bcdinfo {
412 	octet *cp;
413 	unsigned posn;
414 };
415 /*
416  *  Build the rest of the CALL REQUEST packet. Fill in calling
417  *  address, facilities fields and the user data field.
418  */
419 
420 pk_callrequest (lcp, sa, xcp)
421 struct pklcd *lcp;
422 register struct sockaddr_x25 *sa;
423 register struct x25config *xcp;
424 {
425 	register struct x25_calladdr *a;
426 	register struct mbuf *m = lcp -> lcd_template;
427 	register struct x25_packet *xp = mtod (m, struct x25_packet *);
428 	struct bcdinfo b;
429 
430 	if (lcp -> lcd_flags & X25_DBIT)
431 		xp -> d_bit = 1;
432 	a = (struct x25_calladdr *) &xp -> packet_data;
433 	b.cp = (octet *) a -> address_field;
434 	b.posn = 0;
435 	a -> called_addrlen = to_bcd (&b, sa, xcp);
436 	a -> calling_addrlen = to_bcd (&b, &xcp -> xc_addr, xcp);
437 	if (b.posn & 0x01)
438 		*b.cp++ &= 0xf0;
439 	m -> m_pkthdr.len = m -> m_len += b.cp - (octet *) a;
440 
441 	if (lcp -> lcd_facilities) {
442 		m -> m_pkthdr.len +=
443 			(m -> m_next = lcp -> lcd_facilities) -> m_pkthdr.len;
444 		lcp -> lcd_facilities = 0;
445 	} else
446 		pk_build_facilities (m, sa, (int)xcp -> xc_type);
447 
448 	m_copyback (m, m -> m_pkthdr.len, sa -> x25_udlen, sa -> x25_udata);
449 }
450 
451 pk_build_facilities (m, sa, type)
452 register struct mbuf *m;
453 struct sockaddr_x25 *sa;
454 {
455 	register octet *cp;
456 	register octet *fcp;
457 	register int revcharge;
458 
459 	cp = mtod (m, octet *) + m -> m_len;
460 	fcp = cp + 1;
461 	revcharge = sa -> x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
462 	/*
463 	 * This is specific to Datapac X.25(1976) DTEs.  International
464 	 * calls must have the "hi priority" bit on.
465 	 */
466 	if (type == X25_1976 && sa -> x25_opts.op_psize == X25_PS128)
467 		revcharge |= 02;
468 	if (revcharge) {
469 		*fcp++ = FACILITIES_REVERSE_CHARGE;
470 		*fcp++ = revcharge;
471 	}
472 	switch (type) {
473 	case X25_1980:
474 	case X25_1984:
475 		*fcp++ = FACILITIES_PACKETSIZE;
476 		*fcp++ = sa -> x25_opts.op_psize;
477 		*fcp++ = sa -> x25_opts.op_psize;
478 
479 		*fcp++ = FACILITIES_WINDOWSIZE;
480 		*fcp++ = sa -> x25_opts.op_wsize;
481 		*fcp++ = sa -> x25_opts.op_wsize;
482 	}
483 	*cp = fcp - cp - 1;
484 	m -> m_pkthdr.len = (m -> m_len += *cp + 1);
485 }
486 
487 to_bcd (b, sa, xcp)
488 register struct bcdinfo *b;
489 struct sockaddr_x25 *sa;
490 register struct x25config *xcp;
491 {
492 	register char *x = sa -> x25_addr;
493 	unsigned start = b -> posn;
494 	/*
495 	 * The nodnic and prepnd0 stuff looks tedious,
496 	 * but it does allow full X.121 addresses to be used,
497 	 * which is handy for routing info (& OSI type 37 addresses).
498 	 */
499 	if (xcp -> xc_addr.x25_net && (xcp -> xc_nodnic || xcp -> xc_prepnd0)) {
500 		char dnicname[sizeof(long) * NBBY/3 + 2];
501 		register char *p = dnicname;
502 
503 		sprintf (p, "%d", xcp -> xc_addr.x25_net & 0x7fff);
504 		for (; *p; p++) /* *p == 0 means dnic matched */
505 			if ((*p ^ *x++) & 0x0f)
506 				break;
507 		if (*p || xcp -> xc_nodnic == 0)
508 			x = sa -> x25_addr;
509 		if (*p && xcp -> xc_prepnd0) {
510 			if ((b -> posn)++ & 0x01)
511 				*(b -> cp)++;
512 			else
513 				*(b -> cp) = 0;
514 		}
515 	}
516 	while (*x)
517 		if ((b -> posn)++ & 0x01)
518 			*(b -> cp)++ |= *x++ & 0x0F;
519 		else
520 			*(b -> cp) = *x++ << 4;
521 	return ((b -> posn) - start);
522 }
523 
524 /*
525  *  This routine gets the  first available logical channel number.  The
526  *  search is from the highest number to lowest number (DTE).
527  */
528 
529 pk_getlcn (pkp)
530 register struct pkcb *pkp;
531 {
532 	register int i;
533 
534 	if (pkp -> pk_chan == 0)
535 		return (0);
536 	for (i = pkp -> pk_maxlcn; i > 0; --i)
537 		if (pkp -> pk_chan[i] == NULL)
538 			break;
539 	return (i);
540 
541 }
542 
543 /*
544  *  This procedure sends a CLEAR request packet. The lc state is
545  *  set to "SENT_CLEAR".
546  */
547 
548 pk_clear (lcp, diagnostic, abortive)
549 register struct pklcd *lcp;
550 {
551 	register struct mbuf *m = pk_template (lcp -> lcd_lcn, X25_CLEAR);
552 
553 	m -> m_len += 2;
554 	mtod (m, struct x25_packet *) -> packet_data = 0;
555 	mtod (m, octet *)[4] = diagnostic;
556 	if (lcp -> lcd_facilities) {
557 		m -> m_next = lcp -> lcd_facilities;
558 		m -> m_pkthdr.len += m -> m_next -> m_len;
559 		lcp -> lcd_facilities = 0;
560 	}
561 	if (abortive)
562 		lcp -> lcd_template = m;
563 	else {
564 		struct socket *so = lcp -> lcd_so;
565 		struct sockbuf *sb = so ? & so -> so_snd : & lcp -> lcd_sb;
566 		sbappendrecord (sb, m);
567 	}
568 	pk_output (lcp);
569 
570 }
571 
572 /*
573  * This procedure generates RNR's or RR's to inhibit or enable
574  * inward data flow, if the current state changes (blocked ==> open or
575  * vice versa), or if forced to generate one.  One forces RNR's to ack data.
576  */
577 pk_flowcontrol (lcp, inhibit, forced)
578 register struct pklcd *lcp;
579 {
580 	inhibit = (inhibit != 0);
581 	if (lcp == 0 || lcp -> lcd_state != DATA_TRANSFER ||
582 	    (forced == 0 && lcp -> lcd_rxrnr_condition == inhibit))
583 		return;
584 	lcp -> lcd_rxrnr_condition = inhibit;
585 	lcp -> lcd_template = pk_template (lcp -> lcd_lcn, inhibit ? RNR : RR);
586 	pk_output (lcp);
587 }
588 
589 /*
590  *  This procedure sends a RESET request packet. It re-intializes
591  *  virtual circuit.
592  */
593 
594 static
595 pk_reset (lcp, diagnostic)
596 register struct pklcd *lcp;
597 {
598 	register struct mbuf *m;
599 	register struct socket *so = lcp -> lcd_so;
600 
601 	if (lcp -> lcd_state != DATA_TRANSFER)
602 		return;
603 
604 	if (so)
605 		so -> so_error = ECONNRESET;
606 	lcp -> lcd_reset_condition = TRUE;
607 
608 	/* Reset all the control variables for the channel. */
609 	pk_flush (lcp);
610 	lcp -> lcd_window_condition = lcp -> lcd_rnr_condition =
611 		lcp -> lcd_intrconf_pending = FALSE;
612 	lcp -> lcd_rsn = MODULUS - 1;
613 	lcp -> lcd_ssn = 0;
614 	lcp -> lcd_output_window = lcp -> lcd_input_window =
615 		lcp -> lcd_last_transmitted_pr = 0;
616 	m = lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET);
617 	m -> m_pkthdr.len = m -> m_len += 2;
618 	mtod (m, struct x25_packet *) -> packet_data = 0;
619 	mtod (m, octet *)[4] = diagnostic;
620 	pk_output (lcp);
621 
622 }
623 
624 /*
625  * This procedure frees all data queued for output or delivery on a
626  *  virtual circuit.
627  */
628 
629 pk_flush (lcp)
630 register struct pklcd *lcp;
631 {
632 	register struct socket *so;
633 
634 	if (lcp -> lcd_template)
635 		m_freem (lcp -> lcd_template);
636 
637 	if (lcp -> lcd_cps) {
638 		m_freem (lcp -> lcd_cps);
639 		lcp -> lcd_cps = 0;
640 	}
641 	if (lcp -> lcd_facilities) {
642 		m_freem (lcp -> lcd_facilities);
643 		lcp -> lcd_facilities = 0;
644 	}
645 	if (so = lcp -> lcd_so) {
646 		sbflush (&so -> so_rcv);
647 		sbflush (&so -> so_snd);
648 	} else
649 		sbflush (&lcp -> lcd_sb);
650 }
651 
652 /*
653  *  This procedure handles all local protocol procedure errors.
654  */
655 
656 pk_procerror (error, lcp, errstr, diagnostic)
657 register struct pklcd *lcp;
658 char *errstr;
659 {
660 
661 	pk_message (lcp -> lcd_lcn, lcp -> lcd_pkp -> pk_xcp, errstr);
662 
663 	switch (error) {
664 	case CLEAR:
665 		if (lcp -> lcd_so) {
666 			lcp -> lcd_so -> so_error = ECONNABORTED;
667 			soisdisconnecting (lcp -> lcd_so);
668 		}
669 		pk_clear (lcp, diagnostic, 1);
670 		break;
671 
672 	case RESET:
673 		pk_reset (lcp, diagnostic);
674 	}
675 }
676 
677 /*
678  *  This procedure is called during the DATA TRANSFER state to check
679  *  and  process  the P(R) values  received  in the DATA,  RR OR RNR
680  *  packets.
681  */
682 
683 pk_ack (lcp, pr)
684 struct pklcd *lcp;
685 unsigned pr;
686 {
687 	register struct socket *so = lcp -> lcd_so;
688 
689 	if (lcp -> lcd_output_window == pr)
690 		return (PACKET_OK);
691 	if (lcp -> lcd_output_window < lcp -> lcd_ssn) {
692 		if (pr < lcp -> lcd_output_window || pr > lcp -> lcd_ssn) {
693 			pk_procerror (RESET, lcp,
694 				"p(r) flow control error", 2);
695 			return (ERROR_PACKET);
696 		}
697 	}
698 	else {
699 		if (pr < lcp -> lcd_output_window && pr > lcp -> lcd_ssn) {
700 			pk_procerror (RESET, lcp,
701 				"p(r) flow control error #2", 2);
702 			return (ERROR_PACKET);
703 		}
704 	}
705 
706 	lcp -> lcd_output_window = pr;		/* Rotate window. */
707 	if (lcp -> lcd_window_condition == TRUE)
708 		lcp -> lcd_window_condition = FALSE;
709 
710 	if (so && ((so -> so_snd.sb_flags & SB_WAIT) || so -> so_snd.sb_sel))
711 		sowwakeup (so);
712 
713 	return (PACKET_OK);
714 }
715 
716 /*
717  *  This procedure decodes the X.25 level 3 packet returning a
718  *  code to be used in switchs or arrays.
719  */
720 
721 pk_decode (xp)
722 register struct x25_packet *xp;
723 {
724 	register int type;
725 
726 	if (xp -> fmt_identifier != 1)
727 		return (INVALID_PACKET);
728 #ifdef ancient_history
729 	/*
730 	 *  Make sure that the logical channel group number is 0.
731 	 *  This restriction may be removed at some later date.
732 	 */
733 	if (xp -> lc_group_number != 0)
734 		return (INVALID_PACKET);
735 #endif
736 	/*
737 	 *  Test for data packet first.
738 	 */
739 	if (!(xp -> packet_type & DATA_PACKET_DESIGNATOR))
740 		return (DATA);
741 
742 	/*
743 	 *  Test if flow control packet (RR or RNR).
744 	 */
745 	if (!(xp -> packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
746 		switch (xp -> packet_type & 0x1f) {
747 		case X25_RR:
748 			return (RR);
749 		case X25_RNR:
750 			return (RNR);
751 		case X25_REJECT:
752 			return (REJECT);
753 		}
754 
755 	/*
756 	 *  Determine the rest of the packet types.
757 	 */
758 	switch (xp -> packet_type) {
759 	case X25_CALL:
760 		type = CALL;
761 		break;
762 
763 	case X25_CALL_ACCEPTED:
764 		type = CALL_ACCEPTED;
765 		break;
766 
767 	case X25_CLEAR:
768 		type = CLEAR;
769 		break;
770 
771 	case X25_CLEAR_CONFIRM:
772 		type = CLEAR_CONF;
773 		break;
774 
775 	case X25_INTERRUPT:
776 		type = INTERRUPT;
777 		break;
778 
779 	case X25_INTERRUPT_CONFIRM:
780 		type = INTERRUPT_CONF;
781 		break;
782 
783 	case X25_RESET:
784 		type = RESET;
785 		break;
786 
787 	case X25_RESET_CONFIRM:
788 		type = RESET_CONF;
789 		break;
790 
791 	case X25_RESTART:
792 		type = RESTART;
793 		break;
794 
795 	case X25_RESTART_CONFIRM:
796 		type = RESTART_CONF;
797 		break;
798 
799 	case X25_DIAGNOSTIC:
800 		type = DIAG_TYPE;
801 		break;
802 
803 	default:
804 		type = INVALID_PACKET;
805 	}
806 	return (type);
807 }
808 
809 /*
810  *  A restart packet has been received. Print out the reason
811  *  for the restart.
812  */
813 
814 pk_restartcause (pkp, xp)
815 struct pkcb *pkp;
816 register struct x25_packet *xp;
817 {
818 	register struct x25config *xcp = pkp -> pk_xcp;
819 	register int lcn = LCN(xp);
820 
821 	switch (xp -> packet_data) {
822 	case X25_RESTART_LOCAL_PROCEDURE_ERROR:
823 		pk_message (lcn, xcp, "restart: local procedure error");
824 		break;
825 
826 	case X25_RESTART_NETWORK_CONGESTION:
827 		pk_message (lcn, xcp, "restart: network congestion");
828 		break;
829 
830 	case X25_RESTART_NETWORK_OPERATIONAL:
831 		pk_message (lcn, xcp, "restart: network operational");
832 		break;
833 
834 	default:
835 		pk_message (lcn, xcp, "restart: unknown cause");
836 	}
837 }
838 
839 #define MAXRESETCAUSE	7
840 
841 int     Reset_cause[] = {
842 	EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
843 };
844 
845 /*
846  *  A reset packet has arrived. Return the cause to the user.
847  */
848 
849 pk_resetcause (pkp, xp)
850 struct pkcb *pkp;
851 register struct x25_packet *xp;
852 {
853 	register struct pklcd *lcp =
854 				pkp -> pk_chan[LCN(xp)];
855 	register int code = xp -> packet_data;
856 
857 	if (code > MAXRESETCAUSE)
858 		code = 7;	/* EXRNCG */
859 
860 	pk_message(LCN(xp), lcp -> lcd_pkp, "reset code 0x%x, diagnostic 0x%x",
861 			xp -> packet_data, 4[(u_char *)xp]);
862 
863 	lcp -> lcd_so -> so_error = Reset_cause[code];
864 }
865 
866 #define MAXCLEARCAUSE	25
867 
868 int     Clear_cause[] = {
869 	EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
870 	0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
871 	0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
872 };
873 
874 /*
875  *  A clear packet has arrived. Return the cause to the user.
876  */
877 
878 pk_clearcause (pkp, xp)
879 struct pkcb *pkp;
880 register struct x25_packet *xp;
881 {
882 	register struct pklcd *lcp =
883 		pkp -> pk_chan[LCN(xp)];
884 	register int code = xp -> packet_data;
885 
886 	if (code > MAXCLEARCAUSE)
887 		code = 5;	/* EXRNCG */
888 	if (lcp -> lcd_so)
889 		lcp -> lcd_so -> so_error = Clear_cause[code];
890 }
891 
892 char *
893 format_ntn (xcp)
894 register struct x25config *xcp;
895 {
896 
897 	return (xcp -> xc_addr.x25_addr);
898 }
899 
900 /* VARARGS1 */
901 pk_message (lcn, xcp, fmt, a1, a2, a3, a4, a5, a6)
902 struct x25config *xcp;
903 char *fmt;
904 {
905 
906 	if (lcn)
907 		if (pkcbhead -> pk_next)
908 			printf ("X.25(%s): lcn %d: ", format_ntn (xcp), lcn);
909 		else
910 			printf ("X.25: lcn %d: ", lcn);
911 	else
912 		if (pkcbhead -> pk_next)
913 			printf ("X.25(%s): ", format_ntn (xcp));
914 		else
915 			printf ("X.25: ");
916 
917 	printf (fmt, a1, a2, a3, a4, a5, a6);
918 	printf ("\n");
919 }
920 
921 pk_ifattach (ia, lloutput, llnext)
922 register struct x25_ifaddr *ia;
923 int (*lloutput) ();
924 caddr_t llnext;
925 {
926 	/* this is here because you can't include both pk_var and hd_var */
927 	/* this will probably be replace by a streams gluing mechanism */
928 	ia -> ia_pkcb.pk_lloutput = lloutput;
929 	ia -> ia_pkcb.pk_llnext = llnext;
930 }
931 
932 pk_fragment (lcp, m0, qbit, mbit, wait)
933 struct mbuf *m0;
934 register struct pklcd *lcp;
935 {
936 	register struct mbuf *m = m0;
937 	register struct x25_packet *xp;
938 	register struct sockbuf *sb;
939 	struct mbuf *head = 0, *next, **mp = &head, *m_split ();
940 	int totlen, psize = 1 << (lcp -> lcd_packetsize);
941 
942 	if (m == 0)
943 		return 0;
944 	if (m -> m_flags & M_PKTHDR == 0)
945 		panic ("pk_fragment");
946 	totlen = m -> m_pkthdr.len;
947 	m -> m_act = 0;
948 	sb = lcp -> lcd_so ? &lcp -> lcd_so -> so_snd : & lcp -> lcd_sb;
949 	do {
950 		if (totlen > psize) {
951 			if ((next = m_split (m, psize, wait)) == 0)
952 				goto abort;
953 			totlen -= psize;
954 		} else
955 			next = 0;
956 		M_PREPEND(m, PKHEADERLN, wait);
957 		if (m == 0)
958 			goto abort;
959 		*mp = m;
960 		mp = & m -> m_act;
961 		*mp = 0;
962 		xp = mtod (m, struct x25_packet *);
963 		0[(char *)xp] = 0;
964 		if (qbit)
965 			xp -> q_bit = 1;
966 		if (lcp -> lcd_flags & X25_DBIT)
967 			xp -> d_bit = 1;
968 		xp -> fmt_identifier = 1;
969 		xp -> packet_type = X25_DATA;
970 		SET_LCN(xp, lcp -> lcd_lcn);
971 		if (next || (mbit && (totlen == psize ||
972 				      (lcp -> lcd_flags & X25_DBIT))))
973 			MBIT(xp) = 1;
974 	} while (m = next);
975 	for (m = head; m; m = next) {
976 		next = m -> m_act;
977 		m -> m_act = 0;
978 		sbappendrecord (sb, m);
979 	}
980 	return 0;
981 abort:
982 	if (wait)
983 		panic ("pk_fragment null mbuf after wait");
984 	if (next)
985 		m_freem (next);
986 	for (m = head; m; m = next) {
987 		next = m -> m_act;
988 		m_freem (m);
989 	}
990 	return ENOBUFS;
991 }
992 
993 struct mbuf *
994 m_split (m0, len0, wait)
995 register struct mbuf *m0;
996 int len0;
997 {
998 	register struct mbuf *m, *n;
999 	unsigned len = len0;
1000 
1001 	for (m = m0; m && len > m -> m_len; m = m -> m_next)
1002 		len -= m -> m_len;
1003 	if (m == 0)
1004 		return (0);
1005 	if (m0 -> m_flags & M_PKTHDR) {
1006 		MGETHDR(n, wait, m0 -> m_type);
1007 		if (n == 0)
1008 			return (0);
1009 		n -> m_pkthdr.rcvif = m0 -> m_pkthdr.rcvif;
1010 		n -> m_pkthdr.len = m0 -> m_pkthdr.len - len0;
1011 		m0 -> m_pkthdr.len = len0;
1012 		if (m -> m_flags & M_EXT)
1013 			goto extpacket;
1014 		if (len > MHLEN) {
1015 			/* m can't be the lead packet */
1016 			MH_ALIGN(n, 0);
1017 			n -> m_next = m_split (m, len, wait);
1018 			if (n -> m_next == 0) {
1019 				(void) m_free (n);
1020 				return (0);
1021 			} else
1022 				return (n);
1023 		} else
1024 			MH_ALIGN(n, len);
1025 	} else if (len == m -> m_len) {
1026 		n = m -> m_next;
1027 		m -> m_next = 0;
1028 		return (n);
1029 	}
1030 extpacket:
1031 	len = m -> m_len - len;		/* remainder to be copied */
1032 	m -> m_len -= len;		/* now equals original len */
1033 	if (m -> m_flags & M_EXT) {
1034 		n -> m_flags |= M_EXT;
1035 		n -> m_ext = m -> m_ext;
1036 		mclrefcnt[mtocl (m -> m_ext.ext_buf)]++;
1037 		n -> m_data = m -> m_data + m -> m_len;
1038 	} else {
1039 		MGET(n, wait, m -> m_type);
1040 		if (n == 0) {
1041 			m -> m_len += len;
1042 			return (0);
1043 		}
1044 		M_ALIGN(n, len);
1045 		bcopy (mtod (m, caddr_t), mtod (n, caddr_t), len);
1046 	}
1047 	n -> m_len = len;
1048 	n -> m_next = m -> m_next;
1049 	m -> m_next = 0;
1050 	return (n);
1051 }
1052