xref: /original-bsd/sys/netinet/tcp_subr.c (revision 3839ed90)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)tcp_subr.c	7.26 (Berkeley) 04/18/93
8  */
9 
10 #include <sys/param.h>
11 #include <sys/proc.h>
12 #include <sys/systm.h>
13 #include <sys/malloc.h>
14 #include <sys/mbuf.h>
15 #include <sys/socket.h>
16 #include <sys/socketvar.h>
17 #include <sys/protosw.h>
18 #include <sys/errno.h>
19 
20 #include <net/route.h>
21 #include <net/if.h>
22 
23 #include <netinet/in.h>
24 #include <netinet/in_systm.h>
25 #include <netinet/ip.h>
26 #include <netinet/in_pcb.h>
27 #include <netinet/ip_var.h>
28 #include <netinet/ip_icmp.h>
29 #include <netinet/tcp.h>
30 #include <netinet/tcp_fsm.h>
31 #include <netinet/tcp_seq.h>
32 #include <netinet/tcp_timer.h>
33 #include <netinet/tcp_var.h>
34 #include <netinet/tcpip.h>
35 
36 /* patchable/settable parameters for tcp */
37 int 	tcp_mssdflt = TCP_MSS;
38 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
39 int	tcp_do_rfc1323 = 1;
40 
41 extern	struct inpcb *tcp_last_inpcb;
42 
43 /*
44  * Tcp initialization
45  */
46 tcp_init()
47 {
48 
49 	tcp_iss = 1;		/* wrong */
50 	tcb.inp_next = tcb.inp_prev = &tcb;
51 	if (max_protohdr < sizeof(struct tcpiphdr))
52 		max_protohdr = sizeof(struct tcpiphdr);
53 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
54 		panic("tcp_init");
55 }
56 
57 /*
58  * Create template to be used to send tcp packets on a connection.
59  * Call after host entry created, allocates an mbuf and fills
60  * in a skeletal tcp/ip header, minimizing the amount of work
61  * necessary when the connection is used.
62  */
63 struct tcpiphdr *
64 tcp_template(tp)
65 	struct tcpcb *tp;
66 {
67 	register struct inpcb *inp = tp->t_inpcb;
68 	register struct mbuf *m;
69 	register struct tcpiphdr *n;
70 
71 	if ((n = tp->t_template) == 0) {
72 		m = m_get(M_DONTWAIT, MT_HEADER);
73 		if (m == NULL)
74 			return (0);
75 		m->m_len = sizeof (struct tcpiphdr);
76 		n = mtod(m, struct tcpiphdr *);
77 	}
78 	n->ti_next = n->ti_prev = 0;
79 	n->ti_x1 = 0;
80 	n->ti_pr = IPPROTO_TCP;
81 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
82 	n->ti_src = inp->inp_laddr;
83 	n->ti_dst = inp->inp_faddr;
84 	n->ti_sport = inp->inp_lport;
85 	n->ti_dport = inp->inp_fport;
86 	n->ti_seq = 0;
87 	n->ti_ack = 0;
88 	n->ti_x2 = 0;
89 	n->ti_off = 5;
90 	n->ti_flags = 0;
91 	n->ti_win = 0;
92 	n->ti_sum = 0;
93 	n->ti_urp = 0;
94 	return (n);
95 }
96 
97 /*
98  * Send a single message to the TCP at address specified by
99  * the given TCP/IP header.  If m == 0, then we make a copy
100  * of the tcpiphdr at ti and send directly to the addressed host.
101  * This is used to force keep alive messages out using the TCP
102  * template for a connection tp->t_template.  If flags are given
103  * then we send a message back to the TCP which originated the
104  * segment ti, and discard the mbuf containing it and any other
105  * attached mbufs.
106  *
107  * In any case the ack and sequence number of the transmitted
108  * segment are as specified by the parameters.
109  */
110 tcp_respond(tp, ti, m, ack, seq, flags)
111 	struct tcpcb *tp;
112 	register struct tcpiphdr *ti;
113 	register struct mbuf *m;
114 	tcp_seq ack, seq;
115 	int flags;
116 {
117 	register int tlen;
118 	int win = 0;
119 	struct route *ro = 0;
120 
121 	if (tp) {
122 		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
123 		ro = &tp->t_inpcb->inp_route;
124 	}
125 	if (m == 0) {
126 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
127 		if (m == NULL)
128 			return;
129 #ifdef TCP_COMPAT_42
130 		tlen = 1;
131 #else
132 		tlen = 0;
133 #endif
134 		m->m_data += max_linkhdr;
135 		*mtod(m, struct tcpiphdr *) = *ti;
136 		ti = mtod(m, struct tcpiphdr *);
137 		flags = TH_ACK;
138 	} else {
139 		m_freem(m->m_next);
140 		m->m_next = 0;
141 		m->m_data = (caddr_t)ti;
142 		m->m_len = sizeof (struct tcpiphdr);
143 		tlen = 0;
144 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
145 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
146 		xchg(ti->ti_dport, ti->ti_sport, u_short);
147 #undef xchg
148 	}
149 	ti->ti_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
150 	tlen += sizeof (struct tcpiphdr);
151 	m->m_len = tlen;
152 	m->m_pkthdr.len = tlen;
153 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
154 	ti->ti_next = ti->ti_prev = 0;
155 	ti->ti_x1 = 0;
156 	ti->ti_seq = htonl(seq);
157 	ti->ti_ack = htonl(ack);
158 	ti->ti_x2 = 0;
159 	ti->ti_off = sizeof (struct tcphdr) >> 2;
160 	ti->ti_flags = flags;
161 	if (tp)
162 		ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
163 	else
164 		ti->ti_win = htons((u_short)win);
165 	ti->ti_urp = 0;
166 	ti->ti_sum = 0;
167 	ti->ti_sum = in_cksum(m, tlen);
168 	((struct ip *)ti)->ip_len = tlen;
169 	((struct ip *)ti)->ip_ttl = ip_defttl;
170 	(void) ip_output(m, (struct mbuf *)0, ro, 0);
171 }
172 
173 /*
174  * Create a new TCP control block, making an
175  * empty reassembly queue and hooking it to the argument
176  * protocol control block.
177  */
178 struct tcpcb *
179 tcp_newtcpcb(inp)
180 	struct inpcb *inp;
181 {
182 	register struct tcpcb *tp;
183 
184 	tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
185 	if (tp == NULL)
186 		return ((struct tcpcb *)0);
187 	bzero((char *) tp, sizeof(struct tcpcb));
188 	tp->seg_next = tp->seg_prev = (struct tcpiphdr *)tp;
189 	tp->t_maxseg = tcp_mssdflt;
190 
191 	tp->t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
192 	tp->t_inpcb = inp;
193 	/*
194 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
195 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
196 	 * reasonable initial retransmit time.
197 	 */
198 	tp->t_srtt = TCPTV_SRTTBASE;
199 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << 2;
200 	tp->t_rttmin = TCPTV_MIN;
201 	TCPT_RANGESET(tp->t_rxtcur,
202 	    ((TCPTV_SRTTBASE >> 2) + (TCPTV_SRTTDFLT << 2)) >> 1,
203 	    TCPTV_MIN, TCPTV_REXMTMAX);
204 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
205 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
206 	inp->inp_ip.ip_ttl = ip_defttl;
207 	inp->inp_ppcb = (caddr_t)tp;
208 	return (tp);
209 }
210 
211 /*
212  * Drop a TCP connection, reporting
213  * the specified error.  If connection is synchronized,
214  * then send a RST to peer.
215  */
216 struct tcpcb *
217 tcp_drop(tp, errno)
218 	register struct tcpcb *tp;
219 	int errno;
220 {
221 	struct socket *so = tp->t_inpcb->inp_socket;
222 
223 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
224 		tp->t_state = TCPS_CLOSED;
225 		(void) tcp_output(tp);
226 		tcpstat.tcps_drops++;
227 	} else
228 		tcpstat.tcps_conndrops++;
229 	if (errno == ETIMEDOUT && tp->t_softerror)
230 		errno = tp->t_softerror;
231 	so->so_error = errno;
232 	return (tcp_close(tp));
233 }
234 
235 /*
236  * Close a TCP control block:
237  *	discard all space held by the tcp
238  *	discard internet protocol block
239  *	wake up any sleepers
240  */
241 struct tcpcb *
242 tcp_close(tp)
243 	register struct tcpcb *tp;
244 {
245 	register struct tcpiphdr *t;
246 	struct inpcb *inp = tp->t_inpcb;
247 	struct socket *so = inp->inp_socket;
248 	register struct mbuf *m;
249 #ifdef RTV_RTT
250 	register struct rtentry *rt;
251 
252 	/*
253 	 * If we sent enough data to get some meaningful characteristics,
254 	 * save them in the routing entry.  'Enough' is arbitrarily
255 	 * defined as the sendpipesize (default 4K) * 16.  This would
256 	 * give us 16 rtt samples assuming we only get one sample per
257 	 * window (the usual case on a long haul net).  16 samples is
258 	 * enough for the srtt filter to converge to within 5% of the correct
259 	 * value; fewer samples and we could save a very bogus rtt.
260 	 *
261 	 * Don't update the default route's characteristics and don't
262 	 * update anything that the user "locked".
263 	 */
264 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
265 	    (rt = inp->inp_route.ro_rt) &&
266 	    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr != INADDR_ANY) {
267 		register u_long i;
268 
269 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
270 			i = tp->t_srtt *
271 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
272 			if (rt->rt_rmx.rmx_rtt && i)
273 				/*
274 				 * filter this update to half the old & half
275 				 * the new values, converting scale.
276 				 * See route.h and tcp_var.h for a
277 				 * description of the scaling constants.
278 				 */
279 				rt->rt_rmx.rmx_rtt =
280 				    (rt->rt_rmx.rmx_rtt + i) / 2;
281 			else
282 				rt->rt_rmx.rmx_rtt = i;
283 		}
284 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
285 			i = tp->t_rttvar *
286 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
287 			if (rt->rt_rmx.rmx_rttvar && i)
288 				rt->rt_rmx.rmx_rttvar =
289 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
290 			else
291 				rt->rt_rmx.rmx_rttvar = i;
292 		}
293 		/*
294 		 * update the pipelimit (ssthresh) if it has been updated
295 		 * already or if a pipesize was specified & the threshhold
296 		 * got below half the pipesize.  I.e., wait for bad news
297 		 * before we start updating, then update on both good
298 		 * and bad news.
299 		 */
300 		if ((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
301 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh ||
302 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
303 			/*
304 			 * convert the limit from user data bytes to
305 			 * packets then to packet data bytes.
306 			 */
307 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
308 			if (i < 2)
309 				i = 2;
310 			i *= (u_long)(tp->t_maxseg + sizeof (struct tcpiphdr));
311 			if (rt->rt_rmx.rmx_ssthresh)
312 				rt->rt_rmx.rmx_ssthresh =
313 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
314 			else
315 				rt->rt_rmx.rmx_ssthresh = i;
316 		}
317 	}
318 #endif RTV_RTT
319 	/* free the reassembly queue, if any */
320 	t = tp->seg_next;
321 	while (t != (struct tcpiphdr *)tp) {
322 		t = (struct tcpiphdr *)t->ti_next;
323 		m = REASS_MBUF((struct tcpiphdr *)t->ti_prev);
324 		remque(t->ti_prev);
325 		m_freem(m);
326 	}
327 	if (tp->t_template)
328 		(void) m_free(dtom(tp->t_template));
329 	free(tp, M_PCB);
330 	inp->inp_ppcb = 0;
331 	soisdisconnected(so);
332 	/* clobber input pcb cache if we're closing the cached connection */
333 	if (inp == tcp_last_inpcb)
334 		tcp_last_inpcb = &tcb;
335 	in_pcbdetach(inp);
336 	tcpstat.tcps_closed++;
337 	return ((struct tcpcb *)0);
338 }
339 
340 tcp_drain()
341 {
342 
343 }
344 
345 /*
346  * Notify a tcp user of an asynchronous error;
347  * store error as soft error, but wake up user
348  * (for now, won't do anything until can select for soft error).
349  */
350 tcp_notify(inp, error)
351 	struct inpcb *inp;
352 	int error;
353 {
354 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
355 	register struct socket *so = inp->inp_socket;
356 
357 	/*
358 	 * Ignore some errors if we are hooked up.
359 	 * If connection hasn't completed, has retransmitted several times,
360 	 * and receives a second error, give up now.  This is better
361 	 * than waiting a long time to establish a connection that
362 	 * can never complete.
363 	 */
364 	if (tp->t_state == TCPS_ESTABLISHED &&
365 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
366 	      error == EHOSTDOWN)) {
367 		return;
368 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
369 	    tp->t_softerror)
370 		so->so_error = error;
371 	else
372 		tp->t_softerror = error;
373 	wakeup((caddr_t) &so->so_timeo);
374 	sorwakeup(so);
375 	sowwakeup(so);
376 }
377 
378 tcp_ctlinput(cmd, sa, ip)
379 	int cmd;
380 	struct sockaddr *sa;
381 	register struct ip *ip;
382 {
383 	register struct tcphdr *th;
384 	extern struct in_addr zeroin_addr;
385 	extern u_char inetctlerrmap[];
386 	int (*notify)() = tcp_notify, tcp_quench();
387 
388 	if (cmd == PRC_QUENCH)
389 		notify = tcp_quench;
390 	else if (!PRC_IS_REDIRECT(cmd) &&
391 		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
392 		return;
393 	if (ip) {
394 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
395 		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
396 			cmd, notify);
397 	} else
398 		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
399 }
400 
401 /*
402  * When a source quench is received, close congestion window
403  * to one segment.  We will gradually open it again as we proceed.
404  */
405 tcp_quench(inp)
406 	struct inpcb *inp;
407 {
408 	struct tcpcb *tp = intotcpcb(inp);
409 
410 	if (tp)
411 		tp->snd_cwnd = tp->t_maxseg;
412 }
413