xref: /original-bsd/sys/nfs/nfs_socket.c (revision 68d9582f)
1 /*
2  * Copyright (c) 1989, 1991 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)nfs_socket.c	7.30 (Berkeley) 05/11/92
11  */
12 
13 /*
14  * Socket operations for use by nfs
15  */
16 
17 #include "types.h"
18 #include "param.h"
19 #include "uio.h"
20 #include "proc.h"
21 #include "signal.h"
22 #include "mount.h"
23 #include "kernel.h"
24 #include "malloc.h"
25 #include "mbuf.h"
26 #include "vnode.h"
27 #include "domain.h"
28 #include "protosw.h"
29 #include "socket.h"
30 #include "socketvar.h"
31 #include "syslog.h"
32 #include "tprintf.h"
33 #include "machine/endian.h"
34 #include "netinet/in.h"
35 #include "netinet/tcp.h"
36 #ifdef ISO
37 #include "netiso/iso.h"
38 #endif
39 #include "ufs/ufs/quota.h"
40 #include "ufs/ufs/ufsmount.h"
41 #include "rpcv2.h"
42 #include "nfsv2.h"
43 #include "nfs.h"
44 #include "xdr_subs.h"
45 #include "nfsm_subs.h"
46 #include "nfsmount.h"
47 #include "nfsnode.h"
48 #include "nfsrtt.h"
49 #include "nqnfs.h"
50 
51 #define	TRUE	1
52 #define	FALSE	0
53 
54 int netnetnet = sizeof (struct netaddrhash);
55 /*
56  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
57  * Use the mean and mean deviation of rtt for the appropriate type of rpc
58  * for the frequent rpcs and a default for the others.
59  * The justification for doing "other" this way is that these rpcs
60  * happen so infrequently that timer est. would probably be stale.
61  * Also, since many of these rpcs are
62  * non-idempotent, a conservative timeout is desired.
63  * getattr, lookup - A+2D
64  * read, write     - A+4D
65  * other           - nm_timeo
66  */
67 #define	NFS_RTO(n, t) \
68 	((t) == 0 ? (n)->nm_timeo : \
69 	 ((t) < 3 ? \
70 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
71 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
72 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
73 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
74 /*
75  * External data, mostly RPC constants in XDR form
76  */
77 extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
78 	rpc_msgaccepted, rpc_call, rpc_autherr, rpc_rejectedcred,
79 	rpc_auth_kerb;
80 extern u_long nfs_prog, nfs_vers, nqnfs_prog, nqnfs_vers;
81 extern time_t nqnfsstarttime;
82 extern int nonidempotent[NFS_NPROCS];
83 
84 /*
85  * Maps errno values to nfs error numbers.
86  * Use NFSERR_IO as the catch all for ones not specifically defined in
87  * RFC 1094.
88  */
89 static int nfsrv_errmap[ELAST] = {
90   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
91   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
92   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
93   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
94   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
95   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
96   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
97   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
98   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
99   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
100   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
101   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
102   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
103   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
104   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
105   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
106   NFSERR_IO,
107 };
108 
109 /*
110  * Defines which timer to use for the procnum.
111  * 0 - default
112  * 1 - getattr
113  * 2 - lookup
114  * 3 - read
115  * 4 - write
116  */
117 static int proct[NFS_NPROCS] = {
118 	0, 1, 0, 0, 2, 3, 3, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0,
119 };
120 
121 /*
122  * There is a congestion window for outstanding rpcs maintained per mount
123  * point. The cwnd size is adjusted in roughly the way that:
124  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125  * SIGCOMM '88". ACM, August 1988.
126  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128  * of rpcs is in progress.
129  * (The sent count and cwnd are scaled for integer arith.)
130  * Variants of "slow start" were tried and were found to be too much of a
131  * performance hit (ave. rtt 3 times larger),
132  * I suspect due to the large rtt that nfs rpcs have.
133  */
134 #define	NFS_CWNDSCALE	256
135 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int	nfs_sbwait();
138 void	nfs_disconnect(), nfs_realign(), nfsrv_wakenfsd(), nfs_sndunlock();
139 void	nfs_rcvunlock(), nqnfs_serverd();
140 struct mbuf *nfsm_rpchead();
141 int nfsrtton = 0;
142 struct nfsrtt nfsrtt;
143 struct nfsd nfsd_head;
144 
145 int	nfsrv_null(),
146 	nfsrv_getattr(),
147 	nfsrv_setattr(),
148 	nfsrv_lookup(),
149 	nfsrv_readlink(),
150 	nfsrv_read(),
151 	nfsrv_write(),
152 	nfsrv_create(),
153 	nfsrv_remove(),
154 	nfsrv_rename(),
155 	nfsrv_link(),
156 	nfsrv_symlink(),
157 	nfsrv_mkdir(),
158 	nfsrv_rmdir(),
159 	nfsrv_readdir(),
160 	nfsrv_statfs(),
161 	nfsrv_noop(),
162 	nqnfsrv_readdirlook(),
163 	nqnfsrv_getlease(),
164 	nqnfsrv_vacated();
165 
166 int (*nfsrv_procs[NFS_NPROCS])() = {
167 	nfsrv_null,
168 	nfsrv_getattr,
169 	nfsrv_setattr,
170 	nfsrv_noop,
171 	nfsrv_lookup,
172 	nfsrv_readlink,
173 	nfsrv_read,
174 	nfsrv_noop,
175 	nfsrv_write,
176 	nfsrv_create,
177 	nfsrv_remove,
178 	nfsrv_rename,
179 	nfsrv_link,
180 	nfsrv_symlink,
181 	nfsrv_mkdir,
182 	nfsrv_rmdir,
183 	nfsrv_readdir,
184 	nfsrv_statfs,
185 	nqnfsrv_readdirlook,
186 	nqnfsrv_getlease,
187 	nqnfsrv_vacated,
188 };
189 
190 struct nfsreq nfsreqh;
191 
192 /*
193  * Initialize sockets and congestion for a new NFS connection.
194  * We do not free the sockaddr if error.
195  */
196 nfs_connect(nmp, rep)
197 	register struct nfsmount *nmp;
198 	struct nfsreq *rep;
199 {
200 	register struct socket *so;
201 	int s, error, rcvreserve, sndreserve;
202 	struct sockaddr *saddr;
203 	struct sockaddr_in *sin;
204 	struct mbuf *m;
205 	u_short tport;
206 
207 	nmp->nm_so = (struct socket *)0;
208 	saddr = mtod(nmp->nm_nam, struct sockaddr *);
209 	if (error = socreate(saddr->sa_family,
210 		&nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto))
211 		goto bad;
212 	so = nmp->nm_so;
213 	nmp->nm_soflags = so->so_proto->pr_flags;
214 
215 	/*
216 	 * Some servers require that the client port be a reserved port number.
217 	 */
218 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
219 		MGET(m, M_WAIT, MT_SONAME);
220 		sin = mtod(m, struct sockaddr_in *);
221 		sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
222 		sin->sin_family = AF_INET;
223 		sin->sin_addr.s_addr = INADDR_ANY;
224 		tport = IPPORT_RESERVED - 1;
225 		sin->sin_port = htons(tport);
226 		while ((error = sobind(so, m)) == EADDRINUSE &&
227 		       --tport > IPPORT_RESERVED / 2)
228 			sin->sin_port = htons(tport);
229 		m_freem(m);
230 		if (error)
231 			goto bad;
232 	}
233 
234 	/*
235 	 * Protocols that do not require connections may be optionally left
236 	 * unconnected for servers that reply from a port other than NFS_PORT.
237 	 */
238 	if (nmp->nm_flag & NFSMNT_NOCONN) {
239 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
240 			error = ENOTCONN;
241 			goto bad;
242 		}
243 	} else {
244 		if (error = soconnect(so, nmp->nm_nam))
245 			goto bad;
246 
247 		/*
248 		 * Wait for the connection to complete. Cribbed from the
249 		 * connect system call but with the wait timing out so
250 		 * that interruptible mounts don't hang here for a long time.
251 		 */
252 		s = splnet();
253 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
254 			(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
255 				"nfscon", 2 * hz);
256 			if ((so->so_state & SS_ISCONNECTING) &&
257 			    so->so_error == 0 && rep &&
258 			    (error = nfs_sigintr(nmp, rep, rep->r_procp))) {
259 				so->so_state &= ~SS_ISCONNECTING;
260 				splx(s);
261 				goto bad;
262 			}
263 		}
264 		if (so->so_error) {
265 			error = so->so_error;
266 			so->so_error = 0;
267 			splx(s);
268 			goto bad;
269 		}
270 		splx(s);
271 	}
272 	if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
273 		so->so_rcv.sb_timeo = (5 * hz);
274 		so->so_snd.sb_timeo = (5 * hz);
275 	} else {
276 		so->so_rcv.sb_timeo = 0;
277 		so->so_snd.sb_timeo = 0;
278 	}
279 	if (nmp->nm_sotype == SOCK_DGRAM) {
280 		sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
281 		rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
282 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
283 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
284 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
285 	} else {
286 		if (nmp->nm_sotype != SOCK_STREAM)
287 			panic("nfscon sotype");
288 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
289 			MGET(m, M_WAIT, MT_SOOPTS);
290 			*mtod(m, int *) = 1;
291 			m->m_len = sizeof(int);
292 			sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
293 		}
294 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
295 			MGET(m, M_WAIT, MT_SOOPTS);
296 			*mtod(m, int *) = 1;
297 			m->m_len = sizeof(int);
298 			sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
299 		}
300 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
301 				* 2;
302 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
303 				* 2;
304 	}
305 	if (error = soreserve(so, sndreserve, rcvreserve))
306 		goto bad;
307 	so->so_rcv.sb_flags |= SB_NOINTR;
308 	so->so_snd.sb_flags |= SB_NOINTR;
309 
310 	/* Initialize other non-zero congestion variables */
311 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
312 		nmp->nm_srtt[4] = (NFS_TIMEO << 3);
313 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
314 		nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
315 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
316 	nmp->nm_sent = 0;
317 	nmp->nm_timeouts = 0;
318 	return (0);
319 
320 bad:
321 	nfs_disconnect(nmp);
322 	return (error);
323 }
324 
325 /*
326  * Reconnect routine:
327  * Called when a connection is broken on a reliable protocol.
328  * - clean up the old socket
329  * - nfs_connect() again
330  * - set R_MUSTRESEND for all outstanding requests on mount point
331  * If this fails the mount point is DEAD!
332  * nb: Must be called with the nfs_sndlock() set on the mount point.
333  */
334 nfs_reconnect(rep)
335 	register struct nfsreq *rep;
336 {
337 	register struct nfsreq *rp;
338 	register struct nfsmount *nmp = rep->r_nmp;
339 	int error;
340 
341 	nfs_disconnect(nmp);
342 	while (error = nfs_connect(nmp, rep)) {
343 		if (error == EINTR || error == ERESTART)
344 			return (EINTR);
345 		(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
346 	}
347 
348 	/*
349 	 * Loop through outstanding request list and fix up all requests
350 	 * on old socket.
351 	 */
352 	rp = nfsreqh.r_next;
353 	while (rp != &nfsreqh) {
354 		if (rp->r_nmp == nmp)
355 			rp->r_flags |= R_MUSTRESEND;
356 		rp = rp->r_next;
357 	}
358 	return (0);
359 }
360 
361 /*
362  * NFS disconnect. Clean up and unlink.
363  */
364 void
365 nfs_disconnect(nmp)
366 	register struct nfsmount *nmp;
367 {
368 	register struct socket *so;
369 
370 	if (nmp->nm_so) {
371 		so = nmp->nm_so;
372 		nmp->nm_so = (struct socket *)0;
373 		soshutdown(so, 2);
374 		soclose(so);
375 	}
376 }
377 
378 /*
379  * This is the nfs send routine. For connection based socket types, it
380  * must be called with an nfs_sndlock() on the socket.
381  * "rep == NULL" indicates that it has been called from a server.
382  * For the client side:
383  * - return EINTR if the RPC is terminated, 0 otherwise
384  * - set R_MUSTRESEND if the send fails for any reason
385  * - do any cleanup required by recoverable socket errors (???)
386  * For the server side:
387  * - return EINTR or ERESTART if interrupted by a signal
388  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
389  * - do any cleanup required by recoverable socket errors (???)
390  */
391 nfs_send(so, nam, top, rep)
392 	register struct socket *so;
393 	struct mbuf *nam;
394 	register struct mbuf *top;
395 	struct nfsreq *rep;
396 {
397 	struct mbuf *sendnam;
398 	int error, soflags, flags;
399 
400 	if (rep) {
401 		if (rep->r_flags & R_SOFTTERM) {
402 			m_freem(top);
403 			return (EINTR);
404 		}
405 		if ((so = rep->r_nmp->nm_so) == NULL) {
406 			rep->r_flags |= R_MUSTRESEND;
407 			m_freem(top);
408 			return (0);
409 		}
410 		rep->r_flags &= ~R_MUSTRESEND;
411 		soflags = rep->r_nmp->nm_soflags;
412 	} else
413 		soflags = so->so_proto->pr_flags;
414 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
415 		sendnam = (struct mbuf *)0;
416 	else
417 		sendnam = nam;
418 	if (so->so_type == SOCK_SEQPACKET)
419 		flags = MSG_EOR;
420 	else
421 		flags = 0;
422 
423 	error = sosend(so, sendnam, (struct uio *)0, top,
424 		(struct mbuf *)0, flags);
425 	if (error) {
426 		if (rep) {
427 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
428 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
429 			/*
430 			 * Deal with errors for the client side.
431 			 */
432 			if (rep->r_flags & R_SOFTTERM)
433 				error = EINTR;
434 			else
435 				rep->r_flags |= R_MUSTRESEND;
436 		} else
437 			log(LOG_INFO, "nfsd send error %d\n", error);
438 
439 		/*
440 		 * Handle any recoverable (soft) socket errors here. (???)
441 		 */
442 		if (error != EINTR && error != ERESTART &&
443 			error != EWOULDBLOCK && error != EPIPE)
444 			error = 0;
445 	}
446 	return (error);
447 }
448 
449 /*
450  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
451  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
452  * Mark and consolidate the data into a new mbuf list.
453  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
454  *     small mbufs.
455  * For SOCK_STREAM we must be very careful to read an entire record once
456  * we have read any of it, even if the system call has been interrupted.
457  */
458 nfs_receive(rep, aname, mp)
459 	register struct nfsreq *rep;
460 	struct mbuf **aname;
461 	struct mbuf **mp;
462 {
463 	register struct socket *so;
464 	struct uio auio;
465 	struct iovec aio;
466 	register struct mbuf *m;
467 	struct mbuf *control;
468 	u_long len;
469 	struct mbuf **getnam;
470 	int error, sotype, rcvflg;
471 	struct proc *p = curproc;	/* XXX */
472 
473 	/*
474 	 * Set up arguments for soreceive()
475 	 */
476 	*mp = (struct mbuf *)0;
477 	*aname = (struct mbuf *)0;
478 	sotype = rep->r_nmp->nm_sotype;
479 
480 	/*
481 	 * For reliable protocols, lock against other senders/receivers
482 	 * in case a reconnect is necessary.
483 	 * For SOCK_STREAM, first get the Record Mark to find out how much
484 	 * more there is to get.
485 	 * We must lock the socket against other receivers
486 	 * until we have an entire rpc request/reply.
487 	 */
488 	if (sotype != SOCK_DGRAM) {
489 		if (error = nfs_sndlock(&rep->r_nmp->nm_flag, rep))
490 			return (error);
491 tryagain:
492 		/*
493 		 * Check for fatal errors and resending request.
494 		 */
495 		/*
496 		 * Ugh: If a reconnect attempt just happened, nm_so
497 		 * would have changed. NULL indicates a failed
498 		 * attempt that has essentially shut down this
499 		 * mount point.
500 		 */
501 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
502 			nfs_sndunlock(&rep->r_nmp->nm_flag);
503 			return (EINTR);
504 		}
505 		if ((so = rep->r_nmp->nm_so) == NULL) {
506 			if (error = nfs_reconnect(rep)) {
507 				nfs_sndunlock(&rep->r_nmp->nm_flag);
508 				return (error);
509 			}
510 			goto tryagain;
511 		}
512 		while (rep->r_flags & R_MUSTRESEND) {
513 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
514 			nfsstats.rpcretries++;
515 			if (error = nfs_send(so, rep->r_nmp->nm_nam, m, rep)) {
516 				if (error == EINTR || error == ERESTART ||
517 				    (error = nfs_reconnect(rep))) {
518 					nfs_sndunlock(&rep->r_nmp->nm_flag);
519 					return (error);
520 				}
521 				goto tryagain;
522 			}
523 		}
524 		nfs_sndunlock(&rep->r_nmp->nm_flag);
525 		if (sotype == SOCK_STREAM) {
526 			aio.iov_base = (caddr_t) &len;
527 			aio.iov_len = sizeof(u_long);
528 			auio.uio_iov = &aio;
529 			auio.uio_iovcnt = 1;
530 			auio.uio_segflg = UIO_SYSSPACE;
531 			auio.uio_rw = UIO_READ;
532 			auio.uio_offset = 0;
533 			auio.uio_resid = sizeof(u_long);
534 			auio.uio_procp = p;
535 			do {
536 			   rcvflg = MSG_WAITALL;
537 			   error = soreceive(so, (struct mbuf **)0, &auio,
538 				(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
539 			   if (error == EWOULDBLOCK && rep) {
540 				if (rep->r_flags & R_SOFTTERM)
541 					return (EINTR);
542 			   }
543 			} while (error == EWOULDBLOCK);
544 			if (!error && auio.uio_resid > 0) {
545 			    log(LOG_INFO,
546 				 "short receive (%d/%d) from nfs server %s\n",
547 				 sizeof(u_long) - auio.uio_resid,
548 				 sizeof(u_long),
549 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
550 			    error = EPIPE;
551 			}
552 			if (error)
553 				goto errout;
554 			len = ntohl(len) & ~0x80000000;
555 			/*
556 			 * This is SERIOUS! We are out of sync with the sender
557 			 * and forcing a disconnect/reconnect is all I can do.
558 			 */
559 			if (len > NFS_MAXPACKET) {
560 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
561 				"impossible packet length",
562 				len,
563 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
564 			    error = EFBIG;
565 			    goto errout;
566 			}
567 			auio.uio_resid = len;
568 			do {
569 			    rcvflg = MSG_WAITALL;
570 			    error =  soreceive(so, (struct mbuf **)0,
571 				&auio, mp, (struct mbuf **)0, &rcvflg);
572 			} while (error == EWOULDBLOCK || error == EINTR ||
573 				 error == ERESTART);
574 			if (!error && auio.uio_resid > 0) {
575 			    log(LOG_INFO,
576 				"short receive (%d/%d) from nfs server %s\n",
577 				len - auio.uio_resid, len,
578 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
579 			    error = EPIPE;
580 			}
581 		} else {
582 			/*
583 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
584 			 * and soreceive() will return when it has either a
585 			 * control msg or a data msg.
586 			 * We have no use for control msg., but must grab them
587 			 * and then throw them away so we know what is going
588 			 * on.
589 			 */
590 			auio.uio_resid = len = 100000000; /* Anything Big */
591 			auio.uio_procp = p;
592 			do {
593 			    rcvflg = 0;
594 			    error =  soreceive(so, (struct mbuf **)0,
595 				&auio, mp, &control, &rcvflg);
596 			    if (control)
597 				m_freem(control);
598 			    if (error == EWOULDBLOCK && rep) {
599 				if (rep->r_flags & R_SOFTTERM)
600 					return (EINTR);
601 			    }
602 			} while (error == EWOULDBLOCK ||
603 				 (!error && *mp == NULL && control));
604 			if ((rcvflg & MSG_EOR) == 0)
605 				printf("Egad!!\n");
606 			if (!error && *mp == NULL)
607 				error = EPIPE;
608 			len -= auio.uio_resid;
609 		}
610 errout:
611 		if (error && error != EINTR && error != ERESTART) {
612 			m_freem(*mp);
613 			*mp = (struct mbuf *)0;
614 			if (error != EPIPE)
615 				log(LOG_INFO,
616 				    "receive error %d from nfs server %s\n",
617 				    error,
618 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
619 			error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
620 			if (!error)
621 				error = nfs_reconnect(rep);
622 			if (!error)
623 				goto tryagain;
624 		}
625 	} else {
626 		if ((so = rep->r_nmp->nm_so) == NULL)
627 			return (EACCES);
628 		if (so->so_state & SS_ISCONNECTED)
629 			getnam = (struct mbuf **)0;
630 		else
631 			getnam = aname;
632 		auio.uio_resid = len = 1000000;
633 		auio.uio_procp = p;
634 		do {
635 			rcvflg = 0;
636 			error =  soreceive(so, getnam, &auio, mp,
637 				(struct mbuf **)0, &rcvflg);
638 			if (error == EWOULDBLOCK &&
639 			    (rep->r_flags & R_SOFTTERM))
640 				return (EINTR);
641 		} while (error == EWOULDBLOCK);
642 		len -= auio.uio_resid;
643 	}
644 	if (error) {
645 		m_freem(*mp);
646 		*mp = (struct mbuf *)0;
647 	}
648 	/*
649 	 * Search for any mbufs that are not a multiple of 4 bytes long
650 	 * or with m_data not longword aligned.
651 	 * These could cause pointer alignment problems, so copy them to
652 	 * well aligned mbufs.
653 	 */
654 	nfs_realign(*mp, 5 * NFSX_UNSIGNED);
655 	return (error);
656 }
657 
658 /*
659  * Implement receipt of reply on a socket.
660  * We must search through the list of received datagrams matching them
661  * with outstanding requests using the xid, until ours is found.
662  */
663 /* ARGSUSED */
664 nfs_reply(myrep)
665 	struct nfsreq *myrep;
666 {
667 	register struct nfsreq *rep;
668 	register struct nfsmount *nmp = myrep->r_nmp;
669 	register long t1;
670 	struct mbuf *mrep, *nam, *md;
671 	u_long rxid, *tl;
672 	caddr_t dpos, cp2;
673 	int error;
674 
675 	/*
676 	 * Loop around until we get our own reply
677 	 */
678 	for (;;) {
679 		/*
680 		 * Lock against other receivers so that I don't get stuck in
681 		 * sbwait() after someone else has received my reply for me.
682 		 * Also necessary for connection based protocols to avoid
683 		 * race conditions during a reconnect.
684 		 */
685 		if (error = nfs_rcvlock(myrep))
686 			return (error);
687 		/* Already received, bye bye */
688 		if (myrep->r_mrep != NULL) {
689 			nfs_rcvunlock(&nmp->nm_flag);
690 			return (0);
691 		}
692 		/*
693 		 * Get the next Rpc reply off the socket
694 		 */
695 		error = nfs_receive(myrep, &nam, &mrep);
696 		nfs_rcvunlock(&nmp->nm_flag);
697 if (error) printf("rcv err=%d\n",error);
698 		if (error) {
699 
700 			/*
701 			 * Ignore routing errors on connectionless protocols??
702 			 */
703 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
704 				nmp->nm_so->so_error = 0;
705 				continue;
706 			}
707 			return (error);
708 		}
709 		if (nam)
710 			m_freem(nam);
711 
712 		/*
713 		 * Get the xid and check that it is an rpc reply
714 		 */
715 		md = mrep;
716 		dpos = mtod(md, caddr_t);
717 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
718 		rxid = *tl++;
719 		if (*tl != rpc_reply) {
720 			if (nmp->nm_flag & NFSMNT_NQNFS) {
721 				if (nqnfs_callback(nmp, mrep, md, dpos))
722 					nfsstats.rpcinvalid++;
723 			} else {
724 				nfsstats.rpcinvalid++;
725 				m_freem(mrep);
726 			}
727 nfsmout:
728 			continue;
729 		}
730 
731 		/*
732 		 * Loop through the request list to match up the reply
733 		 * Iff no match, just drop the datagram
734 		 */
735 		rep = nfsreqh.r_next;
736 		while (rep != &nfsreqh) {
737 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
738 				/* Found it.. */
739 				rep->r_mrep = mrep;
740 				rep->r_md = md;
741 				rep->r_dpos = dpos;
742 				if (nfsrtton) {
743 					struct rttl *rt;
744 
745 					rt = &nfsrtt.rttl[nfsrtt.pos];
746 					rt->proc = rep->r_procnum;
747 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
748 					rt->sent = nmp->nm_sent;
749 					rt->cwnd = nmp->nm_cwnd;
750 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
751 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
752 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
753 					rt->tstamp = time;
754 					if (rep->r_flags & R_TIMING)
755 						rt->rtt = rep->r_rtt;
756 					else
757 						rt->rtt = 1000000;
758 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
759 				}
760 				/*
761 				 * Update congestion window.
762 				 * Do the additive increase of
763 				 * one rpc/rtt.
764 				 */
765 				if (nmp->nm_cwnd <= nmp->nm_sent) {
766 					nmp->nm_cwnd +=
767 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
768 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
769 					if (nmp->nm_cwnd > NFS_MAXCWND)
770 						nmp->nm_cwnd = NFS_MAXCWND;
771 				}
772 				nmp->nm_sent -= NFS_CWNDSCALE;
773 				/*
774 				 * Update rtt using a gain of 0.125 on the mean
775 				 * and a gain of 0.25 on the deviation.
776 				 */
777 				if (rep->r_flags & R_TIMING) {
778 					/*
779 					 * Since the timer resolution of
780 					 * NFS_HZ is so course, it can often
781 					 * result in r_rtt == 0. Since
782 					 * r_rtt == N means that the actual
783 					 * rtt is between N+dt and N+2-dt ticks,
784 					 * add 1.
785 					 */
786 					t1 = rep->r_rtt + 1;
787 					t1 -= (NFS_SRTT(rep) >> 3);
788 					NFS_SRTT(rep) += t1;
789 					if (t1 < 0)
790 						t1 = -t1;
791 					t1 -= (NFS_SDRTT(rep) >> 2);
792 					NFS_SDRTT(rep) += t1;
793 				}
794 				nmp->nm_timeouts = 0;
795 				break;
796 			}
797 			rep = rep->r_next;
798 		}
799 		/*
800 		 * If not matched to a request, drop it.
801 		 * If it's mine, get out.
802 		 */
803 		if (rep == &nfsreqh) {
804 			nfsstats.rpcunexpected++;
805 			m_freem(mrep);
806 		} else if (rep == myrep) {
807 			if (rep->r_mrep == NULL)
808 				panic("nfsreply nil");
809 			return (0);
810 		}
811 	}
812 }
813 
814 /*
815  * nfs_request - goes something like this
816  *	- fill in request struct
817  *	- links it into list
818  *	- calls nfs_send() for first transmit
819  *	- calls nfs_receive() to get reply
820  *	- break down rpc header and return with nfs reply pointed to
821  *	  by mrep or error
822  * nb: always frees up mreq mbuf list
823  */
824 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
825 	struct vnode *vp;
826 	struct mbuf *mrest;
827 	int procnum;
828 	struct proc *procp;
829 	struct ucred *cred;
830 	struct mbuf **mrp;
831 	struct mbuf **mdp;
832 	caddr_t *dposp;
833 {
834 	register struct mbuf *m, *mrep;
835 	register struct nfsreq *rep;
836 	register u_long *tl;
837 	register int i;
838 	struct nfsmount *nmp;
839 	struct mbuf *md, *mheadend;
840 	struct nfsreq *reph;
841 	struct nfsnode *tp, *np;
842 	time_t reqtime, waituntil;
843 	caddr_t dpos, cp2;
844 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
845 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
846 	u_long xid;
847 	char *auth_str;
848 
849 	nmp = VFSTONFS(vp->v_mount);
850 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
851 	rep->r_nmp = nmp;
852 	rep->r_vp = vp;
853 	rep->r_procp = procp;
854 	rep->r_procnum = procnum;
855 	i = 0;
856 	m = mrest;
857 	while (m) {
858 		i += m->m_len;
859 		m = m->m_next;
860 	}
861 	mrest_len = i;
862 
863 	/*
864 	 * Get the RPC header with authorization.
865 	 */
866 kerbauth:
867 	auth_str = (char *)0;
868 	if (nmp->nm_flag & NFSMNT_KERB) {
869 		if (failed_auth) {
870 			error = nfs_getauth(nmp, rep, cred, &auth_type,
871 				&auth_str, &auth_len);
872 			if (error) {
873 				free((caddr_t)rep, M_NFSREQ);
874 				m_freem(mrest);
875 				return (error);
876 			}
877 		} else {
878 			auth_type = RPCAUTH_UNIX;
879 			auth_len = 5 * NFSX_UNSIGNED;
880 		}
881 	} else {
882 		auth_type = RPCAUTH_UNIX;
883 		if (cred->cr_ngroups < 1)
884 			panic("nfsreq nogrps");
885 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
886 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
887 			5 * NFSX_UNSIGNED;
888 	}
889 	m = nfsm_rpchead(cred, (nmp->nm_flag & NFSMNT_NQNFS), procnum,
890 	     auth_type, auth_len, auth_str, mrest, mrest_len, &mheadend, &xid);
891 	if (auth_str)
892 		free(auth_str, M_TEMP);
893 
894 	/*
895 	 * For stream protocols, insert a Sun RPC Record Mark.
896 	 */
897 	if (nmp->nm_sotype == SOCK_STREAM) {
898 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
899 		*mtod(m, u_long *) = htonl(0x80000000 |
900 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
901 	}
902 	rep->r_mreq = m;
903 	rep->r_xid = xid;
904 tryagain:
905 	if (nmp->nm_flag & NFSMNT_SOFT)
906 		rep->r_retry = nmp->nm_retry;
907 	else
908 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
909 	rep->r_rtt = rep->r_rexmit = 0;
910 	if (proct[procnum] > 0)
911 		rep->r_flags = R_TIMING;
912 	else
913 		rep->r_flags = 0;
914 	rep->r_mrep = NULL;
915 
916 	/*
917 	 * Do the client side RPC.
918 	 */
919 	nfsstats.rpcrequests++;
920 	/*
921 	 * Chain request into list of outstanding requests. Be sure
922 	 * to put it LAST so timer finds oldest requests first.
923 	 */
924 	s = splsoftclock();
925 	reph = &nfsreqh;
926 	reph->r_prev->r_next = rep;
927 	rep->r_prev = reph->r_prev;
928 	reph->r_prev = rep;
929 	rep->r_next = reph;
930 
931 	/* Get send time for nqnfs */
932 	reqtime = time.tv_sec;
933 
934 	/*
935 	 * If backing off another request or avoiding congestion, don't
936 	 * send this one now but let timer do it. If not timing a request,
937 	 * do it now.
938 	 */
939 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
940 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
941 		nmp->nm_sent < nmp->nm_cwnd)) {
942 		splx(s);
943 		if (nmp->nm_soflags & PR_CONNREQUIRED)
944 			error = nfs_sndlock(&nmp->nm_flag, rep);
945 		if (!error) {
946 			m = m_copym(m, 0, M_COPYALL, M_WAIT);
947 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
948 			if (nmp->nm_soflags & PR_CONNREQUIRED)
949 				nfs_sndunlock(&nmp->nm_flag);
950 		}
951 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
952 			nmp->nm_sent += NFS_CWNDSCALE;
953 			rep->r_flags |= R_SENT;
954 		}
955 	} else {
956 		splx(s);
957 		rep->r_rtt = -1;
958 	}
959 
960 	/*
961 	 * Wait for the reply from our send or the timer's.
962 	 */
963 	if (!error)
964 		error = nfs_reply(rep);
965 
966 	/*
967 	 * RPC done, unlink the request.
968 	 */
969 	s = splsoftclock();
970 	rep->r_prev->r_next = rep->r_next;
971 	rep->r_next->r_prev = rep->r_prev;
972 	splx(s);
973 
974 	/*
975 	 * If there was a successful reply and a tprintf msg.
976 	 * tprintf a response.
977 	 */
978 	if (!error && (rep->r_flags & R_TPRINTFMSG))
979 		nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
980 		    "is alive again");
981 	mrep = rep->r_mrep;
982 	md = rep->r_md;
983 	dpos = rep->r_dpos;
984 	if (error) {
985 		m_freem(rep->r_mreq);
986 		free((caddr_t)rep, M_NFSREQ);
987 		return (error);
988 	}
989 
990 	/*
991 	 * break down the rpc header and check if ok
992 	 */
993 	nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
994 	if (*tl++ == rpc_msgdenied) {
995 		if (*tl == rpc_mismatch)
996 			error = EOPNOTSUPP;
997 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
998 			if (*tl == rpc_rejectedcred && failed_auth == 0) {
999 				failed_auth++;
1000 				mheadend->m_next = (struct mbuf *)0;
1001 				m_freem(mrep);
1002 				m_freem(rep->r_mreq);
1003 				goto kerbauth;
1004 			} else
1005 				error = EAUTH;
1006 		} else
1007 			error = EACCES;
1008 		m_freem(mrep);
1009 		m_freem(rep->r_mreq);
1010 		free((caddr_t)rep, M_NFSREQ);
1011 		return (error);
1012 	}
1013 
1014 	/*
1015 	 * skip over the auth_verf, someday we may want to cache auth_short's
1016 	 * for nfs_reqhead(), but for now just dump it
1017 	 */
1018 	if (*++tl != 0) {
1019 		i = nfsm_rndup(fxdr_unsigned(long, *tl));
1020 		nfsm_adv(i);
1021 	}
1022 	nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1023 	/* 0 == ok */
1024 	if (*tl == 0) {
1025 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1026 		if (*tl != 0) {
1027 			error = fxdr_unsigned(int, *tl);
1028 			m_freem(mrep);
1029 			if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1030 			    error == NQNFS_TRYLATER) {
1031 				error = 0;
1032 				waituntil = time.tv_sec + trylater_delay;
1033 				while (time.tv_sec < waituntil)
1034 					(void) tsleep((caddr_t)&lbolt,
1035 						PSOCK, "nqnfstry", 0);
1036 				trylater_delay *= nfs_backoff[trylater_cnt];
1037 				if (trylater_cnt < 7)
1038 					trylater_cnt++;
1039 				goto tryagain;
1040 			}
1041 			m_freem(rep->r_mreq);
1042 			free((caddr_t)rep, M_NFSREQ);
1043 			return (error);
1044 		}
1045 
1046 		/*
1047 		 * For nqnfs, get any lease in reply
1048 		 */
1049 		if (nmp->nm_flag & NFSMNT_NQNFS) {
1050 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1051 			if (*tl) {
1052 				np = VTONFS(vp);
1053 				nqlflag = fxdr_unsigned(int, *tl);
1054 				nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
1055 				cachable = fxdr_unsigned(int, *tl++);
1056 				reqtime += fxdr_unsigned(int, *tl++);
1057 				if (reqtime > time.tv_sec) {
1058 				    if (np->n_tnext) {
1059 					if (np->n_tnext == (struct nfsnode *)nmp)
1060 					    nmp->nm_tprev = np->n_tprev;
1061 					else
1062 					    np->n_tnext->n_tprev = np->n_tprev;
1063 					if (np->n_tprev == (struct nfsnode *)nmp)
1064 					    nmp->nm_tnext = np->n_tnext;
1065 					else
1066 					    np->n_tprev->n_tnext = np->n_tnext;
1067 					if (nqlflag == NQL_WRITE)
1068 					    np->n_flag |= NQNFSWRITE;
1069 				    } else if (nqlflag == NQL_READ)
1070 					np->n_flag &= ~NQNFSWRITE;
1071 				    else
1072 					np->n_flag |= NQNFSWRITE;
1073 				    if (cachable)
1074 					np->n_flag &= ~NQNFSNONCACHE;
1075 				    else
1076 					np->n_flag |= NQNFSNONCACHE;
1077 				    np->n_expiry = reqtime;
1078 				    fxdr_hyper(tl, &np->n_lrev);
1079 				    tp = nmp->nm_tprev;
1080 				    while (tp != (struct nfsnode *)nmp &&
1081 				           tp->n_expiry > np->n_expiry)
1082 						tp = tp->n_tprev;
1083 				    if (tp == (struct nfsnode *)nmp) {
1084 					np->n_tnext = nmp->nm_tnext;
1085 					nmp->nm_tnext = np;
1086 				    } else {
1087 					np->n_tnext = tp->n_tnext;
1088 					tp->n_tnext = np;
1089 				    }
1090 				    np->n_tprev = tp;
1091 				    if (np->n_tnext == (struct nfsnode *)nmp)
1092 					nmp->nm_tprev = np;
1093 				    else
1094 					np->n_tnext->n_tprev = np;
1095 				}
1096 			}
1097 		}
1098 		*mrp = mrep;
1099 		*mdp = md;
1100 		*dposp = dpos;
1101 		m_freem(rep->r_mreq);
1102 		FREE((caddr_t)rep, M_NFSREQ);
1103 		return (0);
1104 	}
1105 	m_freem(mrep);
1106 	m_freem(rep->r_mreq);
1107 	free((caddr_t)rep, M_NFSREQ);
1108 	error = EPROTONOSUPPORT;
1109 nfsmout:
1110 	return (error);
1111 }
1112 
1113 /*
1114  * Generate the rpc reply header
1115  * siz arg. is used to decide if adding a cluster is worthwhile
1116  */
1117 nfs_rephead(siz, nd, err, cache, frev, mrq, mbp, bposp)
1118 	int siz;
1119 	struct nfsd *nd;
1120 	int err;
1121 	int cache;
1122 	u_quad_t *frev;
1123 	struct mbuf **mrq;
1124 	struct mbuf **mbp;
1125 	caddr_t *bposp;
1126 {
1127 	register u_long *tl;
1128 	register struct mbuf *mreq;
1129 	caddr_t bpos;
1130 	struct mbuf *mb, *mb2;
1131 
1132 	MGETHDR(mreq, M_WAIT, MT_DATA);
1133 	mb = mreq;
1134 	/*
1135 	 * If this is a big reply, use a cluster else
1136 	 * try and leave leading space for the lower level headers.
1137 	 */
1138 	siz += RPC_REPLYSIZ;
1139 	if (siz >= MINCLSIZE) {
1140 		MCLGET(mreq, M_WAIT);
1141 	} else
1142 		mreq->m_data += max_hdr;
1143 	tl = mtod(mreq, u_long *);
1144 	mreq->m_len = 6*NFSX_UNSIGNED;
1145 	bpos = ((caddr_t)tl)+mreq->m_len;
1146 	*tl++ = nd->nd_retxid;
1147 	*tl++ = rpc_reply;
1148 	if (err == ERPCMISMATCH || err == NQNFS_AUTHERR) {
1149 		*tl++ = rpc_msgdenied;
1150 		if (err == NQNFS_AUTHERR) {
1151 			*tl++ = rpc_autherr;
1152 			*tl = rpc_rejectedcred;
1153 			mreq->m_len -= NFSX_UNSIGNED;
1154 			bpos -= NFSX_UNSIGNED;
1155 		} else {
1156 			*tl++ = rpc_mismatch;
1157 			*tl++ = txdr_unsigned(2);
1158 			*tl = txdr_unsigned(2);
1159 		}
1160 	} else {
1161 		*tl++ = rpc_msgaccepted;
1162 		*tl++ = 0;
1163 		*tl++ = 0;
1164 		switch (err) {
1165 		case EPROGUNAVAIL:
1166 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1167 			break;
1168 		case EPROGMISMATCH:
1169 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1170 			nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED);
1171 			*tl++ = txdr_unsigned(2);
1172 			*tl = txdr_unsigned(2);	/* someday 3 */
1173 			break;
1174 		case EPROCUNAVAIL:
1175 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1176 			break;
1177 		default:
1178 			*tl = 0;
1179 			if (err != VNOVAL) {
1180 				nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1181 				if (err)
1182 					*tl = txdr_unsigned(nfsrv_errmap[err - 1]);
1183 				else
1184 					*tl = 0;
1185 			}
1186 			break;
1187 		};
1188 	}
1189 
1190 	/*
1191 	 * For nqnfs, piggyback lease as requested.
1192 	 */
1193 	if (nd->nd_nqlflag != NQL_NOVAL && err == 0) {
1194 		if (nd->nd_nqlflag) {
1195 			nfsm_build(tl, u_long *, 5*NFSX_UNSIGNED);
1196 			*tl++ = txdr_unsigned(nd->nd_nqlflag);
1197 			*tl++ = txdr_unsigned(cache);
1198 			*tl++ = txdr_unsigned(nd->nd_duration);
1199 			txdr_hyper(frev, tl);
1200 		} else {
1201 			if (nd->nd_nqlflag != 0)
1202 				panic("nqreph");
1203 			nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1204 			*tl = 0;
1205 		}
1206 	}
1207 	*mrq = mreq;
1208 	*mbp = mb;
1209 	*bposp = bpos;
1210 	if (err != 0 && err != VNOVAL)
1211 		nfsstats.srvrpc_errs++;
1212 	return (0);
1213 }
1214 
1215 /*
1216  * Nfs timer routine
1217  * Scan the nfsreq list and retranmit any requests that have timed out
1218  * To avoid retransmission attempts on STREAM sockets (in the future) make
1219  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1220  */
1221 nfs_timer()
1222 {
1223 	register struct nfsreq *rep;
1224 	register struct mbuf *m;
1225 	register struct socket *so;
1226 	register struct nfsmount *nmp;
1227 	register int timeo;
1228 	static long lasttime = 0;
1229 	int s, error;
1230 
1231 	s = splnet();
1232 	for (rep = nfsreqh.r_next; rep != &nfsreqh; rep = rep->r_next) {
1233 		nmp = rep->r_nmp;
1234 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1235 			continue;
1236 		if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1237 			rep->r_flags |= R_SOFTTERM;
1238 			continue;
1239 		}
1240 		if (rep->r_rtt >= 0) {
1241 			rep->r_rtt++;
1242 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1243 				timeo = nmp->nm_timeo;
1244 			else
1245 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1246 			if (nmp->nm_timeouts > 0)
1247 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1248 			if (rep->r_rtt <= timeo)
1249 				continue;
1250 			if (nmp->nm_timeouts < 8)
1251 				nmp->nm_timeouts++;
1252 		}
1253 		/*
1254 		 * Check for server not responding
1255 		 */
1256 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1257 		     rep->r_rexmit > nmp->nm_deadthresh) {
1258 			nfs_msg(rep->r_procp,
1259 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1260 			    "not responding");
1261 			rep->r_flags |= R_TPRINTFMSG;
1262 		}
1263 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1264 			nfsstats.rpctimeouts++;
1265 			rep->r_flags |= R_SOFTTERM;
1266 			continue;
1267 		}
1268 		if (nmp->nm_sotype != SOCK_DGRAM) {
1269 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1270 				rep->r_rexmit = NFS_MAXREXMIT;
1271 			continue;
1272 		}
1273 		if ((so = nmp->nm_so) == NULL)
1274 			continue;
1275 
1276 		/*
1277 		 * If there is enough space and the window allows..
1278 		 *	Resend it
1279 		 * Set r_rtt to -1 in case we fail to send it now.
1280 		 */
1281 		rep->r_rtt = -1;
1282 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1283 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1284 		    (rep->r_flags & R_SENT) ||
1285 		    nmp->nm_sent < nmp->nm_cwnd) &&
1286 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1287 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1288 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1289 			    (struct mbuf *)0, (struct mbuf *)0);
1290 			else
1291 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1292 			    nmp->nm_nam, (struct mbuf *)0);
1293 			if (error) {
1294 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1295 					so->so_error = 0;
1296 			} else {
1297 				/*
1298 				 * Iff first send, start timing
1299 				 * else turn timing off, backoff timer
1300 				 * and divide congestion window by 2.
1301 				 */
1302 				if (rep->r_flags & R_SENT) {
1303 					rep->r_flags &= ~R_TIMING;
1304 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1305 						rep->r_rexmit = NFS_MAXREXMIT;
1306 					nmp->nm_cwnd >>= 1;
1307 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1308 						nmp->nm_cwnd = NFS_CWNDSCALE;
1309 					nfsstats.rpcretries++;
1310 				} else {
1311 					rep->r_flags |= R_SENT;
1312 					nmp->nm_sent += NFS_CWNDSCALE;
1313 				}
1314 				rep->r_rtt = 0;
1315 			}
1316 		}
1317 	}
1318 
1319 	/*
1320 	 * Call the nqnfs server timer once a second to handle leases.
1321 	 */
1322 	if (lasttime != time.tv_sec) {
1323 		lasttime = time.tv_sec;
1324 		nqnfs_serverd();
1325 	}
1326 	splx(s);
1327 	timeout(nfs_timer, (caddr_t)0, hz/NFS_HZ);
1328 }
1329 
1330 /*
1331  * Test for a termination condition pending on the process.
1332  * This is used for NFSMNT_INT mounts.
1333  */
1334 nfs_sigintr(nmp, rep, p)
1335 	struct nfsmount *nmp;
1336 	struct nfsreq *rep;
1337 	register struct proc *p;
1338 {
1339 
1340 	if (rep && (rep->r_flags & R_SOFTTERM))
1341 		return (EINTR);
1342 	if (!(nmp->nm_flag & NFSMNT_INT))
1343 		return (0);
1344 	if (p && p->p_sig && (((p->p_sig &~ p->p_sigmask) &~ p->p_sigignore) &
1345 	    NFSINT_SIGMASK))
1346 		return (EINTR);
1347 	return (0);
1348 }
1349 
1350 /*
1351  * Lock a socket against others.
1352  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1353  * and also to avoid race conditions between the processes with nfs requests
1354  * in progress when a reconnect is necessary.
1355  */
1356 nfs_sndlock(flagp, rep)
1357 	register int *flagp;
1358 	struct nfsreq *rep;
1359 {
1360 	struct proc *p;
1361 
1362 	if (rep)
1363 		p = rep->r_procp;
1364 	else
1365 		p = (struct proc *)0;
1366 	while (*flagp & NFSMNT_SNDLOCK) {
1367 		if (nfs_sigintr(rep->r_nmp, rep, p))
1368 			return (EINTR);
1369 		*flagp |= NFSMNT_WANTSND;
1370 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsndlck", 0);
1371 	}
1372 	*flagp |= NFSMNT_SNDLOCK;
1373 	return (0);
1374 }
1375 
1376 /*
1377  * Unlock the stream socket for others.
1378  */
1379 void
1380 nfs_sndunlock(flagp)
1381 	register int *flagp;
1382 {
1383 
1384 	if ((*flagp & NFSMNT_SNDLOCK) == 0)
1385 		panic("nfs sndunlock");
1386 	*flagp &= ~NFSMNT_SNDLOCK;
1387 	if (*flagp & NFSMNT_WANTSND) {
1388 		*flagp &= ~NFSMNT_WANTSND;
1389 		wakeup((caddr_t)flagp);
1390 	}
1391 }
1392 
1393 nfs_rcvlock(rep)
1394 	register struct nfsreq *rep;
1395 {
1396 	register int *flagp = &rep->r_nmp->nm_flag;
1397 
1398 	while (*flagp & NFSMNT_RCVLOCK) {
1399 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1400 			return (EINTR);
1401 		*flagp |= NFSMNT_WANTRCV;
1402 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsrcvlck", 0);
1403 	}
1404 	*flagp |= NFSMNT_RCVLOCK;
1405 	return (0);
1406 }
1407 
1408 /*
1409  * Unlock the stream socket for others.
1410  */
1411 void
1412 nfs_rcvunlock(flagp)
1413 	register int *flagp;
1414 {
1415 
1416 	if ((*flagp & NFSMNT_RCVLOCK) == 0)
1417 		panic("nfs rcvunlock");
1418 	*flagp &= ~NFSMNT_RCVLOCK;
1419 	if (*flagp & NFSMNT_WANTRCV) {
1420 		*flagp &= ~NFSMNT_WANTRCV;
1421 		wakeup((caddr_t)flagp);
1422 	}
1423 }
1424 
1425 /*
1426  * This function compares two net addresses by family and returns TRUE
1427  * if they are the same host.
1428  * If there is any doubt, return FALSE.
1429  * The AF_INET family is handled as a special case so that address mbufs
1430  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1431  */
1432 nfs_netaddr_match(family, haddr, hmask, nam)
1433 	int family;
1434 	union nethostaddr *haddr;
1435 	union nethostaddr *hmask;
1436 	struct mbuf *nam;
1437 {
1438 	register struct sockaddr_in *inetaddr;
1439 #ifdef ISO
1440 	register struct sockaddr_iso *isoaddr1, *isoaddr2;
1441 #endif
1442 
1443 
1444 	switch (family) {
1445 	case AF_INET:
1446 		inetaddr = mtod(nam, struct sockaddr_in *);
1447 		if (inetaddr->sin_family != AF_INET)
1448 			return (0);
1449 		if (hmask) {
1450 			if ((inetaddr->sin_addr.s_addr & hmask->had_inetaddr) ==
1451 			    (haddr->had_inetaddr & hmask->had_inetaddr))
1452 				return (1);
1453 		} else if (inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1454 			return (1);
1455 		break;
1456 #ifdef ISO
1457 	case AF_ISO:
1458 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
1459 		if (isoaddr1->siso_family != AF_ISO)
1460 			return (0);
1461 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
1462 		if (isoaddr1->siso_nlen > 0 &&
1463 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
1464 		    SAME_ISOADDR(isoaddr1, isoaddr2))
1465 			return (1);
1466 		break;
1467 #endif	/* ISO */
1468 	default:
1469 		break;
1470 	};
1471 	return (0);
1472 }
1473 
1474 /*
1475  * Build hash lists of net addresses and hang them off the mount point.
1476  * Called by ufs_mount() to set up the lists of export addresses.
1477  */
1478 hang_addrlist(mp, argp)
1479 	struct mount *mp;
1480 	struct ufs_args *argp;
1481 {
1482 	register struct netaddrhash *np, **hnp;
1483 	register int i;
1484 	struct ufsmount *ump;
1485 	struct sockaddr *saddr;
1486 	struct mbuf *nam, *msk = (struct mbuf *)0;
1487 	union nethostaddr netmsk;
1488 	int error;
1489 
1490 	if (error = sockargs(&nam, (caddr_t)argp->saddr, argp->slen,
1491 	    MT_SONAME))
1492 	    return (error);
1493 	saddr = mtod(nam, struct sockaddr *);
1494 	ump = VFSTOUFS(mp);
1495 	if (saddr->sa_family == AF_INET &&
1496 	    ((struct sockaddr_in *)saddr)->sin_addr.s_addr == INADDR_ANY) {
1497 	    m_freem(nam);
1498 	    if (mp->mnt_flag & MNT_DEFEXPORTED)
1499 		return (EPERM);
1500 	    np = &ump->um_defexported;
1501 	    np->neth_exflags = argp->exflags;
1502 	    np->neth_anon = argp->anon;
1503 	    np->neth_anon.cr_ref = 1;
1504 	    mp->mnt_flag |= MNT_DEFEXPORTED;
1505 	    return (0);
1506 	}
1507 	if (argp->msklen > 0) {
1508 	    if (error = sockargs(&msk, (caddr_t)argp->smask, argp->msklen,
1509 		MT_SONAME)) {
1510 		m_freem(nam);
1511 		return (error);
1512 	    }
1513 
1514 	    /*
1515 	     * Scan all the hash lists to check against duplications.
1516 	     * For the net list, try both masks to catch a subnet
1517 	     * of another network.
1518 	     */
1519 	    hnp = &ump->um_netaddr[NETMASK_HASH];
1520 	    np = *hnp;
1521 	    if (saddr->sa_family == AF_INET)
1522 		netmsk.had_inetaddr =
1523 		    mtod(msk, struct sockaddr_in *)->sin_addr.s_addr;
1524 	    else
1525 		netmsk.had_nam = msk;
1526 	    while (np) {
1527 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1528 		    &np->neth_hmask, nam) ||
1529 		    nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1530 		    &netmsk, nam)) {
1531 			m_freem(nam);
1532 			m_freem(msk);
1533 			return (EPERM);
1534 		}
1535 		np = np->neth_next;
1536 	    }
1537 	    for (i = 0; i < NETHASHSZ; i++) {
1538 		np = ump->um_netaddr[i];
1539 		while (np) {
1540 		    if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1541 			&netmsk, nam)) {
1542 			m_freem(nam);
1543 			m_freem(msk);
1544 			return (EPERM);
1545 		    }
1546 		    np = np->neth_next;
1547 		}
1548 	    }
1549 	} else {
1550 	    hnp = &ump->um_netaddr[NETADDRHASH(saddr)];
1551 	    np = ump->um_netaddr[NETMASK_HASH];
1552 	    while (np) {
1553 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1554 		    &np->neth_hmask, nam)) {
1555 		    m_freem(nam);
1556 		    return (EPERM);
1557 		}
1558 		np = np->neth_next;
1559 	    }
1560 	    np = *hnp;
1561 	    while (np) {
1562 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1563 		    (union nethostaddr *)0, nam)) {
1564 		    m_freem(nam);
1565 		    return (EPERM);
1566 		}
1567 		np = np->neth_next;
1568 	    }
1569 	}
1570 	np = (struct netaddrhash *) malloc(sizeof(struct netaddrhash), M_NETADDR,
1571 	    M_WAITOK);
1572 	np->neth_family = saddr->sa_family;
1573 	if (saddr->sa_family == AF_INET) {
1574 		np->neth_inetaddr = ((struct sockaddr_in *)saddr)->sin_addr.s_addr;
1575 		m_freem(nam);
1576 		if (msk) {
1577 			np->neth_inetmask = netmsk.had_inetaddr;
1578 			m_freem(msk);
1579 			if (np->neth_inetaddr &~ np->neth_inetmask)
1580 				return (EPERM);
1581 		} else
1582 			np->neth_inetmask = 0xffffffff;
1583 	} else {
1584 		np->neth_nam = nam;
1585 		np->neth_msk = msk;
1586 	}
1587 	np->neth_exflags = argp->exflags;
1588 	np->neth_anon = argp->anon;
1589 	np->neth_anon.cr_ref = 1;
1590 	np->neth_next = *hnp;
1591 	*hnp = np;
1592 	return (0);
1593 }
1594 
1595 /*
1596  * Free the net address hash lists that are hanging off the mount points.
1597  */
1598 free_addrlist(ump)
1599 	struct ufsmount *ump;
1600 {
1601 	register struct netaddrhash *np, *onp;
1602 	register int i;
1603 
1604 	for (i = 0; i <= NETHASHSZ; i++) {
1605 		np = ump->um_netaddr[i];
1606 		ump->um_netaddr[i] = (struct netaddrhash *)0;
1607 		while (np) {
1608 			onp = np;
1609 			np = np->neth_next;
1610 			if (onp->neth_family != AF_INET) {
1611 				m_freem(onp->neth_nam);
1612 				m_freem(onp->neth_msk);
1613 			}
1614 			free((caddr_t)onp, M_NETADDR);
1615 		}
1616 	}
1617 }
1618 
1619 /*
1620  * Generate a hash code for an iso host address. Used by NETADDRHASH() for
1621  * iso addresses.
1622  */
1623 iso_addrhash(saddr)
1624 	struct sockaddr *saddr;
1625 {
1626 #ifdef ISO
1627 	register struct sockaddr_iso *siso;
1628 	register int i, sum;
1629 
1630 	sum = 0;
1631 	for (i = 0; i < siso->siso_nlen; i++)
1632 		sum += siso->siso_data[i];
1633 	return (sum & (NETHASHSZ - 1));
1634 #else
1635 	return (0);
1636 #endif	/* ISO */
1637 }
1638 
1639 /*
1640  * Check for badly aligned mbuf data areas and
1641  * realign data in an mbuf list by copying the data areas up, as required.
1642  */
1643 void
1644 nfs_realign(m, hsiz)
1645 	register struct mbuf *m;
1646 	int hsiz;
1647 {
1648 	register struct mbuf *m2;
1649 	register int siz, mlen, olen;
1650 	register caddr_t tcp, fcp;
1651 	struct mbuf *mnew;
1652 
1653 	while (m) {
1654 	    /*
1655 	     * This never happens for UDP, rarely happens for TCP
1656 	     * but frequently happens for iso transport.
1657 	     */
1658 	    if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
1659 		olen = m->m_len;
1660 		fcp = mtod(m, caddr_t);
1661 		m->m_flags &= ~M_PKTHDR;
1662 		if (m->m_flags & M_EXT)
1663 			m->m_data = m->m_ext.ext_buf;
1664 		else
1665 			m->m_data = m->m_dat;
1666 		m->m_len = 0;
1667 		tcp = mtod(m, caddr_t);
1668 		mnew = m;
1669 		m2 = m->m_next;
1670 
1671 		/*
1672 		 * If possible, only put the first invariant part
1673 		 * of the RPC header in the first mbuf.
1674 		 */
1675 		if (olen <= hsiz)
1676 			mlen = hsiz;
1677 		else
1678 			mlen = M_TRAILINGSPACE(m);
1679 
1680 		/*
1681 		 * Loop through the mbuf list consolidating data.
1682 		 */
1683 		while (m) {
1684 			while (olen > 0) {
1685 				if (mlen == 0) {
1686 					m2->m_flags &= ~M_PKTHDR;
1687 					if (m2->m_flags & M_EXT)
1688 						m2->m_data = m2->m_ext.ext_buf;
1689 					else
1690 						m2->m_data = m2->m_dat;
1691 					m2->m_len = 0;
1692 					mlen = M_TRAILINGSPACE(m2);
1693 					tcp = mtod(m2, caddr_t);
1694 					mnew = m2;
1695 					m2 = m2->m_next;
1696 				}
1697 				siz = MIN(mlen, olen);
1698 				if (tcp != fcp)
1699 					bcopy(fcp, tcp, siz);
1700 				mnew->m_len += siz;
1701 				mlen -= siz;
1702 				olen -= siz;
1703 				tcp += siz;
1704 				fcp += siz;
1705 			}
1706 			m = m->m_next;
1707 			if (m) {
1708 				olen = m->m_len;
1709 				fcp = mtod(m, caddr_t);
1710 			}
1711 		}
1712 
1713 		/*
1714 		 * Finally, set m_len == 0 for any trailing mbufs that have
1715 		 * been copied out of.
1716 		 */
1717 		while (m2) {
1718 			m2->m_len = 0;
1719 			m2 = m2->m_next;
1720 		}
1721 		return;
1722 	    }
1723 	    m = m->m_next;
1724 	}
1725 }
1726 
1727 /*
1728  * Socket upcall routine for the nfsd sockets.
1729  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1730  * Essentially do as much as possible non-blocking, else punt and it will
1731  * be called with M_WAIT from an nfsd.
1732  */
1733 void
1734 nfsrv_rcv(so, arg, waitflag)
1735 	struct socket *so;
1736 	caddr_t arg;
1737 	int waitflag;
1738 {
1739 	register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1740 	register struct mbuf *m;
1741 	struct mbuf *mp, *nam;
1742 	struct uio auio;
1743 	int flags, error;
1744 
1745 	if ((slp->ns_flag & SLP_VALID) == 0)
1746 		return;
1747 #ifdef notdef
1748 	/*
1749 	 * Define this to test for nfsds handling this under heavy load.
1750 	 */
1751 	if (waitflag == M_DONTWAIT) {
1752 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1753 	}
1754 #endif
1755 	auio.uio_procp = NULL;
1756 	if (so->so_type == SOCK_STREAM) {
1757 		/*
1758 		 * If there are already records on the queue, defer soreceive()
1759 		 * to an nfsd so that there is feedback to the TCP layer that
1760 		 * the nfs servers are heavily loaded.
1761 		 */
1762 		if (slp->ns_rec && waitflag == M_DONTWAIT) {
1763 			slp->ns_flag |= SLP_NEEDQ;
1764 			goto dorecs;
1765 		}
1766 
1767 		/*
1768 		 * Do soreceive().
1769 		 */
1770 		auio.uio_resid = 1000000000;
1771 		flags = MSG_DONTWAIT;
1772 		error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1773 		if (error || mp == (struct mbuf *)0) {
1774 			if (error == EWOULDBLOCK)
1775 				slp->ns_flag |= SLP_NEEDQ;
1776 			else
1777 				slp->ns_flag |= SLP_DISCONN;
1778 			goto dorecs;
1779 		}
1780 		m = mp;
1781 		if (slp->ns_rawend) {
1782 			slp->ns_rawend->m_next = m;
1783 			slp->ns_cc += 1000000000 - auio.uio_resid;
1784 		} else {
1785 			slp->ns_raw = m;
1786 			slp->ns_cc = 1000000000 - auio.uio_resid;
1787 		}
1788 		while (m->m_next)
1789 			m = m->m_next;
1790 		slp->ns_rawend = m;
1791 
1792 		/*
1793 		 * Now try and parse record(s) out of the raw stream data.
1794 		 */
1795 		if (error = nfsrv_getstream(slp, waitflag)) {
1796 			if (error == EPERM)
1797 				slp->ns_flag |= SLP_DISCONN;
1798 			else
1799 				slp->ns_flag |= SLP_NEEDQ;
1800 		}
1801 	} else {
1802 		do {
1803 			auio.uio_resid = 1000000000;
1804 			flags = MSG_DONTWAIT;
1805 			error = soreceive(so, &nam, &auio, &mp,
1806 						(struct mbuf **)0, &flags);
1807 			if (mp) {
1808 				nfs_realign(mp, 10 * NFSX_UNSIGNED);
1809 				if (nam) {
1810 					m = nam;
1811 					m->m_next = mp;
1812 				} else
1813 					m = mp;
1814 				if (slp->ns_recend)
1815 					slp->ns_recend->m_nextpkt = m;
1816 				else
1817 					slp->ns_rec = m;
1818 				slp->ns_recend = m;
1819 				m->m_nextpkt = (struct mbuf *)0;
1820 			}
1821 			if (error) {
1822 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1823 					&& error != EWOULDBLOCK) {
1824 					slp->ns_flag |= SLP_DISCONN;
1825 					goto dorecs;
1826 				}
1827 			}
1828 		} while (mp);
1829 	}
1830 
1831 	/*
1832 	 * Now try and process the request records, non-blocking.
1833 	 */
1834 dorecs:
1835 	if (waitflag == M_DONTWAIT &&
1836 		(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1837 		nfsrv_wakenfsd(slp);
1838 }
1839 
1840 /*
1841  * Try and extract an RPC request from the mbuf data list received on a
1842  * stream socket. The "waitflag" argument indicates whether or not it
1843  * can sleep.
1844  */
1845 nfsrv_getstream(slp, waitflag)
1846 	register struct nfssvc_sock *slp;
1847 	int waitflag;
1848 {
1849 	register struct mbuf *m;
1850 	register char *cp1, *cp2;
1851 	register int len;
1852 	struct mbuf *om, *m2, *recm;
1853 	u_long recmark;
1854 
1855 	if (slp->ns_flag & SLP_GETSTREAM)
1856 		panic("nfs getstream");
1857 	slp->ns_flag |= SLP_GETSTREAM;
1858 	for (;;) {
1859 	    if (slp->ns_reclen == 0) {
1860 		if (slp->ns_cc < NFSX_UNSIGNED) {
1861 			slp->ns_flag &= ~SLP_GETSTREAM;
1862 			return (0);
1863 		}
1864 		m = slp->ns_raw;
1865 		if (m->m_len >= NFSX_UNSIGNED) {
1866 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1867 			m->m_data += NFSX_UNSIGNED;
1868 			m->m_len -= NFSX_UNSIGNED;
1869 		} else {
1870 			cp1 = (caddr_t)&recmark;
1871 			cp2 = mtod(m, caddr_t);
1872 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1873 				while (m->m_len == 0) {
1874 					m = m->m_next;
1875 					cp2 = mtod(m, caddr_t);
1876 				}
1877 				*cp1++ = *cp2++;
1878 				m->m_data++;
1879 				m->m_len--;
1880 			}
1881 		}
1882 		slp->ns_cc -= NFSX_UNSIGNED;
1883 		slp->ns_reclen = ntohl(recmark) & ~0x80000000;
1884 		if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
1885 			slp->ns_flag &= ~SLP_GETSTREAM;
1886 			return (EPERM);
1887 		}
1888 	    }
1889 
1890 	    /*
1891 	     * Now get the record part.
1892 	     */
1893 	    if (slp->ns_cc == slp->ns_reclen) {
1894 		recm = slp->ns_raw;
1895 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1896 		slp->ns_cc = slp->ns_reclen = 0;
1897 	    } else if (slp->ns_cc > slp->ns_reclen) {
1898 		len = 0;
1899 		m = slp->ns_raw;
1900 		om = (struct mbuf *)0;
1901 		while (len < slp->ns_reclen) {
1902 			if ((len + m->m_len) > slp->ns_reclen) {
1903 				m2 = m_copym(m, 0, slp->ns_reclen - len,
1904 					waitflag);
1905 				if (m2) {
1906 					if (om) {
1907 						om->m_next = m2;
1908 						recm = slp->ns_raw;
1909 					} else
1910 						recm = m2;
1911 					m->m_data += slp->ns_reclen - len;
1912 					m->m_len -= slp->ns_reclen - len;
1913 					len = slp->ns_reclen;
1914 				} else {
1915 					slp->ns_flag &= ~SLP_GETSTREAM;
1916 					return (EWOULDBLOCK);
1917 				}
1918 			} else if ((len + m->m_len) == slp->ns_reclen) {
1919 				om = m;
1920 				len += m->m_len;
1921 				m = m->m_next;
1922 				recm = slp->ns_raw;
1923 				om->m_next = (struct mbuf *)0;
1924 			} else {
1925 				om = m;
1926 				len += m->m_len;
1927 				m = m->m_next;
1928 			}
1929 		}
1930 		slp->ns_raw = m;
1931 		slp->ns_cc -= len;
1932 		slp->ns_reclen = 0;
1933 	    } else {
1934 		slp->ns_flag &= ~SLP_GETSTREAM;
1935 		return (0);
1936 	    }
1937 	    nfs_realign(recm, 10 * NFSX_UNSIGNED);
1938 	    if (slp->ns_recend)
1939 		slp->ns_recend->m_nextpkt = recm;
1940 	    else
1941 		slp->ns_rec = recm;
1942 	    slp->ns_recend = recm;
1943 	}
1944 }
1945 
1946 /*
1947  * Parse an RPC header.
1948  */
1949 nfsrv_dorec(slp, nd)
1950 	register struct nfssvc_sock *slp;
1951 	register struct nfsd *nd;
1952 {
1953 	register struct mbuf *m;
1954 	int error;
1955 
1956 	if ((slp->ns_flag & SLP_VALID) == 0 ||
1957 	    (m = slp->ns_rec) == (struct mbuf *)0)
1958 		return (ENOBUFS);
1959 	if (slp->ns_rec = m->m_nextpkt)
1960 		m->m_nextpkt = (struct mbuf *)0;
1961 	else
1962 		slp->ns_recend = (struct mbuf *)0;
1963 	if (m->m_type == MT_SONAME) {
1964 		nd->nd_nam = m;
1965 		nd->nd_md = nd->nd_mrep = m->m_next;
1966 		m->m_next = (struct mbuf *)0;
1967 	} else {
1968 		nd->nd_nam = (struct mbuf *)0;
1969 		nd->nd_md = nd->nd_mrep = m;
1970 	}
1971 	nd->nd_dpos = mtod(nd->nd_md, caddr_t);
1972 	if (error = nfs_getreq(nd, TRUE)) {
1973 		m_freem(nd->nd_nam);
1974 		return (error);
1975 	}
1976 	return (0);
1977 }
1978 
1979 /*
1980  * Parse an RPC request
1981  * - verify it
1982  * - fill in the cred struct.
1983  */
1984 nfs_getreq(nd, has_header)
1985 	register struct nfsd *nd;
1986 	int has_header;
1987 {
1988 	register int len, i;
1989 	register u_long *tl;
1990 	register long t1;
1991 	struct uio uio;
1992 	struct iovec iov;
1993 	caddr_t dpos, cp2;
1994 	u_long nfsvers, auth_type;
1995 	int error = 0, nqnfs = 0;
1996 	struct mbuf *mrep, *md;
1997 
1998 	mrep = nd->nd_mrep;
1999 	md = nd->nd_md;
2000 	dpos = nd->nd_dpos;
2001 	if (has_header) {
2002 		nfsm_dissect(tl, u_long *, 10*NFSX_UNSIGNED);
2003 		nd->nd_retxid = *tl++;
2004 		if (*tl++ != rpc_call) {
2005 			m_freem(mrep);
2006 			return (EBADRPC);
2007 		}
2008 	} else {
2009 		nfsm_dissect(tl, u_long *, 8*NFSX_UNSIGNED);
2010 	}
2011 	nd->nd_repstat = 0;
2012 	if (*tl++ != rpc_vers) {
2013 		nd->nd_repstat = ERPCMISMATCH;
2014 		nd->nd_procnum = NFSPROC_NOOP;
2015 		return (0);
2016 	}
2017 	nfsvers = nfs_vers;
2018 	if (*tl != nfs_prog) {
2019 		if (*tl == nqnfs_prog) {
2020 			nqnfs++;
2021 			nfsvers = nqnfs_vers;
2022 		} else {
2023 			nd->nd_repstat = EPROGUNAVAIL;
2024 			nd->nd_procnum = NFSPROC_NOOP;
2025 			return (0);
2026 		}
2027 	}
2028 	tl++;
2029 	if (*tl++ != nfsvers) {
2030 		nd->nd_repstat = EPROGMISMATCH;
2031 		nd->nd_procnum = NFSPROC_NOOP;
2032 		return (0);
2033 	}
2034 	nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
2035 	if (nd->nd_procnum == NFSPROC_NULL)
2036 		return (0);
2037 	if (nd->nd_procnum >= NFS_NPROCS ||
2038 		(!nqnfs && nd->nd_procnum > NFSPROC_STATFS) ||
2039 		(*tl != rpc_auth_unix && *tl != rpc_auth_kerb)) {
2040 		nd->nd_repstat = EPROCUNAVAIL;
2041 		nd->nd_procnum = NFSPROC_NOOP;
2042 		return (0);
2043 	}
2044 	auth_type = *tl++;
2045 	len = fxdr_unsigned(int, *tl++);
2046 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2047 		m_freem(mrep);
2048 		return (EBADRPC);
2049 	}
2050 
2051 	/*
2052 	 * Handle auth_unix or auth_kerb.
2053 	 */
2054 	if (auth_type == rpc_auth_unix) {
2055 		len = fxdr_unsigned(int, *++tl);
2056 		if (len < 0 || len > NFS_MAXNAMLEN) {
2057 			m_freem(mrep);
2058 			return (EBADRPC);
2059 		}
2060 		nfsm_adv(nfsm_rndup(len));
2061 		nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
2062 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2063 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2064 		len = fxdr_unsigned(int, *tl);
2065 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2066 			m_freem(mrep);
2067 			return (EBADRPC);
2068 		}
2069 		nfsm_dissect(tl, u_long *, (len + 2)*NFSX_UNSIGNED);
2070 		for (i = 1; i <= len; i++)
2071 			if (i < NGROUPS)
2072 				nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2073 			else
2074 				tl++;
2075 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2076 	} else if (auth_type == rpc_auth_kerb) {
2077 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2078 		nd->nd_authlen = fxdr_unsigned(int, *tl);
2079 		iov.iov_len = uio.uio_resid = nfsm_rndup(nd->nd_authlen);
2080 		if (uio.uio_resid > (len - 2*NFSX_UNSIGNED)) {
2081 			m_freem(mrep);
2082 			return (EBADRPC);
2083 		}
2084 		uio.uio_offset = 0;
2085 		uio.uio_iov = &iov;
2086 		uio.uio_iovcnt = 1;
2087 		uio.uio_segflg = UIO_SYSSPACE;
2088 		iov.iov_base = (caddr_t)nd->nd_authstr;
2089 		nfsm_mtouio(&uio, uio.uio_resid);
2090 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
2091 		nd->nd_flag |= NFSD_NEEDAUTH;
2092 	}
2093 
2094 	/*
2095 	 * Do we have any use for the verifier.
2096 	 * According to the "Remote Procedure Call Protocol Spec." it
2097 	 * should be AUTH_NULL, but some clients make it AUTH_UNIX?
2098 	 * For now, just skip over it
2099 	 */
2100 	len = fxdr_unsigned(int, *++tl);
2101 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2102 		m_freem(mrep);
2103 		return (EBADRPC);
2104 	}
2105 	if (len > 0) {
2106 		nfsm_adv(nfsm_rndup(len));
2107 	}
2108 
2109 	/*
2110 	 * For nqnfs, get piggybacked lease request.
2111 	 */
2112 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2113 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2114 		nd->nd_nqlflag = fxdr_unsigned(int, *tl);
2115 		if (nd->nd_nqlflag) {
2116 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2117 			nd->nd_duration = fxdr_unsigned(int, *tl);
2118 		} else
2119 			nd->nd_duration = NQ_MINLEASE;
2120 	} else {
2121 		nd->nd_nqlflag = NQL_NOVAL;
2122 		nd->nd_duration = NQ_MINLEASE;
2123 	}
2124 	nd->nd_md = md;
2125 	nd->nd_dpos = dpos;
2126 	return (0);
2127 nfsmout:
2128 	return (error);
2129 }
2130 
2131 /*
2132  * Search for a sleeping nfsd and wake it up.
2133  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2134  * running nfsds will go look for the work in the nfssvc_sock list.
2135  */
2136 void
2137 nfsrv_wakenfsd(slp)
2138 	struct nfssvc_sock *slp;
2139 {
2140 	register struct nfsd *nd = nfsd_head.nd_next;
2141 
2142 	if ((slp->ns_flag & SLP_VALID) == 0)
2143 		return;
2144 	while (nd != (struct nfsd *)&nfsd_head) {
2145 		if (nd->nd_flag & NFSD_WAITING) {
2146 			nd->nd_flag &= ~NFSD_WAITING;
2147 			if (nd->nd_slp)
2148 				panic("nfsd wakeup");
2149 			slp->ns_sref++;
2150 			nd->nd_slp = slp;
2151 			wakeup((caddr_t)nd);
2152 			return;
2153 		}
2154 		nd = nd->nd_next;
2155 	}
2156 	slp->ns_flag |= SLP_DOREC;
2157 	nfsd_head.nd_flag |= NFSD_CHECKSLP;
2158 }
2159 
2160 nfs_msg(p, server, msg)
2161 	struct proc *p;
2162 	char *server, *msg;
2163 {
2164 	tpr_t tpr;
2165 
2166 	if (p)
2167 		tpr = tprintf_open(p);
2168 	else
2169 		tpr = NULL;
2170 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2171 	tprintf_close(tpr);
2172 }
2173