xref: /original-bsd/sys/netns/spp_usrreq.c (revision 5fd6b0d9)
1 /*
2  * Copyright (c) 1984, 1985, 1986, 1987 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  *	@(#)spp_usrreq.c	7.9 (Berkeley) 10/12/88
18  */
19 
20 #include "param.h"
21 #include "systm.h"
22 #include "dir.h"
23 #include "user.h"
24 #include "malloc.h"
25 #include "mbuf.h"
26 #include "protosw.h"
27 #include "socket.h"
28 #include "socketvar.h"
29 #include "errno.h"
30 
31 #include "../net/if.h"
32 #include "../net/route.h"
33 #include "../netinet/tcp_fsm.h"
34 
35 #include "ns.h"
36 #include "ns_pcb.h"
37 #include "idp.h"
38 #include "idp_var.h"
39 #include "ns_error.h"
40 #include "sp.h"
41 #include "spidp.h"
42 #include "spp_timer.h"
43 #include "spp_var.h"
44 #include "spp_debug.h"
45 
46 /*
47  * SP protocol implementation.
48  */
49 spp_init()
50 {
51 
52 	spp_iss = 1; /* WRONG !! should fish it out of TODR */
53 }
54 struct spidp spp_savesi;
55 int traceallspps = 0;
56 extern int sppconsdebug;
57 int spp_hardnosed;
58 int spp_use_delack = 0;
59 u_short spp_newchecks[50];
60 
61 /*ARGSUSED*/
62 spp_input(m, nsp)
63 	register struct mbuf *m;
64 	register struct nspcb *nsp;
65 {
66 	register struct sppcb *cb;
67 	register struct spidp *si = mtod(m, struct spidp *);
68 	register struct socket *so;
69 	short ostate;
70 	int dropsocket = 0;
71 
72 
73 	sppstat.spps_rcvtotal++;
74 	if (nsp == 0) {
75 		panic("No nspcb in spp_input\n");
76 		return;
77 	}
78 
79 	cb = nstosppcb(nsp);
80 	if (cb == 0) goto bad;
81 
82 	if (m->m_len < sizeof(*si)) {
83 		if ((m = m_pullup(m, sizeof(*si))) == 0) {
84 			sppstat.spps_rcvshort++;
85 			return;
86 		}
87 		si = mtod(m, struct spidp *);
88 	}
89 	si->si_seq = ntohs(si->si_seq);
90 	si->si_ack = ntohs(si->si_ack);
91 	si->si_alo = ntohs(si->si_alo);
92 
93 	so = nsp->nsp_socket;
94 	if (so->so_options & SO_DEBUG || traceallspps) {
95 		ostate = cb->s_state;
96 		spp_savesi = *si;
97 	}
98 	if (so->so_options & SO_ACCEPTCONN) {
99 		struct sppcb *ocb = cb;
100 
101 		so = sonewconn(so);
102 		if (so == 0) {
103 			goto drop;
104 		}
105 		/*
106 		 * This is ugly, but ....
107 		 *
108 		 * Mark socket as temporary until we're
109 		 * committed to keeping it.  The code at
110 		 * ``drop'' and ``dropwithreset'' check the
111 		 * flag dropsocket to see if the temporary
112 		 * socket created here should be discarded.
113 		 * We mark the socket as discardable until
114 		 * we're committed to it below in TCPS_LISTEN.
115 		 */
116 		dropsocket++;
117 		nsp = (struct nspcb *)so->so_pcb;
118 		nsp->nsp_laddr = si->si_dna;
119 		cb = nstosppcb(nsp);
120 		cb->s_mtu = ocb->s_mtu;		/* preserve sockopts */
121 		cb->s_flags = ocb->s_flags;	/* preserve sockopts */
122 		cb->s_flags2 = ocb->s_flags2;	/* preserve sockopts */
123 		cb->s_state = TCPS_LISTEN;
124 	}
125 
126 	/*
127 	 * Packet received on connection.
128 	 * reset idle time and keep-alive timer;
129 	 */
130 	cb->s_idle = 0;
131 	cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
132 
133 	switch (cb->s_state) {
134 
135 	case TCPS_LISTEN:{
136 		struct mbuf *am;
137 		register struct sockaddr_ns *sns;
138 		struct ns_addr laddr;
139 
140 		/*
141 		 * If somebody here was carying on a conversation
142 		 * and went away, and his pen pal thinks he can
143 		 * still talk, we get the misdirected packet.
144 		 */
145 		if (spp_hardnosed && (si->si_did != 0 || si->si_seq != 0)) {
146 			spp_istat.gonawy++;
147 			goto dropwithreset;
148 		}
149 		am = m_get(M_DONTWAIT, MT_SONAME);
150 		if (am == NULL)
151 			goto drop;
152 		am->m_len = sizeof (struct sockaddr_ns);
153 		sns = mtod(am, struct sockaddr_ns *);
154 		sns->sns_family = AF_NS;
155 		sns->sns_addr = si->si_sna;
156 		laddr = nsp->nsp_laddr;
157 		if (ns_nullhost(laddr))
158 			nsp->nsp_laddr = si->si_dna;
159 		if (ns_pcbconnect(nsp, am)) {
160 			nsp->nsp_laddr = laddr;
161 			(void) m_free(am);
162 			spp_istat.noconn++;
163 			goto drop;
164 		}
165 		(void) m_free(am);
166 		spp_template(cb);
167 		dropsocket = 0;		/* committed to socket */
168 		cb->s_did = si->si_sid;
169 		cb->s_rack = si->si_ack;
170 		cb->s_ralo = si->si_alo;
171 #define THREEWAYSHAKE
172 #ifdef THREEWAYSHAKE
173 		cb->s_state = TCPS_SYN_RECEIVED;
174 		cb->s_force = 1 + SPPT_KEEP;
175 		sppstat.spps_accepts++;
176 		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
177 		}
178 		break;
179 	/*
180 	 * This state means that we have heard a response
181 	 * to our acceptance of their connection
182 	 * It is probably logically unnecessary in this
183 	 * implementation.
184 	 */
185 	 case TCPS_SYN_RECEIVED: {
186 		if (si->si_did!=cb->s_sid) {
187 			spp_istat.wrncon++;
188 			goto drop;
189 		}
190 #endif
191 		nsp->nsp_fport =  si->si_sport;
192 		cb->s_timer[SPPT_REXMT] = 0;
193 		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
194 		soisconnected(so);
195 		cb->s_state = TCPS_ESTABLISHED;
196 		sppstat.spps_accepts++;
197 		}
198 		break;
199 
200 	/*
201 	 * This state means that we have gotten a response
202 	 * to our attempt to establish a connection.
203 	 * We fill in the data from the other side,
204 	 * telling us which port to respond to, instead of the well-
205 	 * known one we might have sent to in the first place.
206 	 * We also require that this is a response to our
207 	 * connection id.
208 	 */
209 	case TCPS_SYN_SENT:
210 		if (si->si_did!=cb->s_sid) {
211 			spp_istat.notme++;
212 			goto drop;
213 		}
214 		sppstat.spps_connects++;
215 		cb->s_did = si->si_sid;
216 		cb->s_rack = si->si_ack;
217 		cb->s_ralo = si->si_alo;
218 		cb->s_dport = nsp->nsp_fport =  si->si_sport;
219 		cb->s_timer[SPPT_REXMT] = 0;
220 		cb->s_flags |= SF_ACKNOW;
221 		soisconnected(so);
222 		cb->s_state = TCPS_ESTABLISHED;
223 		/* Use roundtrip time of connection request for initial rtt */
224 		if (cb->s_rtt) {
225 			cb->s_srtt = cb->s_rtt << 3;
226 			cb->s_rttvar = cb->s_rtt << 1;
227 			SPPT_RANGESET(cb->s_rxtcur,
228 			    ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
229 			    SPPTV_MIN, SPPTV_REXMTMAX);
230 			    cb->s_rtt = 0;
231 		}
232 	}
233 	if (so->so_options & SO_DEBUG || traceallspps)
234 		spp_trace(SA_INPUT, (u_char)ostate, cb, &spp_savesi, 0);
235 
236 	m->m_len -= sizeof (struct idp);
237 	m->m_pkthdr.len -= sizeof (struct idp);
238 	m->m_data += sizeof (struct idp);
239 
240 	if (spp_reass(cb, si)) {
241 		(void) m_freem(m);
242 	}
243 	if (cb->s_force || (cb->s_flags & (SF_ACKNOW|SF_WIN|SF_RXT)))
244 		(void) spp_output(cb, (struct mbuf *)0);
245 	cb->s_flags &= ~(SF_WIN|SF_RXT);
246 	return;
247 
248 dropwithreset:
249 	if (dropsocket)
250 		(void) soabort(so);
251 	si->si_seq = ntohs(si->si_seq);
252 	si->si_ack = ntohs(si->si_ack);
253 	si->si_alo = ntohs(si->si_alo);
254 	ns_error(dtom(si), NS_ERR_NOSOCK, 0);
255 	if (cb->s_nspcb->nsp_socket->so_options & SO_DEBUG || traceallspps)
256 		spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
257 	return;
258 
259 drop:
260 bad:
261 	if (cb == 0 || cb->s_nspcb->nsp_socket->so_options & SO_DEBUG ||
262             traceallspps)
263 		spp_trace(SA_DROP, (u_char)ostate, cb, &spp_savesi, 0);
264 	m_freem(m);
265 }
266 
267 int spprexmtthresh = 3;
268 
269 /*
270  * This is structurally similar to the tcp reassembly routine
271  * but its function is somewhat different:  It merely queues
272  * packets up, and suppresses duplicates.
273  */
274 spp_reass(cb, si)
275 register struct sppcb *cb;
276 register struct spidp *si;
277 {
278 	register struct spidp_q *q;
279 	register struct mbuf *m;
280 	register struct socket *so = cb->s_nspcb->nsp_socket;
281 	char packetp = cb->s_flags & SF_HI;
282 	int incr;
283 	char wakeup = 0;
284 
285 	if (si == SI(0))
286 		goto present;
287 	/*
288 	 * Update our news from them.
289 	 */
290 	if (si->si_cc & SP_SA)
291 		cb->s_flags |= (spp_use_delack ? SF_DELACK : SF_ACKNOW);
292 	if (SSEQ_GT(si->si_alo, cb->s_ralo))
293 		cb->s_flags |= SF_WIN;
294 	if (SSEQ_LEQ(si->si_ack, cb->s_rack)) {
295 		if ((si->si_cc & SP_SP) && cb->s_rack != (cb->s_smax + 1)) {
296 			sppstat.spps_rcvdupack++;
297 			/*
298 			 * If this is a completely duplicate ack
299 			 * and other conditions hold, we assume
300 			 * a packet has been dropped and retransmit
301 			 * it exactly as in tcp_input().
302 			 */
303 			if (si->si_ack != cb->s_rack ||
304 			    si->si_alo != cb->s_ralo)
305 				cb->s_dupacks = 0;
306 			else if (++cb->s_dupacks == spprexmtthresh) {
307 				u_short onxt = cb->s_snxt;
308 				int cwnd = cb->s_cwnd;
309 
310 				cb->s_snxt = si->si_ack;
311 				cb->s_cwnd = CUNIT;
312 				cb->s_force = 1 + SPPT_REXMT;
313 				(void) spp_output(cb, (struct mbuf *)0);
314 				cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
315 				cb->s_rtt = 0;
316 				if (cwnd >= 4 * CUNIT)
317 					cb->s_cwnd = cwnd / 2;
318 				if (SSEQ_GT(onxt, cb->s_snxt))
319 					cb->s_snxt = onxt;
320 				return (1);
321 			}
322 		} else
323 			cb->s_dupacks = 0;
324 		goto update_window;
325 	}
326 	cb->s_dupacks = 0;
327 	/*
328 	 * If our correspondent acknowledges data we haven't sent
329 	 * TCP would drop the packet after acking.  We'll be a little
330 	 * more permissive
331 	 */
332 	if (SSEQ_GT(si->si_ack, (cb->s_smax + 1))) {
333 		sppstat.spps_rcvacktoomuch++;
334 		si->si_ack = cb->s_smax + 1;
335 	}
336 	sppstat.spps_rcvackpack++;
337 	/*
338 	 * If transmit timer is running and timed sequence
339 	 * number was acked, update smoothed round trip time.
340 	 * See discussion of algorithm in tcp_input.c
341 	 */
342 	if (cb->s_rtt && SSEQ_GT(si->si_ack, cb->s_rtseq)) {
343 		sppstat.spps_rttupdated++;
344 		if (cb->s_srtt != 0) {
345 			register short delta;
346 			delta = cb->s_rtt - (cb->s_srtt >> 3);
347 			if ((cb->s_srtt += delta) <= 0)
348 				cb->s_srtt = 1;
349 			if (delta < 0)
350 				delta = -delta;
351 			delta -= (cb->s_rttvar >> 2);
352 			if ((cb->s_rttvar += delta) <= 0)
353 				cb->s_rttvar = 1;
354 		} else {
355 			/*
356 			 * No rtt measurement yet
357 			 */
358 			cb->s_srtt = cb->s_rtt << 3;
359 			cb->s_rttvar = cb->s_rtt << 1;
360 		}
361 		cb->s_rtt = 0;
362 		cb->s_rxtshift = 0;
363 		SPPT_RANGESET(cb->s_rxtcur,
364 			((cb->s_srtt >> 2) + cb->s_rttvar) >> 1,
365 			SPPTV_MIN, SPPTV_REXMTMAX);
366 	}
367 	/*
368 	 * If all outstanding data is acked, stop retransmit
369 	 * timer and remember to restart (more output or persist).
370 	 * If there is more data to be acked, restart retransmit
371 	 * timer, using current (possibly backed-off) value;
372 	 */
373 	if (si->si_ack == cb->s_smax + 1) {
374 		cb->s_timer[SPPT_REXMT] = 0;
375 		cb->s_flags |= SF_RXT;
376 	} else if (cb->s_timer[SPPT_PERSIST] == 0)
377 		cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
378 	/*
379 	 * When new data is acked, open the congestion window.
380 	 * If the window gives us less than ssthresh packets
381 	 * in flight, open exponentially (maxseg at a time).
382 	 * Otherwise open linearly (maxseg^2 / cwnd at a time).
383 	 */
384 	incr = CUNIT;
385 	if (cb->s_cwnd > cb->s_ssthresh)
386 		incr = max(incr * incr / cb->s_cwnd, 1);
387 	cb->s_cwnd = min(cb->s_cwnd + incr, cb->s_cwmx);
388 	/*
389 	 * Trim Acked data from output queue.
390 	 */
391 	while ((m = so->so_snd.sb_mb) != NULL) {
392 		if (SSEQ_LT((mtod(m, struct spidp *))->si_seq, si->si_ack))
393 			sbdroprecord(&so->so_snd);
394 		else
395 			break;
396 	}
397 	sowwakeup(so);
398 	cb->s_rack = si->si_ack;
399 update_window:
400 	if (SSEQ_LT(cb->s_snxt, cb->s_rack))
401 		cb->s_snxt = cb->s_rack;
402 	if (SSEQ_LT(cb->s_swl1, si->si_seq) || cb->s_swl1 == si->si_seq &&
403 	    (SSEQ_LT(cb->s_swl2, si->si_ack) ||
404 	     cb->s_swl2 == si->si_ack && SSEQ_LT(cb->s_ralo, si->si_alo))) {
405 		/* keep track of pure window updates */
406 		if ((si->si_cc & SP_SP) && cb->s_swl2 == si->si_ack
407 		    && SSEQ_LT(cb->s_ralo, si->si_alo)) {
408 			sppstat.spps_rcvwinupd++;
409 			sppstat.spps_rcvdupack--;
410 		}
411 		cb->s_ralo = si->si_alo;
412 		cb->s_swl1 = si->si_seq;
413 		cb->s_swl2 = si->si_ack;
414 		cb->s_swnd = (1 + si->si_alo - si->si_ack);
415 		if (cb->s_swnd > cb->s_smxw)
416 			cb->s_smxw = cb->s_swnd;
417 		cb->s_flags |= SF_WIN;
418 	}
419 	/*
420 	 * If this packet number is higher than that which
421 	 * we have allocated refuse it, unless urgent
422 	 */
423 	if (SSEQ_GT(si->si_seq, cb->s_alo)) {
424 		if (si->si_cc & SP_SP) {
425 			sppstat.spps_rcvwinprobe++;
426 			return (1);
427 		} else
428 			sppstat.spps_rcvpackafterwin++;
429 		if (si->si_cc & SP_OB) {
430 			if (SSEQ_GT(si->si_seq, cb->s_alo + 60)) {
431 				ns_error(dtom(si), NS_ERR_FULLUP, 0);
432 				return (0);
433 			} /* else queue this packet; */
434 		} else {
435 			/*register struct socket *so = cb->s_nspcb->nsp_socket;
436 			if (so->so_state && SS_NOFDREF) {
437 				ns_error(dtom(si), NS_ERR_NOSOCK, 0);
438 				(void)spp_close(cb);
439 			} else
440 				       would crash system*/
441 			spp_istat.notyet++;
442 			ns_error(dtom(si), NS_ERR_FULLUP, 0);
443 			return (0);
444 		}
445 	}
446 	/*
447 	 * If this is a system packet, we don't need to
448 	 * queue it up, and won't update acknowledge #
449 	 */
450 	if (si->si_cc & SP_SP) {
451 		return (1);
452 	}
453 	/*
454 	 * We have already seen this packet, so drop.
455 	 */
456 	if (SSEQ_LT(si->si_seq, cb->s_ack)) {
457 		spp_istat.bdreas++;
458 		sppstat.spps_rcvduppack++;
459 		if (si->si_seq == cb->s_ack - 1)
460 			spp_istat.lstdup++;
461 		return (1);
462 	}
463 	/*
464 	 * Loop through all packets queued up to insert in
465 	 * appropriate sequence.
466 	 */
467 	for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
468 		if (si->si_seq == SI(q)->si_seq) {
469 			sppstat.spps_rcvduppack++;
470 			return (1);
471 		}
472 		if (SSEQ_LT(si->si_seq, SI(q)->si_seq)) {
473 			sppstat.spps_rcvoopack++;
474 			break;
475 		}
476 	}
477 	insque(si, q->si_prev);
478 	/*
479 	 * If this packet is urgent, inform process
480 	 */
481 	if (si->si_cc & SP_OB) {
482 		cb->s_iobc = ((char *)si)[1 + sizeof(*si)];
483 		sohasoutofband(so);
484 		cb->s_oobflags |= SF_IOOB;
485 	}
486 present:
487 #define SPINC sizeof(struct sphdr)
488 	/*
489 	 * Loop through all packets queued up to update acknowledge
490 	 * number, and present all acknowledged data to user;
491 	 * If in packet interface mode, show packet headers.
492 	 */
493 	for (q = cb->s_q.si_next; q!=&cb->s_q; q = q->si_next) {
494 		  if (SI(q)->si_seq == cb->s_ack) {
495 			cb->s_ack++;
496 			m = dtom(q);
497 			if (SI(q)->si_cc & SP_OB) {
498 				cb->s_oobflags &= ~SF_IOOB;
499 				if (so->so_rcv.sb_cc)
500 					so->so_oobmark = so->so_rcv.sb_cc;
501 				else
502 					so->so_state |= SS_RCVATMARK;
503 			}
504 			q = q->si_prev;
505 			remque(q->si_next);
506 			wakeup = 1;
507 			sppstat.spps_rcvpack++;
508 #ifdef SF_NEWCALL
509 			if (cb->s_flags2 & SF_NEWCALL) {
510 				struct sphdr *sp = mtod(m, struct sphdr *);
511 				u_char dt = sp->sp_dt;
512 				spp_newchecks[4]++;
513 				if (dt != cb->s_rhdr.sp_dt) {
514 					struct mbuf *mm =
515 					   m_getclr(M_DONTWAIT, MT_CONTROL);
516 					spp_newchecks[0]++;
517 					if (mm != NULL) {
518 						u_short *s =
519 							mtod(mm, u_short *);
520 						cb->s_rhdr.sp_dt = dt;
521 						mm->m_len = 5; /*XXX*/
522 						s[0] = 5;
523 						s[1] = 1;
524 						*(u_char *)(&s[2]) = dt;
525 						sbappend(&so->so_rcv, mm);
526 					}
527 				}
528 				if (sp->sp_cc & SP_OB) {
529 					MCHTYPE(m, MT_OOBDATA);
530 					spp_newchecks[1]++;
531 					so->so_oobmark = 0;
532 					so->so_state &= ~SS_RCVATMARK;
533 				}
534 				if (packetp == 0) {
535 					m->m_data += SPINC;
536 					m->m_len -= SPINC;
537 					m->m_pkthdr.len -= SPINC;
538 				}
539 				if ((sp->sp_cc & SP_EM) || packetp) {
540 					sbappendrecord(&so->so_rcv, m);
541 					spp_newchecks[9]++;
542 				} else
543 					sbappend(&so->so_rcv, m);
544 			} else
545 #endif
546 			if (packetp) {
547 				sbappendrecord(&so->so_rcv, m);
548 			} else {
549 				cb->s_rhdr = *mtod(m, struct sphdr *);
550 				m->m_data += SPINC;
551 				m->m_len -= SPINC;
552 				m->m_pkthdr.len -= SPINC;
553 				sbappend(&so->so_rcv, m);
554 			}
555 		  } else
556 			break;
557 	}
558 	if (wakeup) sorwakeup(so);
559 	return (0);
560 }
561 
562 spp_ctlinput(cmd, arg)
563 	int cmd;
564 	caddr_t arg;
565 {
566 	struct ns_addr *na;
567 	extern u_char nsctlerrmap[];
568 	extern spp_abort(), spp_quench();
569 	extern struct nspcb *idp_drop();
570 	struct ns_errp *errp;
571 	struct nspcb *nsp;
572 	struct sockaddr_ns *sns;
573 	int type;
574 
575 	if (cmd < 0 || cmd > PRC_NCMDS)
576 		return;
577 	type = NS_ERR_UNREACH_HOST;
578 
579 	switch (cmd) {
580 
581 	case PRC_ROUTEDEAD:
582 		return;
583 
584 	case PRC_IFDOWN:
585 	case PRC_HOSTDEAD:
586 	case PRC_HOSTUNREACH:
587 		sns = (struct sockaddr_ns *)arg;
588 		if (sns->sns_family != AF_NS)
589 			return;
590 		na = &sns->sns_addr;
591 		break;
592 
593 	default:
594 		errp = (struct ns_errp *)arg;
595 		na = &errp->ns_err_idp.idp_dna;
596 		type = errp->ns_err_num;
597 		type = ntohs((u_short)type);
598 	}
599 	switch (type) {
600 
601 	case NS_ERR_UNREACH_HOST:
602 		ns_pcbnotify(na, (int)nsctlerrmap[cmd], spp_abort, (long) 0);
603 		break;
604 
605 	case NS_ERR_TOO_BIG:
606 	case NS_ERR_NOSOCK:
607 		nsp = ns_pcblookup(na, errp->ns_err_idp.idp_sna.x_port,
608 			NS_WILDCARD);
609 		if (nsp) {
610 			if(nsp->nsp_pcb)
611 				(void) spp_drop((struct sppcb *)nsp->nsp_pcb,
612 						(int)nsctlerrmap[cmd]);
613 			else
614 				(void) idp_drop(nsp, (int)nsctlerrmap[cmd]);
615 		}
616 		break;
617 
618 	case NS_ERR_FULLUP:
619 		ns_pcbnotify(na, 0, spp_quench, (long) 0);
620 	}
621 }
622 /*
623  * When a source quench is received, close congestion window
624  * to one packet.  We will gradually open it again as we proceed.
625  */
626 spp_quench(nsp)
627 	struct nspcb *nsp;
628 {
629 	struct sppcb *cb = nstosppcb(nsp);
630 
631 	if (cb)
632 		cb->s_cwnd = CUNIT;
633 }
634 
635 #ifdef notdef
636 int
637 spp_fixmtu(nsp)
638 register struct nspcb *nsp;
639 {
640 	register struct sppcb *cb = (struct sppcb *)(nsp->nsp_pcb);
641 	register struct mbuf *m;
642 	register struct spidp *si;
643 	struct ns_errp *ep;
644 	struct sockbuf *sb;
645 	int badseq, len;
646 	struct mbuf *firstbad, *m0;
647 
648 	if (cb) {
649 		/*
650 		 * The notification that we have sent
651 		 * too much is bad news -- we will
652 		 * have to go through queued up so far
653 		 * splitting ones which are too big and
654 		 * reassigning sequence numbers and checksums.
655 		 * we should then retransmit all packets from
656 		 * one above the offending packet to the last one
657 		 * we had sent (or our allocation)
658 		 * then the offending one so that the any queued
659 		 * data at our destination will be discarded.
660 		 */
661 		 ep = (struct ns_errp *)nsp->nsp_notify_param;
662 		 sb = &nsp->nsp_socket->so_snd;
663 		 cb->s_mtu = ep->ns_err_param;
664 		 badseq = SI(&ep->ns_err_idp)->si_seq;
665 		 for (m = sb->sb_mb; m; m = m->m_act) {
666 			si = mtod(m, struct spidp *);
667 			if (si->si_seq == badseq)
668 				break;
669 		 }
670 		 if (m == 0) return;
671 		 firstbad = m;
672 		 /*for (;;) {*/
673 			/* calculate length */
674 			for (m0 = m, len = 0; m ; m = m->m_next)
675 				len += m->m_len;
676 			if (len > cb->s_mtu) {
677 			}
678 		/* FINISH THIS
679 		} */
680 	}
681 }
682 #endif
683 
684 spp_output(cb, m0)
685 	register struct sppcb *cb;
686 	struct mbuf *m0;
687 {
688 	struct socket *so = cb->s_nspcb->nsp_socket;
689 	register struct mbuf *m;
690 	register struct spidp *si = (struct spidp *) 0;
691 	register struct sockbuf *sb = &so->so_snd;
692 	int len = 0, win, rcv_win;
693 	short span, off, recordp = 0;
694 	u_short alo;
695 	int error = 0, sendalot;
696 #ifdef notdef
697 	int idle;
698 #endif
699 	struct mbuf *mprev;
700 	extern int idpcksum;
701 
702 	if (m0) {
703 		int mtu = cb->s_mtu;
704 		int datalen;
705 		/*
706 		 * Make sure that packet isn't too big.
707 		 */
708 		for (m = m0; m ; m = m->m_next) {
709 			mprev = m;
710 			len += m->m_len;
711 			if (m->m_flags & M_EOR)
712 				recordp = 1;
713 		}
714 		datalen = (cb->s_flags & SF_HO) ?
715 				len - sizeof (struct sphdr) : len;
716 		if (datalen > mtu) {
717 			if (cb->s_flags & SF_PI) {
718 				m_freem(m0);
719 				return (EMSGSIZE);
720 			} else {
721 				int oldEM = cb->s_cc & SP_EM;
722 
723 				cb->s_cc &= ~SP_EM;
724 				while (len > mtu) {
725 					m = m_copy(m0, 0, mtu);
726 					if (m == NULL) {
727 						error = ENOBUFS;
728 						goto bad_copy;
729 					}
730 					if (cb->s_flags & SF_NEWCALL) {
731 					    struct mbuf *mm = m;
732 					    spp_newchecks[7]++;
733 					    while (mm) {
734 						mm->m_flags &= ~M_EOR;
735 						mm = mm->m_next;
736 					    }
737 					}
738 					error = spp_output(cb, m);
739 					if (error) {
740 					bad_copy:
741 						cb->s_cc |= oldEM;
742 						m_freem(m0);
743 						return(error);
744 					}
745 					m_adj(m0, mtu);
746 					len -= mtu;
747 				}
748 				cb->s_cc |= oldEM;
749 			}
750 		}
751 		/*
752 		 * Force length even, by adding a "garbage byte" if
753 		 * necessary.
754 		 */
755 		if (len & 1) {
756 			m = mprev;
757 			if (M_TRAILINGSPACE(m) >= 1)
758 				m->m_len++;
759 			else {
760 				struct mbuf *m1 = m_get(M_DONTWAIT, MT_DATA);
761 
762 				if (m1 == 0) {
763 					m_freem(m0);
764 					return (ENOBUFS);
765 				}
766 				m1->m_len = 1;
767 				*(mtod(m1, u_char *)) = 0;
768 				m->m_next = m1;
769 			}
770 		}
771 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
772 		if (m == 0) {
773 			m_freem(m0);
774 			return (ENOBUFS);
775 		}
776 		/*
777 		 * Fill in mbuf with extended SP header
778 		 * and addresses and length put into network format.
779 		 */
780 		MH_ALIGN(m, sizeof (struct spidp));
781 		m->m_len = sizeof (struct spidp);
782 		m->m_next = m0;
783 		si = mtod(m, struct spidp *);
784 		si->si_i = *cb->s_idp;
785 		si->si_s = cb->s_shdr;
786 		if ((cb->s_flags & SF_PI) && (cb->s_flags & SF_HO)) {
787 			register struct sphdr *sh;
788 			if (m0->m_len < sizeof (*sh)) {
789 				if((m0 = m_pullup(m0, sizeof(*sh))) == NULL) {
790 					(void) m_free(m);
791 					m_freem(m0);
792 					return (EINVAL);
793 				}
794 				m->m_next = m0;
795 			}
796 			sh = mtod(m0, struct sphdr *);
797 			si->si_dt = sh->sp_dt;
798 			si->si_cc |= sh->sp_cc & SP_EM;
799 			m0->m_len -= sizeof (*sh);
800 			m0->m_data += sizeof (*sh);
801 			len -= sizeof (*sh);
802 		}
803 		len += sizeof(*si);
804 		if ((cb->s_flags2 & SF_NEWCALL) && recordp) {
805 			si->si_cc  |= SP_EM;
806 			spp_newchecks[8]++;
807 		}
808 		if (cb->s_oobflags & SF_SOOB) {
809 			/*
810 			 * Per jqj@cornell:
811 			 * make sure OB packets convey exactly 1 byte.
812 			 * If the packet is 1 byte or larger, we
813 			 * have already guaranted there to be at least
814 			 * one garbage byte for the checksum, and
815 			 * extra bytes shouldn't hurt!
816 			 */
817 			if (len > sizeof(*si)) {
818 				si->si_cc |= SP_OB;
819 				len = (1 + sizeof(*si));
820 			}
821 		}
822 		si->si_len = htons((u_short)len);
823 		m->m_pkthdr.len = ((len - 1) | 1) + 1;
824 		/*
825 		 * queue stuff up for output
826 		 */
827 		sbappendrecord(sb, m);
828 		cb->s_seq++;
829 	}
830 #ifdef notdef
831 	idle = (cb->s_smax == (cb->s_rack - 1));
832 #endif
833 again:
834 	sendalot = 0;
835 	off = cb->s_snxt - cb->s_rack;
836 	win = min(cb->s_swnd, (cb->s_cwnd/CUNIT));
837 
838 	/*
839 	 * If in persist timeout with window of 0, send a probe.
840 	 * Otherwise, if window is small but nonzero
841 	 * and timer expired, send what we can and go into
842 	 * transmit state.
843 	 */
844 	if (cb->s_force == 1 + SPPT_PERSIST) {
845 		if (win != 0) {
846 			cb->s_timer[SPPT_PERSIST] = 0;
847 			cb->s_rxtshift = 0;
848 		}
849 	}
850 	span = cb->s_seq - cb->s_rack;
851 	len = min(span, win) - off;
852 
853 	if (len < 0) {
854 		/*
855 		 * Window shrank after we went into it.
856 		 * If window shrank to 0, cancel pending
857 		 * restransmission and pull s_snxt back
858 		 * to (closed) window.  We will enter persist
859 		 * state below.  If the widndow didn't close completely,
860 		 * just wait for an ACK.
861 		 */
862 		len = 0;
863 		if (win == 0) {
864 			cb->s_timer[SPPT_REXMT] = 0;
865 			cb->s_snxt = cb->s_rack;
866 		}
867 	}
868 	if (len > 1)
869 		sendalot = 1;
870 	rcv_win = sbspace(&so->so_rcv);
871 
872 	/*
873 	 * Send if we owe peer an ACK.
874 	 */
875 	if (cb->s_oobflags & SF_SOOB) {
876 		/*
877 		 * must transmit this out of band packet
878 		 */
879 		cb->s_oobflags &= ~ SF_SOOB;
880 		sendalot = 1;
881 		sppstat.spps_sndurg++;
882 		goto found;
883 	}
884 	if (cb->s_flags & SF_ACKNOW)
885 		goto send;
886 	if (cb->s_state < TCPS_ESTABLISHED)
887 		goto send;
888 	/*
889 	 * Silly window can't happen in spp.
890 	 * Code from tcp deleted.
891 	 */
892 	if (len)
893 		goto send;
894 	/*
895 	 * Compare available window to amount of window
896 	 * known to peer (as advertised window less
897 	 * next expected input.)  If the difference is at least two
898 	 * packets or at least 35% of the mximum possible window,
899 	 * then want to send a window update to peer.
900 	 */
901 	if (rcv_win > 0) {
902 		u_short delta =  1 + cb->s_alo - cb->s_ack;
903 		int adv = rcv_win - (delta * cb->s_mtu);
904 
905 		if ((so->so_rcv.sb_cc == 0 && adv >= (2 * cb->s_mtu)) ||
906 		    (100 * adv / so->so_rcv.sb_hiwat >= 35)) {
907 			sppstat.spps_sndwinup++;
908 			cb->s_flags |= SF_ACKNOW;
909 			goto send;
910 		}
911 
912 	}
913 	/*
914 	 * Many comments from tcp_output.c are appropriate here
915 	 * including . . .
916 	 * If send window is too small, there is data to transmit, and no
917 	 * retransmit or persist is pending, then go to persist state.
918 	 * If nothing happens soon, send when timer expires:
919 	 * if window is nonzero, transmit what we can,
920 	 * otherwise send a probe.
921 	 */
922 	if (so->so_snd.sb_cc && cb->s_timer[SPPT_REXMT] == 0 &&
923 		cb->s_timer[SPPT_PERSIST] == 0) {
924 			cb->s_rxtshift = 0;
925 			spp_setpersist(cb);
926 	}
927 	/*
928 	 * No reason to send a packet, just return.
929 	 */
930 	cb->s_outx = 1;
931 	return (0);
932 
933 send:
934 	/*
935 	 * Find requested packet.
936 	 */
937 	si = 0;
938 	if (len > 0) {
939 		cb->s_want = cb->s_snxt;
940 		for (m = sb->sb_mb; m; m = m->m_act) {
941 			si = mtod(m, struct spidp *);
942 			if (SSEQ_LEQ(cb->s_snxt, si->si_seq))
943 				break;
944 		}
945 	found:
946 		if (si) {
947 			if (si->si_seq == cb->s_snxt)
948 					cb->s_snxt++;
949 				else
950 					sppstat.spps_sndvoid++, si = 0;
951 		}
952 	}
953 	/*
954 	 * update window
955 	 */
956 	if (rcv_win < 0)
957 		rcv_win = 0;
958 	alo = cb->s_ack - 1 + (rcv_win / ((short)cb->s_mtu));
959 	if (SSEQ_LT(alo, cb->s_alo))
960 		alo = cb->s_alo;
961 
962 	if (si) {
963 		/*
964 		 * must make a copy of this packet for
965 		 * idp_output to monkey with
966 		 */
967 		m = m_copy(dtom(si), 0, (int)M_COPYALL);
968 		if (m == NULL) {
969 			return (ENOBUFS);
970 		}
971 		si = mtod(m, struct spidp *);
972 		if (SSEQ_LT(si->si_seq, cb->s_smax))
973 			sppstat.spps_sndrexmitpack++;
974 		else
975 			sppstat.spps_sndpack++;
976 	} else if (cb->s_force || cb->s_flags & SF_ACKNOW) {
977 		/*
978 		 * Must send an acknowledgement or a probe
979 		 */
980 		if (cb->s_force)
981 			sppstat.spps_sndprobe++;
982 		if (cb->s_flags & SF_ACKNOW)
983 			sppstat.spps_sndacks++;
984 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
985 		if (m == 0)
986 			return (ENOBUFS);
987 		/*
988 		 * Fill in mbuf with extended SP header
989 		 * and addresses and length put into network format.
990 		 */
991 		MH_ALIGN(m, sizeof (struct spidp));
992 		m->m_len = sizeof (*si);
993 		m->m_pkthdr.len = sizeof (*si);
994 		si = mtod(m, struct spidp *);
995 		si->si_i = *cb->s_idp;
996 		si->si_s = cb->s_shdr;
997 		si->si_seq = cb->s_smax + 1;
998 		si->si_len = htons(sizeof (*si));
999 		si->si_cc |= SP_SP;
1000 	} else {
1001 		cb->s_outx = 3;
1002 		if (so->so_options & SO_DEBUG || traceallspps)
1003 			spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
1004 		return (0);
1005 	}
1006 	/*
1007 	 * Stuff checksum and output datagram.
1008 	 */
1009 	if ((si->si_cc & SP_SP) == 0) {
1010 		if (cb->s_force != (1 + SPPT_PERSIST) ||
1011 		    cb->s_timer[SPPT_PERSIST] == 0) {
1012 			/*
1013 			 * If this is a new packet and we are not currently
1014 			 * timing anything, time this one.
1015 			 */
1016 			if (SSEQ_LT(cb->s_smax, si->si_seq)) {
1017 				cb->s_smax = si->si_seq;
1018 				if (cb->s_rtt == 0) {
1019 					sppstat.spps_segstimed++;
1020 					cb->s_rtseq = si->si_seq;
1021 					cb->s_rtt = 1;
1022 				}
1023 			}
1024 			/*
1025 			 * Set rexmt timer if not currently set,
1026 			 * Initial value for retransmit timer is smoothed
1027 			 * round-trip time + 2 * round-trip time variance.
1028 			 * Initialize shift counter which is used for backoff
1029 			 * of retransmit time.
1030 			 */
1031 			if (cb->s_timer[SPPT_REXMT] == 0 &&
1032 			    cb->s_snxt != cb->s_rack) {
1033 				cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1034 				if (cb->s_timer[SPPT_PERSIST]) {
1035 					cb->s_timer[SPPT_PERSIST] = 0;
1036 					cb->s_rxtshift = 0;
1037 				}
1038 			}
1039 		} else if (SSEQ_LT(cb->s_smax, si->si_seq)) {
1040 			cb->s_smax = si->si_seq;
1041 		}
1042 	} else if (cb->s_state < TCPS_ESTABLISHED) {
1043 		if (cb->s_rtt == 0)
1044 			cb->s_rtt = 1; /* Time initial handshake */
1045 		if (cb->s_timer[SPPT_REXMT] == 0)
1046 			cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1047 	}
1048 	{
1049 		/*
1050 		 * Do not request acks when we ack their data packets or
1051 		 * when we do a gratuitous window update.
1052 		 */
1053 		if (((si->si_cc & SP_SP) == 0) || cb->s_force)
1054 				si->si_cc |= SP_SA;
1055 		si->si_seq = htons(si->si_seq);
1056 		si->si_alo = htons(alo);
1057 		si->si_ack = htons(cb->s_ack);
1058 
1059 		if (idpcksum) {
1060 			si->si_sum = 0;
1061 			len = ntohs(si->si_len);
1062 			if (len & 1)
1063 				len++;
1064 			si->si_sum = ns_cksum(m, len);
1065 		} else
1066 			si->si_sum = 0xffff;
1067 
1068 		cb->s_outx = 4;
1069 		if (so->so_options & SO_DEBUG || traceallspps)
1070 			spp_trace(SA_OUTPUT, cb->s_state, cb, si, 0);
1071 
1072 		if (so->so_options & SO_DONTROUTE)
1073 			error = ns_output(m, (struct route *)0, NS_ROUTETOIF);
1074 		else
1075 			error = ns_output(m, &cb->s_nspcb->nsp_route, 0);
1076 	}
1077 	if (error) {
1078 		return (error);
1079 	}
1080 	sppstat.spps_sndtotal++;
1081 	/*
1082 	 * Data sent (as far as we can tell).
1083 	 * If this advertises a larger window than any other segment,
1084 	 * then remember the size of the advertized window.
1085 	 * Any pending ACK has now been sent.
1086 	 */
1087 	cb->s_force = 0;
1088 	cb->s_flags &= ~(SF_ACKNOW|SF_DELACK);
1089 	if (SSEQ_GT(alo, cb->s_alo))
1090 		cb->s_alo = alo;
1091 	if (sendalot)
1092 		goto again;
1093 	cb->s_outx = 5;
1094 	return (0);
1095 }
1096 
1097 int spp_do_persist_panics = 0;
1098 
1099 spp_setpersist(cb)
1100 	register struct sppcb *cb;
1101 {
1102 	register t = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
1103 	extern int spp_backoff[];
1104 
1105 	if (cb->s_timer[SPPT_REXMT] && spp_do_persist_panics)
1106 		panic("spp_output REXMT");
1107 	/*
1108 	 * Start/restart persistance timer.
1109 	 */
1110 	SPPT_RANGESET(cb->s_timer[SPPT_PERSIST],
1111 	    t*spp_backoff[cb->s_rxtshift],
1112 	    SPPTV_PERSMIN, SPPTV_PERSMAX);
1113 	if (cb->s_rxtshift < SPP_MAXRXTSHIFT)
1114 		cb->s_rxtshift++;
1115 }
1116 /*ARGSUSED*/
1117 spp_ctloutput(req, so, level, name, value)
1118 	int req;
1119 	struct socket *so;
1120 	int name;
1121 	struct mbuf **value;
1122 {
1123 	register struct mbuf *m;
1124 	struct nspcb *nsp = sotonspcb(so);
1125 	register struct sppcb *cb;
1126 	int mask, error = 0;
1127 
1128 	if (level != NSPROTO_SPP) {
1129 		/* This will have to be changed when we do more general
1130 		   stacking of protocols */
1131 		return (idp_ctloutput(req, so, level, name, value));
1132 	}
1133 	if (nsp == NULL) {
1134 		error = EINVAL;
1135 		goto release;
1136 	} else
1137 		cb = nstosppcb(nsp);
1138 
1139 	switch (req) {
1140 
1141 	case PRCO_GETOPT:
1142 		if (value == NULL)
1143 			return (EINVAL);
1144 		m = m_get(M_DONTWAIT, MT_DATA);
1145 		if (m == NULL)
1146 			return (ENOBUFS);
1147 		switch (name) {
1148 
1149 		case SO_HEADERS_ON_INPUT:
1150 			mask = SF_HI;
1151 			goto get_flags;
1152 
1153 		case SO_HEADERS_ON_OUTPUT:
1154 			mask = SF_HO;
1155 		get_flags:
1156 			m->m_len = sizeof(short);
1157 			*mtod(m, short *) = cb->s_flags & mask;
1158 			break;
1159 
1160 		case SO_MTU:
1161 			m->m_len = sizeof(u_short);
1162 			*mtod(m, short *) = cb->s_mtu;
1163 			break;
1164 
1165 		case SO_LAST_HEADER:
1166 			m->m_len = sizeof(struct sphdr);
1167 			*mtod(m, struct sphdr *) = cb->s_rhdr;
1168 			break;
1169 
1170 		case SO_DEFAULT_HEADERS:
1171 			m->m_len = sizeof(struct spidp);
1172 			*mtod(m, struct sphdr *) = cb->s_shdr;
1173 			break;
1174 
1175 		default:
1176 			error = EINVAL;
1177 		}
1178 		*value = m;
1179 		break;
1180 
1181 	case PRCO_SETOPT:
1182 		if (value == 0 || *value == 0) {
1183 			error = EINVAL;
1184 			break;
1185 		}
1186 		switch (name) {
1187 			int *ok;
1188 
1189 		case SO_HEADERS_ON_INPUT:
1190 			mask = SF_HI;
1191 			goto set_head;
1192 
1193 		case SO_HEADERS_ON_OUTPUT:
1194 			mask = SF_HO;
1195 		set_head:
1196 			if (cb->s_flags & SF_PI) {
1197 				ok = mtod(*value, int *);
1198 				if (*ok)
1199 					cb->s_flags |= mask;
1200 				else
1201 					cb->s_flags &= ~mask;
1202 			} else error = EINVAL;
1203 			break;
1204 
1205 		case SO_MTU:
1206 			cb->s_mtu = *(mtod(*value, u_short *));
1207 			break;
1208 
1209 #ifdef SF_NEWCALL
1210 		case SO_NEWCALL:
1211 			ok = mtod(*value, int *);
1212 			if (*ok) {
1213 				cb->s_flags2 |= SF_NEWCALL;
1214 				spp_newchecks[5]++;
1215 			} else {
1216 				cb->s_flags2 &= ~SF_NEWCALL;
1217 				spp_newchecks[6]++;
1218 			}
1219 			break;
1220 #endif
1221 
1222 		case SO_DEFAULT_HEADERS:
1223 			{
1224 				register struct sphdr *sp
1225 						= mtod(*value, struct sphdr *);
1226 				cb->s_dt = sp->sp_dt;
1227 				cb->s_cc = sp->sp_cc & SP_EM;
1228 			}
1229 			break;
1230 
1231 		default:
1232 			error = EINVAL;
1233 		}
1234 		m_freem(*value);
1235 		break;
1236 	}
1237 	release:
1238 		return (error);
1239 }
1240 
1241 /*ARGSUSED*/
1242 spp_usrreq(so, req, m, nam, rights, controlp)
1243 	struct socket *so;
1244 	int req;
1245 	struct mbuf *m, *nam, *rights, *controlp;
1246 {
1247 	struct nspcb *nsp = sotonspcb(so);
1248 	register struct sppcb *cb;
1249 	int s = splnet();
1250 	int error = 0, ostate;
1251 	struct mbuf *mm;
1252 	register struct sockbuf *sb;
1253 
1254 	if (req == PRU_CONTROL)
1255                 return (ns_control(so, (int)m, (caddr_t)nam,
1256 			(struct ifnet *)rights));
1257 	if (rights && rights->m_len) {
1258 		error = EINVAL;
1259 		goto release;
1260 	}
1261 	if (nsp == NULL) {
1262 		if (req != PRU_ATTACH) {
1263 			error = EINVAL;
1264 			goto release;
1265 		}
1266 	} else
1267 		cb = nstosppcb(nsp);
1268 
1269 	ostate = cb ? cb->s_state : 0;
1270 
1271 	switch (req) {
1272 
1273 	case PRU_ATTACH:
1274 		if (nsp != NULL) {
1275 			error = EISCONN;
1276 			break;
1277 		}
1278 		error = ns_pcballoc(so, &nspcb);
1279 		if (error)
1280 			break;
1281 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
1282 			error = soreserve(so, (u_long) 3072, (u_long) 3072);
1283 			if (error)
1284 				break;
1285 		}
1286 		nsp = sotonspcb(so);
1287 
1288 		mm = m_getclr(M_DONTWAIT, MT_PCB);
1289 		sb = &so->so_snd;
1290 
1291 		if (mm == NULL) {
1292 			error = ENOBUFS;
1293 			break;
1294 		}
1295 		cb = mtod(mm, struct sppcb *);
1296 		mm = m_getclr(M_DONTWAIT, MT_HEADER);
1297 		if (mm == NULL) {
1298 			(void) m_free(dtom(m));
1299 			error = ENOBUFS;
1300 			break;
1301 		}
1302 		cb->s_idp = mtod(mm, struct idp *);
1303 		cb->s_state = TCPS_LISTEN;
1304 		cb->s_smax = -1;
1305 		cb->s_swl1 = -1;
1306 		cb->s_q.si_next = cb->s_q.si_prev = &cb->s_q;
1307 		cb->s_nspcb = nsp;
1308 		cb->s_mtu = 576 - sizeof (struct spidp);
1309 		cb->s_cwnd = sbspace(sb) * CUNIT / cb->s_mtu;
1310 		cb->s_ssthresh = cb->s_cwnd;
1311 		cb->s_cwmx = sbspace(sb) * CUNIT /
1312 				(2 * sizeof (struct spidp));
1313 		/* Above is recomputed when connecting to account
1314 		   for changed buffering or mtu's */
1315 		cb->s_rtt = SPPTV_SRTTBASE;
1316 		cb->s_rttvar = SPPTV_SRTTDFLT << 2;
1317 		SPPT_RANGESET(cb->s_rxtcur,
1318 		    ((SPPTV_SRTTBASE >> 2) + (SPPTV_SRTTDFLT << 2)) >> 1,
1319 		    SPPTV_MIN, SPPTV_REXMTMAX);
1320 		nsp->nsp_pcb = (caddr_t) cb;
1321 		break;
1322 
1323 	case PRU_DETACH:
1324 		if (nsp == NULL) {
1325 			error = ENOTCONN;
1326 			break;
1327 		}
1328 		if (cb->s_state > TCPS_LISTEN)
1329 			cb = spp_disconnect(cb);
1330 		else
1331 			cb = spp_close(cb);
1332 		break;
1333 
1334 	case PRU_BIND:
1335 		error = ns_pcbbind(nsp, nam);
1336 		break;
1337 
1338 	case PRU_LISTEN:
1339 		if (nsp->nsp_lport == 0)
1340 			error = ns_pcbbind(nsp, (struct mbuf *)0);
1341 		if (error == 0)
1342 			cb->s_state = TCPS_LISTEN;
1343 		break;
1344 
1345 	/*
1346 	 * Initiate connection to peer.
1347 	 * Enter SYN_SENT state, and mark socket as connecting.
1348 	 * Start keep-alive timer, setup prototype header,
1349 	 * Send initial system packet requesting connection.
1350 	 */
1351 	case PRU_CONNECT:
1352 		if (nsp->nsp_lport == 0) {
1353 			error = ns_pcbbind(nsp, (struct mbuf *)0);
1354 			if (error)
1355 				break;
1356 		}
1357 		error = ns_pcbconnect(nsp, nam);
1358 		if (error)
1359 			break;
1360 		soisconnecting(so);
1361 		sppstat.spps_connattempt++;
1362 		cb->s_state = TCPS_SYN_SENT;
1363 		cb->s_did = 0;
1364 		spp_template(cb);
1365 		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
1366 		cb->s_force = 1 + SPPTV_KEEP;
1367 		/*
1368 		 * Other party is required to respond to
1369 		 * the port I send from, but he is not
1370 		 * required to answer from where I am sending to,
1371 		 * so allow wildcarding.
1372 		 * original port I am sending to is still saved in
1373 		 * cb->s_dport.
1374 		 */
1375 		nsp->nsp_fport = 0;
1376 		error = spp_output(cb, (struct mbuf *) 0);
1377 		break;
1378 
1379 	case PRU_CONNECT2:
1380 		error = EOPNOTSUPP;
1381 		break;
1382 
1383 	/*
1384 	 * We may decide later to implement connection closing
1385 	 * handshaking at the spp level optionally.
1386 	 * here is the hook to do it:
1387 	 */
1388 	case PRU_DISCONNECT:
1389 		cb = spp_disconnect(cb);
1390 		break;
1391 
1392 	/*
1393 	 * Accept a connection.  Essentially all the work is
1394 	 * done at higher levels; just return the address
1395 	 * of the peer, storing through addr.
1396 	 */
1397 	case PRU_ACCEPT: {
1398 		struct sockaddr_ns *sns = mtod(nam, struct sockaddr_ns *);
1399 
1400 		nam->m_len = sizeof (struct sockaddr_ns);
1401 		sns->sns_family = AF_NS;
1402 		sns->sns_addr = nsp->nsp_faddr;
1403 		break;
1404 		}
1405 
1406 	case PRU_SHUTDOWN:
1407 		socantsendmore(so);
1408 		cb = spp_usrclosed(cb);
1409 		if (cb)
1410 			error = spp_output(cb, (struct mbuf *) 0);
1411 		break;
1412 
1413 	/*
1414 	 * After a receive, possibly send acknowledgment
1415 	 * updating allocation.
1416 	 */
1417 	case PRU_RCVD:
1418 		cb->s_flags |= SF_RVD;
1419 		(void) spp_output(cb, (struct mbuf *) 0);
1420 		cb->s_flags &= ~SF_RVD;
1421 		break;
1422 
1423 	case PRU_ABORT:
1424 		(void) spp_drop(cb, ECONNABORTED);
1425 		break;
1426 
1427 	case PRU_SENSE:
1428 	case PRU_CONTROL:
1429 		m = NULL;
1430 		error = EOPNOTSUPP;
1431 		break;
1432 
1433 	case PRU_RCVOOB:
1434 		if ((cb->s_oobflags & SF_IOOB) || so->so_oobmark ||
1435 		    (so->so_state & SS_RCVATMARK)) {
1436 			m->m_len = 1;
1437 			*mtod(m, caddr_t) = cb->s_iobc;
1438 			break;
1439 		}
1440 		error = EINVAL;
1441 		break;
1442 
1443 	case PRU_SENDOOB:
1444 		if (sbspace(&so->so_snd) < -512) {
1445 			error = ENOBUFS;
1446 			break;
1447 		}
1448 		cb->s_oobflags |= SF_SOOB;
1449 		/* fall into */
1450 	case PRU_SEND:
1451 		if (controlp) {
1452 			u_short *s = mtod(controlp, u_short *);
1453 			spp_newchecks[2]++;
1454 			if ((s[0] == 5) && s[1] == 1 ) { /* XXXX, for testing */
1455 				cb->s_shdr.sp_dt = *(u_char *)(&s[2]);
1456 				spp_newchecks[3]++;
1457 			}
1458 		}
1459 		error = spp_output(cb, m);
1460 		m = NULL;
1461 		break;
1462 
1463 	case PRU_SOCKADDR:
1464 		ns_setsockaddr(nsp, nam);
1465 		break;
1466 
1467 	case PRU_PEERADDR:
1468 		ns_setpeeraddr(nsp, nam);
1469 		break;
1470 
1471 	case PRU_SLOWTIMO:
1472 		cb = spp_timers(cb, (int)nam);
1473 		req |= ((int)nam) << 8;
1474 		break;
1475 
1476 	case PRU_FASTTIMO:
1477 	case PRU_PROTORCV:
1478 	case PRU_PROTOSEND:
1479 		error =  EOPNOTSUPP;
1480 		break;
1481 
1482 	default:
1483 		panic("sp_usrreq");
1484 	}
1485 	if (cb && (so->so_options & SO_DEBUG || traceallspps))
1486 		spp_trace(SA_USER, (u_char)ostate, cb, (struct spidp *)0, req);
1487 release:
1488 	if (m != NULL)
1489 		m_freem(m);
1490 	splx(s);
1491 	return (error);
1492 }
1493 
1494 spp_usrreq_sp(so, req, m, nam, rights, controlp)
1495 	struct socket *so;
1496 	int req;
1497 	struct mbuf *m, *nam, *rights, *controlp;
1498 {
1499 	int error = spp_usrreq(so, req, m, nam, rights, controlp);
1500 
1501 	if (req == PRU_ATTACH && error == 0) {
1502 		struct nspcb *nsp = sotonspcb(so);
1503 		((struct sppcb *)nsp->nsp_pcb)->s_flags |=
1504 					(SF_HI | SF_HO | SF_PI);
1505 	}
1506 	return (error);
1507 }
1508 
1509 /*
1510  * Create template to be used to send spp packets on a connection.
1511  * Called after host entry created, fills
1512  * in a skeletal spp header (choosing connection id),
1513  * minimizing the amount of work necessary when the connection is used.
1514  */
1515 spp_template(cb)
1516 	register struct sppcb *cb;
1517 {
1518 	register struct nspcb *nsp = cb->s_nspcb;
1519 	register struct idp *idp = cb->s_idp;
1520 	register struct sockbuf *sb = &(nsp->nsp_socket->so_snd);
1521 
1522 	idp->idp_pt = NSPROTO_SPP;
1523 	idp->idp_sna = nsp->nsp_laddr;
1524 	idp->idp_dna = nsp->nsp_faddr;
1525 	cb->s_sid = htons(spp_iss);
1526 	spp_iss += SPP_ISSINCR/2;
1527 	cb->s_alo = 1;
1528 	cb->s_cwnd = (sbspace(sb) * CUNIT) / cb->s_mtu;
1529 	cb->s_ssthresh = cb->s_cwnd; /* Try to expand fast to full complement
1530 					of large packets */
1531 	cb->s_cwmx = (sbspace(sb) * CUNIT) / (2 * sizeof(struct spidp));
1532 	cb->s_cwmx = max(cb->s_cwmx, cb->s_cwnd);
1533 		/* But allow for lots of little packets as well */
1534 }
1535 
1536 /*
1537  * Close a SPIP control block:
1538  *	discard spp control block itself
1539  *	discard ns protocol control block
1540  *	wake up any sleepers
1541  */
1542 struct sppcb *
1543 spp_close(cb)
1544 	register struct sppcb *cb;
1545 {
1546 	register struct spidp_q *s;
1547 	struct nspcb *nsp = cb->s_nspcb;
1548 	struct socket *so = nsp->nsp_socket;
1549 	register struct mbuf *m;
1550 
1551 	s = cb->s_q.si_next;
1552 	while (s != &(cb->s_q)) {
1553 		s = s->si_next;
1554 		m = dtom(s->si_prev);
1555 		remque(s->si_prev);
1556 		m_freem(m);
1557 	}
1558 	(void) m_free(dtom(cb->s_idp));
1559 	(void) m_free(dtom(cb));
1560 	nsp->nsp_pcb = 0;
1561 	soisdisconnected(so);
1562 	ns_pcbdetach(nsp);
1563 	sppstat.spps_closed++;
1564 	return ((struct sppcb *)0);
1565 }
1566 /*
1567  *	Someday we may do level 3 handshaking
1568  *	to close a connection or send a xerox style error.
1569  *	For now, just close.
1570  */
1571 struct sppcb *
1572 spp_usrclosed(cb)
1573 	register struct sppcb *cb;
1574 {
1575 	return (spp_close(cb));
1576 }
1577 struct sppcb *
1578 spp_disconnect(cb)
1579 	register struct sppcb *cb;
1580 {
1581 	return (spp_close(cb));
1582 }
1583 /*
1584  * Drop connection, reporting
1585  * the specified error.
1586  */
1587 struct sppcb *
1588 spp_drop(cb, errno)
1589 	register struct sppcb *cb;
1590 	int errno;
1591 {
1592 	struct socket *so = cb->s_nspcb->nsp_socket;
1593 
1594 	/*
1595 	 * someday, in the xerox world
1596 	 * we will generate error protocol packets
1597 	 * announcing that the socket has gone away.
1598 	 */
1599 	if (TCPS_HAVERCVDSYN(cb->s_state)) {
1600 		sppstat.spps_drops++;
1601 		cb->s_state = TCPS_CLOSED;
1602 		/*(void) tcp_output(cb);*/
1603 	} else
1604 		sppstat.spps_conndrops++;
1605 	so->so_error = errno;
1606 	return (spp_close(cb));
1607 }
1608 
1609 spp_abort(nsp)
1610 	struct nspcb *nsp;
1611 {
1612 
1613 	(void) spp_close((struct sppcb *)nsp->nsp_pcb);
1614 }
1615 
1616 int	spp_backoff[SPP_MAXRXTSHIFT+1] =
1617     { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };
1618 /*
1619  * Fast timeout routine for processing delayed acks
1620  */
1621 spp_fasttimo()
1622 {
1623 	register struct nspcb *nsp;
1624 	register struct sppcb *cb;
1625 	int s = splnet();
1626 
1627 	nsp = nspcb.nsp_next;
1628 	if (nsp)
1629 	for (; nsp != &nspcb; nsp = nsp->nsp_next)
1630 		if ((cb = (struct sppcb *)nsp->nsp_pcb) &&
1631 		    (cb->s_flags & SF_DELACK)) {
1632 			cb->s_flags &= ~SF_DELACK;
1633 			cb->s_flags |= SF_ACKNOW;
1634 			sppstat.spps_delack++;
1635 			(void) spp_output(cb, (struct mbuf *) 0);
1636 		}
1637 	splx(s);
1638 }
1639 
1640 /*
1641  * spp protocol timeout routine called every 500 ms.
1642  * Updates the timers in all active pcb's and
1643  * causes finite state machine actions if timers expire.
1644  */
1645 spp_slowtimo()
1646 {
1647 	register struct nspcb *ip, *ipnxt;
1648 	register struct sppcb *cb;
1649 	int s = splnet();
1650 	register int i;
1651 
1652 	/*
1653 	 * Search through tcb's and update active timers.
1654 	 */
1655 	ip = nspcb.nsp_next;
1656 	if (ip == 0) {
1657 		splx(s);
1658 		return;
1659 	}
1660 	while (ip != &nspcb) {
1661 		cb = nstosppcb(ip);
1662 		ipnxt = ip->nsp_next;
1663 		if (cb == 0)
1664 			goto tpgone;
1665 		for (i = 0; i < SPPT_NTIMERS; i++) {
1666 			if (cb->s_timer[i] && --cb->s_timer[i] == 0) {
1667 				(void) spp_usrreq(cb->s_nspcb->nsp_socket,
1668 				    PRU_SLOWTIMO, (struct mbuf *)0,
1669 				    (struct mbuf *)i, (struct mbuf *)0);
1670 				if (ipnxt->nsp_prev != ip)
1671 					goto tpgone;
1672 			}
1673 		}
1674 		cb->s_idle++;
1675 		if (cb->s_rtt)
1676 			cb->s_rtt++;
1677 tpgone:
1678 		ip = ipnxt;
1679 	}
1680 	spp_iss += SPP_ISSINCR/PR_SLOWHZ;		/* increment iss */
1681 	splx(s);
1682 }
1683 /*
1684  * SPP timer processing.
1685  */
1686 struct sppcb *
1687 spp_timers(cb, timer)
1688 	register struct sppcb *cb;
1689 	int timer;
1690 {
1691 	long rexmt;
1692 	int win;
1693 
1694 	cb->s_force = 1 + timer;
1695 	switch (timer) {
1696 
1697 	/*
1698 	 * 2 MSL timeout in shutdown went off.  TCP deletes connection
1699 	 * control block.
1700 	 */
1701 	case SPPT_2MSL:
1702 		printf("spp: SPPT_2MSL went off for no reason\n");
1703 		cb->s_timer[timer] = 0;
1704 		break;
1705 
1706 	/*
1707 	 * Retransmission timer went off.  Message has not
1708 	 * been acked within retransmit interval.  Back off
1709 	 * to a longer retransmit interval and retransmit one packet.
1710 	 */
1711 	case SPPT_REXMT:
1712 		if (++cb->s_rxtshift > SPP_MAXRXTSHIFT) {
1713 			cb->s_rxtshift = SPP_MAXRXTSHIFT;
1714 			sppstat.spps_timeoutdrop++;
1715 			cb = spp_drop(cb, ETIMEDOUT);
1716 			break;
1717 		}
1718 		sppstat.spps_rexmttimeo++;
1719 		rexmt = ((cb->s_srtt >> 2) + cb->s_rttvar) >> 1;
1720 		rexmt *= spp_backoff[cb->s_rxtshift];
1721 		SPPT_RANGESET(cb->s_rxtcur, rexmt, SPPTV_MIN, SPPTV_REXMTMAX);
1722 		cb->s_timer[SPPT_REXMT] = cb->s_rxtcur;
1723 		/*
1724 		 * If we have backed off fairly far, our srtt
1725 		 * estimate is probably bogus.  Clobber it
1726 		 * so we'll take the next rtt measurement as our srtt;
1727 		 * move the current srtt into rttvar to keep the current
1728 		 * retransmit times until then.
1729 		 */
1730 		if (cb->s_rxtshift > SPP_MAXRXTSHIFT / 4 ) {
1731 			cb->s_rttvar += (cb->s_srtt >> 2);
1732 			cb->s_srtt = 0;
1733 		}
1734 		cb->s_snxt = cb->s_rack;
1735 		/*
1736 		 * If timing a packet, stop the timer.
1737 		 */
1738 		cb->s_rtt = 0;
1739 		/*
1740 		 * See very long discussion in tcp_timer.c about congestion
1741 		 * window and sstrhesh
1742 		 */
1743 		win = min(cb->s_swnd, (cb->s_cwnd/CUNIT)) / 2;
1744 		if (win < 2)
1745 			win = 2;
1746 		cb->s_cwnd = CUNIT;
1747 		cb->s_ssthresh = win * CUNIT;
1748 		(void) spp_output(cb, (struct mbuf *) 0);
1749 		break;
1750 
1751 	/*
1752 	 * Persistance timer into zero window.
1753 	 * Force a probe to be sent.
1754 	 */
1755 	case SPPT_PERSIST:
1756 		sppstat.spps_persisttimeo++;
1757 		spp_setpersist(cb);
1758 		(void) spp_output(cb, (struct mbuf *) 0);
1759 		break;
1760 
1761 	/*
1762 	 * Keep-alive timer went off; send something
1763 	 * or drop connection if idle for too long.
1764 	 */
1765 	case SPPT_KEEP:
1766 		sppstat.spps_keeptimeo++;
1767 		if (cb->s_state < TCPS_ESTABLISHED)
1768 			goto dropit;
1769 		if (cb->s_nspcb->nsp_socket->so_options & SO_KEEPALIVE) {
1770 		    	if (cb->s_idle >= SPPTV_MAXIDLE)
1771 				goto dropit;
1772 			sppstat.spps_keepprobe++;
1773 			(void) spp_output(cb, (struct mbuf *) 0);
1774 		} else
1775 			cb->s_idle = 0;
1776 		cb->s_timer[SPPT_KEEP] = SPPTV_KEEP;
1777 		break;
1778 	dropit:
1779 		sppstat.spps_keepdrops++;
1780 		cb = spp_drop(cb, ETIMEDOUT);
1781 		break;
1782 	}
1783 	return (cb);
1784 }
1785 #ifndef lint
1786 int SppcbSize = sizeof (struct sppcb);
1787 int NspcbSize = sizeof (struct nspcb);
1788 #endif lint
1789