xref: /original-bsd/sys/nfs/nfs_socket.c (revision 89e46f9f)
1 /*
2  * Copyright (c) 1989, 1991 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)nfs_socket.c	7.29 (Berkeley) 03/17/92
11  */
12 
13 /*
14  * Socket operations for use by nfs
15  */
16 
17 #include "types.h"
18 #include "param.h"
19 #include "uio.h"
20 #include "proc.h"
21 #include "signal.h"
22 #include "mount.h"
23 #include "kernel.h"
24 #include "malloc.h"
25 #include "mbuf.h"
26 #include "vnode.h"
27 #include "domain.h"
28 #include "protosw.h"
29 #include "socket.h"
30 #include "socketvar.h"
31 #include "syslog.h"
32 #include "tprintf.h"
33 #include "machine/endian.h"
34 #include "netinet/in.h"
35 #include "netinet/tcp.h"
36 #ifdef ISO
37 #include "netiso/iso.h"
38 #endif
39 #include "ufs/ufs/quota.h"
40 #include "ufs/ufs/ufsmount.h"
41 #include "rpcv2.h"
42 #include "nfsv2.h"
43 #include "nfs.h"
44 #include "xdr_subs.h"
45 #include "nfsm_subs.h"
46 #include "nfsmount.h"
47 #include "nfsnode.h"
48 #include "nfsrtt.h"
49 #include "nqnfs.h"
50 
51 #define	TRUE	1
52 #define	FALSE	0
53 
54 int netnetnet = sizeof (struct netaddrhash);
55 /*
56  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
57  * Use the mean and mean deviation of rtt for the appropriate type of rpc
58  * for the frequent rpcs and a default for the others.
59  * The justification for doing "other" this way is that these rpcs
60  * happen so infrequently that timer est. would probably be stale.
61  * Also, since many of these rpcs are
62  * non-idempotent, a conservative timeout is desired.
63  * getattr, lookup - A+2D
64  * read, write     - A+4D
65  * other           - nm_timeo
66  */
67 #define	NFS_RTO(n, t) \
68 	((t) == 0 ? (n)->nm_timeo : \
69 	 ((t) < 3 ? \
70 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
71 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
72 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
73 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
74 /*
75  * External data, mostly RPC constants in XDR form
76  */
77 extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
78 	rpc_msgaccepted, rpc_call, rpc_autherr, rpc_rejectedcred,
79 	rpc_auth_kerb;
80 extern u_long nfs_prog, nfs_vers, nqnfs_prog, nqnfs_vers;
81 extern time_t nqnfsstarttime;
82 extern int nonidempotent[NFS_NPROCS];
83 
84 /*
85  * Maps errno values to nfs error numbers.
86  * Use NFSERR_IO as the catch all for ones not specifically defined in
87  * RFC 1094.
88  */
89 static int nfsrv_errmap[ELAST] = {
90   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
91   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
92   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
93   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
94   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
95   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
96   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
97   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
98   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
99   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
100   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
101   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
102   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
103   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
104   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
105   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
106   NFSERR_IO,
107 };
108 
109 /*
110  * Defines which timer to use for the procnum.
111  * 0 - default
112  * 1 - getattr
113  * 2 - lookup
114  * 3 - read
115  * 4 - write
116  */
117 static int proct[NFS_NPROCS] = {
118 	0, 1, 0, 0, 2, 3, 3, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0,
119 };
120 
121 /*
122  * There is a congestion window for outstanding rpcs maintained per mount
123  * point. The cwnd size is adjusted in roughly the way that:
124  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125  * SIGCOMM '88". ACM, August 1988.
126  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128  * of rpcs is in progress.
129  * (The sent count and cwnd are scaled for integer arith.)
130  * Variants of "slow start" were tried and were found to be too much of a
131  * performance hit (ave. rtt 3 times larger),
132  * I suspect due to the large rtt that nfs rpcs have.
133  */
134 #define	NFS_CWNDSCALE	256
135 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int	nfs_sbwait();
138 void	nfs_disconnect(), nfs_realign(), nfsrv_wakenfsd(), nfs_sndunlock();
139 void	nfs_rcvunlock(), nqnfs_serverd();
140 struct mbuf *nfsm_rpchead();
141 int nfsrtton = 0;
142 struct nfsrtt nfsrtt;
143 struct nfsd nfsd_head;
144 
145 int	nfsrv_null(),
146 	nfsrv_getattr(),
147 	nfsrv_setattr(),
148 	nfsrv_lookup(),
149 	nfsrv_readlink(),
150 	nfsrv_read(),
151 	nfsrv_write(),
152 	nfsrv_create(),
153 	nfsrv_remove(),
154 	nfsrv_rename(),
155 	nfsrv_link(),
156 	nfsrv_symlink(),
157 	nfsrv_mkdir(),
158 	nfsrv_rmdir(),
159 	nfsrv_readdir(),
160 	nfsrv_statfs(),
161 	nfsrv_noop(),
162 	nqnfsrv_readdirlook(),
163 	nqnfsrv_getlease(),
164 	nqnfsrv_vacated();
165 
166 int (*nfsrv_procs[NFS_NPROCS])() = {
167 	nfsrv_null,
168 	nfsrv_getattr,
169 	nfsrv_setattr,
170 	nfsrv_noop,
171 	nfsrv_lookup,
172 	nfsrv_readlink,
173 	nfsrv_read,
174 	nfsrv_noop,
175 	nfsrv_write,
176 	nfsrv_create,
177 	nfsrv_remove,
178 	nfsrv_rename,
179 	nfsrv_link,
180 	nfsrv_symlink,
181 	nfsrv_mkdir,
182 	nfsrv_rmdir,
183 	nfsrv_readdir,
184 	nfsrv_statfs,
185 	nqnfsrv_readdirlook,
186 	nqnfsrv_getlease,
187 	nqnfsrv_vacated,
188 };
189 
190 struct nfsreq nfsreqh;
191 
192 /*
193  * Initialize sockets and congestion for a new NFS connection.
194  * We do not free the sockaddr if error.
195  */
196 nfs_connect(nmp, rep)
197 	register struct nfsmount *nmp;
198 	struct nfsreq *rep;
199 {
200 	register struct socket *so;
201 	int s, error, rcvreserve, sndreserve;
202 	struct sockaddr *saddr;
203 	struct sockaddr_in *sin;
204 	struct mbuf *m;
205 	u_short tport;
206 
207 	nmp->nm_so = (struct socket *)0;
208 	saddr = mtod(nmp->nm_nam, struct sockaddr *);
209 	if (error = socreate(saddr->sa_family,
210 		&nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto))
211 		goto bad;
212 	so = nmp->nm_so;
213 	nmp->nm_soflags = so->so_proto->pr_flags;
214 
215 	/*
216 	 * Some servers require that the client port be a reserved port number.
217 	 */
218 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
219 		MGET(m, M_WAIT, MT_SONAME);
220 		sin = mtod(m, struct sockaddr_in *);
221 		sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
222 		sin->sin_family = AF_INET;
223 		sin->sin_addr.s_addr = INADDR_ANY;
224 		tport = IPPORT_RESERVED - 1;
225 		sin->sin_port = htons(tport);
226 		while ((error = sobind(so, m)) == EADDRINUSE &&
227 		       --tport > IPPORT_RESERVED / 2)
228 			sin->sin_port = htons(tport);
229 		m_freem(m);
230 		if (error)
231 			goto bad;
232 	}
233 
234 	/*
235 	 * Protocols that do not require connections may be optionally left
236 	 * unconnected for servers that reply from a port other than NFS_PORT.
237 	 */
238 	if (nmp->nm_flag & NFSMNT_NOCONN) {
239 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
240 			error = ENOTCONN;
241 			goto bad;
242 		}
243 	} else {
244 		if (error = soconnect(so, nmp->nm_nam))
245 			goto bad;
246 
247 		/*
248 		 * Wait for the connection to complete. Cribbed from the
249 		 * connect system call but with the wait timing out so
250 		 * that interruptible mounts don't hang here for a long time.
251 		 */
252 		s = splnet();
253 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
254 			(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
255 				"nfscon", 2 * hz);
256 			if ((so->so_state & SS_ISCONNECTING) &&
257 			    so->so_error == 0 && rep &&
258 			    (error = nfs_sigintr(nmp, rep, rep->r_procp))) {
259 				so->so_state &= ~SS_ISCONNECTING;
260 				splx(s);
261 				goto bad;
262 			}
263 		}
264 		if (so->so_error) {
265 			error = so->so_error;
266 			so->so_error = 0;
267 			splx(s);
268 			goto bad;
269 		}
270 		splx(s);
271 	}
272 	if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
273 		so->so_rcv.sb_timeo = (5 * hz);
274 		so->so_snd.sb_timeo = (5 * hz);
275 	} else {
276 		so->so_rcv.sb_timeo = 0;
277 		so->so_snd.sb_timeo = 0;
278 	}
279 	if (nmp->nm_sotype == SOCK_DGRAM) {
280 		sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
281 		rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
282 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
283 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
284 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
285 	} else {
286 		if (nmp->nm_sotype != SOCK_STREAM)
287 			panic("nfscon sotype");
288 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
289 			MGET(m, M_WAIT, MT_SOOPTS);
290 			*mtod(m, int *) = 1;
291 			m->m_len = sizeof(int);
292 			sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
293 		}
294 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
295 			MGET(m, M_WAIT, MT_SOOPTS);
296 			*mtod(m, int *) = 1;
297 			m->m_len = sizeof(int);
298 			sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
299 		}
300 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
301 				* 2;
302 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
303 				* 2;
304 	}
305 	if (error = soreserve(so, sndreserve, rcvreserve))
306 		goto bad;
307 	so->so_rcv.sb_flags |= SB_NOINTR;
308 	so->so_snd.sb_flags |= SB_NOINTR;
309 
310 	/* Initialize other non-zero congestion variables */
311 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
312 		nmp->nm_srtt[4] = (NFS_TIMEO << 3);
313 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
314 		nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
315 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
316 	nmp->nm_sent = 0;
317 	nmp->nm_timeouts = 0;
318 	return (0);
319 
320 bad:
321 	nfs_disconnect(nmp);
322 	return (error);
323 }
324 
325 /*
326  * Reconnect routine:
327  * Called when a connection is broken on a reliable protocol.
328  * - clean up the old socket
329  * - nfs_connect() again
330  * - set R_MUSTRESEND for all outstanding requests on mount point
331  * If this fails the mount point is DEAD!
332  * nb: Must be called with the nfs_sndlock() set on the mount point.
333  */
334 nfs_reconnect(rep)
335 	register struct nfsreq *rep;
336 {
337 	register struct nfsreq *rp;
338 	register struct nfsmount *nmp = rep->r_nmp;
339 	int error;
340 
341 	nfs_disconnect(nmp);
342 	while (error = nfs_connect(nmp, rep)) {
343 		if (error == EINTR || error == ERESTART)
344 			return (EINTR);
345 		(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
346 	}
347 
348 	/*
349 	 * Loop through outstanding request list and fix up all requests
350 	 * on old socket.
351 	 */
352 	rp = nfsreqh.r_next;
353 	while (rp != &nfsreqh) {
354 		if (rp->r_nmp == nmp)
355 			rp->r_flags |= R_MUSTRESEND;
356 		rp = rp->r_next;
357 	}
358 	return (0);
359 }
360 
361 /*
362  * NFS disconnect. Clean up and unlink.
363  */
364 void
365 nfs_disconnect(nmp)
366 	register struct nfsmount *nmp;
367 {
368 	register struct socket *so;
369 
370 	if (nmp->nm_so) {
371 		so = nmp->nm_so;
372 		nmp->nm_so = (struct socket *)0;
373 		soshutdown(so, 2);
374 		soclose(so);
375 	}
376 }
377 
378 /*
379  * This is the nfs send routine. For connection based socket types, it
380  * must be called with an nfs_sndlock() on the socket.
381  * "rep == NULL" indicates that it has been called from a server.
382  * For the client side:
383  * - return EINTR if the RPC is terminated, 0 otherwise
384  * - set R_MUSTRESEND if the send fails for any reason
385  * - do any cleanup required by recoverable socket errors (???)
386  * For the server side:
387  * - return EINTR or ERESTART if interrupted by a signal
388  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
389  * - do any cleanup required by recoverable socket errors (???)
390  */
391 nfs_send(so, nam, top, rep)
392 	register struct socket *so;
393 	struct mbuf *nam;
394 	register struct mbuf *top;
395 	struct nfsreq *rep;
396 {
397 	struct mbuf *sendnam;
398 	int error, soflags, flags;
399 
400 	if (rep) {
401 		if (rep->r_flags & R_SOFTTERM) {
402 			m_freem(top);
403 			return (EINTR);
404 		}
405 		if ((so = rep->r_nmp->nm_so) == NULL) {
406 			rep->r_flags |= R_MUSTRESEND;
407 			m_freem(top);
408 			return (0);
409 		}
410 		rep->r_flags &= ~R_MUSTRESEND;
411 		soflags = rep->r_nmp->nm_soflags;
412 	} else
413 		soflags = so->so_proto->pr_flags;
414 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
415 		sendnam = (struct mbuf *)0;
416 	else
417 		sendnam = nam;
418 	if (so->so_type == SOCK_SEQPACKET)
419 		flags = MSG_EOR;
420 	else
421 		flags = 0;
422 
423 	error = sosend(so, sendnam, (struct uio *)0, top,
424 		(struct mbuf *)0, flags);
425 	if (error) {
426 		if (rep) {
427 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
428 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
429 			/*
430 			 * Deal with errors for the client side.
431 			 */
432 			if (rep->r_flags & R_SOFTTERM)
433 				error = EINTR;
434 			else
435 				rep->r_flags |= R_MUSTRESEND;
436 		} else
437 			log(LOG_INFO, "nfsd send error %d\n", error);
438 
439 		/*
440 		 * Handle any recoverable (soft) socket errors here. (???)
441 		 */
442 		if (error != EINTR && error != ERESTART &&
443 			error != EWOULDBLOCK && error != EPIPE)
444 			error = 0;
445 	}
446 	return (error);
447 }
448 
449 /*
450  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
451  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
452  * Mark and consolidate the data into a new mbuf list.
453  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
454  *     small mbufs.
455  * For SOCK_STREAM we must be very careful to read an entire record once
456  * we have read any of it, even if the system call has been interrupted.
457  */
458 nfs_receive(rep, aname, mp)
459 	register struct nfsreq *rep;
460 	struct mbuf **aname;
461 	struct mbuf **mp;
462 {
463 	register struct socket *so;
464 	struct uio auio;
465 	struct iovec aio;
466 	register struct mbuf *m;
467 	struct mbuf *control;
468 	u_long len;
469 	struct mbuf **getnam;
470 	int error, sotype, rcvflg;
471 	struct proc *p = curproc;	/* XXX */
472 
473 	/*
474 	 * Set up arguments for soreceive()
475 	 */
476 	*mp = (struct mbuf *)0;
477 	*aname = (struct mbuf *)0;
478 	sotype = rep->r_nmp->nm_sotype;
479 
480 	/*
481 	 * For reliable protocols, lock against other senders/receivers
482 	 * in case a reconnect is necessary.
483 	 * For SOCK_STREAM, first get the Record Mark to find out how much
484 	 * more there is to get.
485 	 * We must lock the socket against other receivers
486 	 * until we have an entire rpc request/reply.
487 	 */
488 	if (sotype != SOCK_DGRAM) {
489 		if (error = nfs_sndlock(&rep->r_nmp->nm_flag, rep))
490 			return (error);
491 tryagain:
492 		/*
493 		 * Check for fatal errors and resending request.
494 		 */
495 		/*
496 		 * Ugh: If a reconnect attempt just happened, nm_so
497 		 * would have changed. NULL indicates a failed
498 		 * attempt that has essentially shut down this
499 		 * mount point.
500 		 */
501 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
502 			nfs_sndunlock(&rep->r_nmp->nm_flag);
503 			return (EINTR);
504 		}
505 		if ((so = rep->r_nmp->nm_so) == NULL) {
506 			if (error = nfs_reconnect(rep)) {
507 				nfs_sndunlock(&rep->r_nmp->nm_flag);
508 				return (error);
509 			}
510 			goto tryagain;
511 		}
512 		while (rep->r_flags & R_MUSTRESEND) {
513 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
514 			nfsstats.rpcretries++;
515 			if (error = nfs_send(so, rep->r_nmp->nm_nam, m, rep)) {
516 				if (error == EINTR || error == ERESTART ||
517 				    (error = nfs_reconnect(rep))) {
518 					nfs_sndunlock(&rep->r_nmp->nm_flag);
519 					return (error);
520 				}
521 				goto tryagain;
522 			}
523 		}
524 		nfs_sndunlock(&rep->r_nmp->nm_flag);
525 		if (sotype == SOCK_STREAM) {
526 			aio.iov_base = (caddr_t) &len;
527 			aio.iov_len = sizeof(u_long);
528 			auio.uio_iov = &aio;
529 			auio.uio_iovcnt = 1;
530 			auio.uio_segflg = UIO_SYSSPACE;
531 			auio.uio_rw = UIO_READ;
532 			auio.uio_offset = 0;
533 			auio.uio_resid = sizeof(u_long);
534 			auio.uio_procp = p;
535 			do {
536 			   rcvflg = MSG_WAITALL;
537 			   error = soreceive(so, (struct mbuf **)0, &auio,
538 				(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
539 			   if (error == EWOULDBLOCK && rep) {
540 				if (rep->r_flags & R_SOFTTERM)
541 					return (EINTR);
542 			   }
543 			} while (error == EWOULDBLOCK);
544 			if (!error && auio.uio_resid > 0) {
545 			    log(LOG_INFO,
546 				 "short receive (%d/%d) from nfs server %s\n",
547 				 sizeof(u_long) - auio.uio_resid,
548 				 sizeof(u_long),
549 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
550 			    error = EPIPE;
551 			}
552 			if (error)
553 				goto errout;
554 			len = ntohl(len) & ~0x80000000;
555 			/*
556 			 * This is SERIOUS! We are out of sync with the sender
557 			 * and forcing a disconnect/reconnect is all I can do.
558 			 */
559 			if (len > NFS_MAXPACKET) {
560 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
561 				"impossible packet length",
562 				len,
563 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
564 			    error = EFBIG;
565 			    goto errout;
566 			}
567 			auio.uio_resid = len;
568 			do {
569 			    rcvflg = MSG_WAITALL;
570 			    error =  soreceive(so, (struct mbuf **)0,
571 				&auio, mp, (struct mbuf **)0, &rcvflg);
572 			} while (error == EWOULDBLOCK || error == EINTR ||
573 				 error == ERESTART);
574 			if (!error && auio.uio_resid > 0) {
575 			    log(LOG_INFO,
576 				"short receive (%d/%d) from nfs server %s\n",
577 				len - auio.uio_resid, len,
578 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
579 			    error = EPIPE;
580 			}
581 		} else {
582 			/*
583 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
584 			 * and soreceive() will return when it has either a
585 			 * control msg or a data msg.
586 			 * We have no use for control msg., but must grab them
587 			 * and then throw them away so we know what is going
588 			 * on.
589 			 */
590 			auio.uio_resid = len = 100000000; /* Anything Big */
591 			auio.uio_procp = p;
592 			do {
593 			    rcvflg = 0;
594 			    error =  soreceive(so, (struct mbuf **)0,
595 				&auio, mp, &control, &rcvflg);
596 			    if (control)
597 				m_freem(control);
598 			    if (error == EWOULDBLOCK && rep) {
599 				if (rep->r_flags & R_SOFTTERM)
600 					return (EINTR);
601 			    }
602 			} while (error == EWOULDBLOCK ||
603 				 (!error && *mp == NULL && control));
604 			if ((rcvflg & MSG_EOR) == 0)
605 				printf("Egad!!\n");
606 			if (!error && *mp == NULL)
607 				error = EPIPE;
608 			len -= auio.uio_resid;
609 		}
610 errout:
611 		if (error && error != EINTR && error != ERESTART) {
612 			m_freem(*mp);
613 			*mp = (struct mbuf *)0;
614 			if (error != EPIPE)
615 				log(LOG_INFO,
616 				    "receive error %d from nfs server %s\n",
617 				    error,
618 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
619 			error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
620 			if (!error)
621 				error = nfs_reconnect(rep);
622 			if (!error)
623 				goto tryagain;
624 		}
625 	} else {
626 		if ((so = rep->r_nmp->nm_so) == NULL)
627 			return (EACCES);
628 		if (so->so_state & SS_ISCONNECTED)
629 			getnam = (struct mbuf **)0;
630 		else
631 			getnam = aname;
632 		auio.uio_resid = len = 1000000;
633 		auio.uio_procp = p;
634 		do {
635 			rcvflg = 0;
636 			error =  soreceive(so, getnam, &auio, mp,
637 				(struct mbuf **)0, &rcvflg);
638 			if (error == EWOULDBLOCK &&
639 			    (rep->r_flags & R_SOFTTERM))
640 				return (EINTR);
641 		} while (error == EWOULDBLOCK);
642 		len -= auio.uio_resid;
643 	}
644 	if (error) {
645 		m_freem(*mp);
646 		*mp = (struct mbuf *)0;
647 	}
648 	/*
649 	 * Search for any mbufs that are not a multiple of 4 bytes long
650 	 * or with m_data not longword aligned.
651 	 * These could cause pointer alignment problems, so copy them to
652 	 * well aligned mbufs.
653 	 */
654 	nfs_realign(*mp, 5 * NFSX_UNSIGNED);
655 	return (error);
656 }
657 
658 /*
659  * Implement receipt of reply on a socket.
660  * We must search through the list of received datagrams matching them
661  * with outstanding requests using the xid, until ours is found.
662  */
663 /* ARGSUSED */
664 nfs_reply(myrep)
665 	struct nfsreq *myrep;
666 {
667 	register struct nfsreq *rep;
668 	register struct nfsmount *nmp = myrep->r_nmp;
669 	register long t1;
670 	struct mbuf *mrep, *nam, *md;
671 	u_long rxid, *tl;
672 	caddr_t dpos, cp2;
673 	int error;
674 
675 	/*
676 	 * Loop around until we get our own reply
677 	 */
678 	for (;;) {
679 		/*
680 		 * Lock against other receivers so that I don't get stuck in
681 		 * sbwait() after someone else has received my reply for me.
682 		 * Also necessary for connection based protocols to avoid
683 		 * race conditions during a reconnect.
684 		 */
685 		if (error = nfs_rcvlock(myrep))
686 			return (error);
687 		/* Already received, bye bye */
688 		if (myrep->r_mrep != NULL) {
689 			nfs_rcvunlock(&nmp->nm_flag);
690 			return (0);
691 		}
692 		/*
693 		 * Get the next Rpc reply off the socket
694 		 */
695 		error = nfs_receive(myrep, &nam, &mrep);
696 		nfs_rcvunlock(&nmp->nm_flag);
697 if (error) printf("rcv err=%d\n",error);
698 		if (error) {
699 
700 			/*
701 			 * Ignore routing errors on connectionless protocols??
702 			 */
703 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
704 				nmp->nm_so->so_error = 0;
705 				continue;
706 			}
707 			return (error);
708 		}
709 		if (nam)
710 			m_freem(nam);
711 
712 		/*
713 		 * Get the xid and check that it is an rpc reply
714 		 */
715 		md = mrep;
716 		dpos = mtod(md, caddr_t);
717 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
718 		rxid = *tl++;
719 		if (*tl != rpc_reply) {
720 			if (nmp->nm_flag & NFSMNT_NQNFS) {
721 				if (nqnfs_callback(nmp, mrep, md, dpos))
722 					nfsstats.rpcinvalid++;
723 			} else {
724 				nfsstats.rpcinvalid++;
725 				m_freem(mrep);
726 			}
727 nfsmout:
728 			continue;
729 		}
730 
731 		/*
732 		 * Loop through the request list to match up the reply
733 		 * Iff no match, just drop the datagram
734 		 */
735 		rep = nfsreqh.r_next;
736 		while (rep != &nfsreqh) {
737 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
738 				/* Found it.. */
739 				rep->r_mrep = mrep;
740 				rep->r_md = md;
741 				rep->r_dpos = dpos;
742 				if (nfsrtton) {
743 					struct rttl *rt;
744 
745 					rt = &nfsrtt.rttl[nfsrtt.pos];
746 					rt->proc = rep->r_procnum;
747 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
748 					rt->sent = nmp->nm_sent;
749 					rt->cwnd = nmp->nm_cwnd;
750 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
751 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
752 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
753 					rt->tstamp = time;
754 					if (rep->r_flags & R_TIMING)
755 						rt->rtt = rep->r_rtt;
756 					else
757 						rt->rtt = 1000000;
758 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
759 				}
760 				/*
761 				 * Update congestion window.
762 				 * Do the additive increase of
763 				 * one rpc/rtt.
764 				 */
765 				if (nmp->nm_cwnd <= nmp->nm_sent) {
766 					nmp->nm_cwnd +=
767 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
768 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
769 					if (nmp->nm_cwnd > NFS_MAXCWND)
770 						nmp->nm_cwnd = NFS_MAXCWND;
771 				}
772 				nmp->nm_sent -= NFS_CWNDSCALE;
773 				/*
774 				 * Update rtt using a gain of 0.125 on the mean
775 				 * and a gain of 0.25 on the deviation.
776 				 */
777 				if (rep->r_flags & R_TIMING) {
778 					/*
779 					 * Since the timer resolution of
780 					 * NFS_HZ is so course, it can often
781 					 * result in r_rtt == 0. Since
782 					 * r_rtt == N means that the actual
783 					 * rtt is between N+dt and N+2-dt ticks,
784 					 * add 1.
785 					 */
786 					t1 = rep->r_rtt + 1;
787 					t1 -= (NFS_SRTT(rep) >> 3);
788 					NFS_SRTT(rep) += t1;
789 					if (t1 < 0)
790 						t1 = -t1;
791 					t1 -= (NFS_SDRTT(rep) >> 2);
792 					NFS_SDRTT(rep) += t1;
793 				}
794 				nmp->nm_timeouts = 0;
795 				break;
796 			}
797 			rep = rep->r_next;
798 		}
799 		/*
800 		 * If not matched to a request, drop it.
801 		 * If it's mine, get out.
802 		 */
803 		if (rep == &nfsreqh) {
804 			nfsstats.rpcunexpected++;
805 			m_freem(mrep);
806 		} else if (rep == myrep)
807 			return (0);
808 	}
809 }
810 
811 /*
812  * nfs_request - goes something like this
813  *	- fill in request struct
814  *	- links it into list
815  *	- calls nfs_send() for first transmit
816  *	- calls nfs_receive() to get reply
817  *	- break down rpc header and return with nfs reply pointed to
818  *	  by mrep or error
819  * nb: always frees up mreq mbuf list
820  */
821 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
822 	struct vnode *vp;
823 	struct mbuf *mrest;
824 	int procnum;
825 	struct proc *procp;
826 	struct ucred *cred;
827 	struct mbuf **mrp;
828 	struct mbuf **mdp;
829 	caddr_t *dposp;
830 {
831 	register struct mbuf *m, *mrep;
832 	register struct nfsreq *rep;
833 	register u_long *tl;
834 	register int i;
835 	struct nfsmount *nmp;
836 	struct mbuf *md, *mheadend;
837 	struct nfsreq *reph;
838 	struct nfsnode *tp, *np;
839 	time_t reqtime, waituntil;
840 	caddr_t dpos, cp2;
841 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
842 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
843 	u_long xid;
844 	char *auth_str;
845 
846 	nmp = VFSTONFS(vp->v_mount);
847 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
848 	rep->r_nmp = nmp;
849 	rep->r_vp = vp;
850 	rep->r_procp = procp;
851 	rep->r_procnum = procnum;
852 	i = 0;
853 	m = mrest;
854 	while (m) {
855 		i += m->m_len;
856 		m = m->m_next;
857 	}
858 	mrest_len = i;
859 
860 	/*
861 	 * Get the RPC header with authorization.
862 	 */
863 kerbauth:
864 	auth_str = (char *)0;
865 	if (nmp->nm_flag & NFSMNT_KERB) {
866 		if (failed_auth) {
867 			error = nfs_getauth(nmp, rep, cred, &auth_type,
868 				&auth_str, &auth_len);
869 			if (error) {
870 				free((caddr_t)rep, M_NFSREQ);
871 				m_freem(mrest);
872 				return (error);
873 			}
874 		} else {
875 			auth_type = RPCAUTH_UNIX;
876 			auth_len = 5 * NFSX_UNSIGNED;
877 		}
878 	} else {
879 		auth_type = RPCAUTH_UNIX;
880 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
881 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
882 			5 * NFSX_UNSIGNED;
883 	}
884 	m = nfsm_rpchead(cred, (nmp->nm_flag & NFSMNT_NQNFS), procnum,
885 	     auth_type, auth_len, auth_str, mrest, mrest_len, &mheadend, &xid);
886 	if (auth_str)
887 		free(auth_str, M_TEMP);
888 
889 	/*
890 	 * For stream protocols, insert a Sun RPC Record Mark.
891 	 */
892 	if (nmp->nm_sotype == SOCK_STREAM) {
893 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
894 		*mtod(m, u_long *) = htonl(0x80000000 |
895 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
896 	}
897 	rep->r_mreq = m;
898 	rep->r_xid = xid;
899 tryagain:
900 	if (nmp->nm_flag & NFSMNT_SOFT)
901 		rep->r_retry = nmp->nm_retry;
902 	else
903 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
904 	rep->r_rtt = rep->r_rexmit = 0;
905 	if (proct[procnum] > 0)
906 		rep->r_flags = R_TIMING;
907 	else
908 		rep->r_flags = 0;
909 	rep->r_mrep = NULL;
910 
911 	/*
912 	 * Do the client side RPC.
913 	 */
914 	nfsstats.rpcrequests++;
915 	/*
916 	 * Chain request into list of outstanding requests. Be sure
917 	 * to put it LAST so timer finds oldest requests first.
918 	 */
919 	s = splsoftclock();
920 	reph = &nfsreqh;
921 	reph->r_prev->r_next = rep;
922 	rep->r_prev = reph->r_prev;
923 	reph->r_prev = rep;
924 	rep->r_next = reph;
925 
926 	/* Get send time for nqnfs */
927 	reqtime = time.tv_sec;
928 
929 	/*
930 	 * If backing off another request or avoiding congestion, don't
931 	 * send this one now but let timer do it. If not timing a request,
932 	 * do it now.
933 	 */
934 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
935 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
936 		nmp->nm_sent < nmp->nm_cwnd)) {
937 		splx(s);
938 		if (nmp->nm_soflags & PR_CONNREQUIRED)
939 			error = nfs_sndlock(&nmp->nm_flag, rep);
940 		if (!error) {
941 			m = m_copym(m, 0, M_COPYALL, M_WAIT);
942 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
943 			if (nmp->nm_soflags & PR_CONNREQUIRED)
944 				nfs_sndunlock(&nmp->nm_flag);
945 		}
946 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
947 			nmp->nm_sent += NFS_CWNDSCALE;
948 			rep->r_flags |= R_SENT;
949 		}
950 	} else {
951 		splx(s);
952 		rep->r_rtt = -1;
953 	}
954 
955 	/*
956 	 * Wait for the reply from our send or the timer's.
957 	 */
958 	if (!error)
959 		error = nfs_reply(rep);
960 
961 	/*
962 	 * RPC done, unlink the request.
963 	 */
964 	s = splsoftclock();
965 	rep->r_prev->r_next = rep->r_next;
966 	rep->r_next->r_prev = rep->r_prev;
967 	splx(s);
968 
969 	/*
970 	 * If there was a successful reply and a tprintf msg.
971 	 * tprintf a response.
972 	 */
973 	if (!error && (rep->r_flags & R_TPRINTFMSG))
974 		nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
975 		    "is alive again");
976 	mrep = rep->r_mrep;
977 	md = rep->r_md;
978 	dpos = rep->r_dpos;
979 	if (error) {
980 		m_freem(rep->r_mreq);
981 		free((caddr_t)rep, M_NFSREQ);
982 		return (error);
983 	}
984 
985 	/*
986 	 * break down the rpc header and check if ok
987 	 */
988 	nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
989 	if (*tl++ == rpc_msgdenied) {
990 		if (*tl == rpc_mismatch)
991 			error = EOPNOTSUPP;
992 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
993 			if (*tl == rpc_rejectedcred && failed_auth == 0) {
994 				failed_auth++;
995 				mheadend->m_next = (struct mbuf *)0;
996 				m_freem(mrep);
997 				m_freem(rep->r_mreq);
998 				goto kerbauth;
999 			} else
1000 				error = EAUTH;
1001 		} else
1002 			error = EACCES;
1003 		m_freem(mrep);
1004 		m_freem(rep->r_mreq);
1005 		free((caddr_t)rep, M_NFSREQ);
1006 		return (error);
1007 	}
1008 
1009 	/*
1010 	 * skip over the auth_verf, someday we may want to cache auth_short's
1011 	 * for nfs_reqhead(), but for now just dump it
1012 	 */
1013 	if (*++tl != 0) {
1014 		i = nfsm_rndup(fxdr_unsigned(long, *tl));
1015 		nfsm_adv(i);
1016 	}
1017 	nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1018 	/* 0 == ok */
1019 	if (*tl == 0) {
1020 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1021 		if (*tl != 0) {
1022 			error = fxdr_unsigned(int, *tl);
1023 			m_freem(mrep);
1024 			if ((nmp->nm_flag & NFSMNT_NQNFS) &&
1025 			    error == NQNFS_TRYLATER) {
1026 				error = 0;
1027 				waituntil = time.tv_sec + trylater_delay;
1028 				while (time.tv_sec < waituntil)
1029 					(void) tsleep((caddr_t)&lbolt,
1030 						PSOCK, "nqnfstry", 0);
1031 				trylater_delay *= nfs_backoff[trylater_cnt];
1032 				if (trylater_cnt < 7)
1033 					trylater_cnt++;
1034 				goto tryagain;
1035 			}
1036 			m_freem(rep->r_mreq);
1037 			free((caddr_t)rep, M_NFSREQ);
1038 			return (error);
1039 		}
1040 
1041 		/*
1042 		 * For nqnfs, get any lease in reply
1043 		 */
1044 		if (nmp->nm_flag & NFSMNT_NQNFS) {
1045 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1046 			if (*tl) {
1047 				np = VTONFS(vp);
1048 				nqlflag = fxdr_unsigned(int, *tl);
1049 				nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
1050 				cachable = fxdr_unsigned(int, *tl++);
1051 				reqtime += fxdr_unsigned(int, *tl++);
1052 				if (reqtime > time.tv_sec) {
1053 				    if (np->n_tnext) {
1054 					if (np->n_tnext == (struct nfsnode *)nmp)
1055 					    nmp->nm_tprev = np->n_tprev;
1056 					else
1057 					    np->n_tnext->n_tprev = np->n_tprev;
1058 					if (np->n_tprev == (struct nfsnode *)nmp)
1059 					    nmp->nm_tnext = np->n_tnext;
1060 					else
1061 					    np->n_tprev->n_tnext = np->n_tnext;
1062 					if (nqlflag == NQL_WRITE)
1063 					    np->n_flag |= NQNFSWRITE;
1064 				    } else if (nqlflag == NQL_READ)
1065 					np->n_flag &= ~NQNFSWRITE;
1066 				    else
1067 					np->n_flag |= NQNFSWRITE;
1068 				    if (cachable)
1069 					np->n_flag &= ~NQNFSNONCACHE;
1070 				    else
1071 					np->n_flag |= NQNFSNONCACHE;
1072 				    np->n_expiry = reqtime;
1073 				    fxdr_hyper(tl, &np->n_lrev);
1074 				    tp = nmp->nm_tprev;
1075 				    while (tp != (struct nfsnode *)nmp &&
1076 				           tp->n_expiry > np->n_expiry)
1077 						tp = tp->n_tprev;
1078 				    if (tp == (struct nfsnode *)nmp) {
1079 					np->n_tnext = nmp->nm_tnext;
1080 					nmp->nm_tnext = np;
1081 				    } else {
1082 					np->n_tnext = tp->n_tnext;
1083 					tp->n_tnext = np;
1084 				    }
1085 				    np->n_tprev = tp;
1086 				    if (np->n_tnext == (struct nfsnode *)nmp)
1087 					nmp->nm_tprev = np;
1088 				    else
1089 					np->n_tnext->n_tprev = np;
1090 				}
1091 			}
1092 		}
1093 		*mrp = mrep;
1094 		*mdp = md;
1095 		*dposp = dpos;
1096 		m_freem(rep->r_mreq);
1097 		FREE((caddr_t)rep, M_NFSREQ);
1098 		return (0);
1099 	}
1100 	m_freem(mrep);
1101 	m_freem(rep->r_mreq);
1102 	free((caddr_t)rep, M_NFSREQ);
1103 	error = EPROTONOSUPPORT;
1104 nfsmout:
1105 	return (error);
1106 }
1107 
1108 /*
1109  * Generate the rpc reply header
1110  * siz arg. is used to decide if adding a cluster is worthwhile
1111  */
1112 nfs_rephead(siz, nd, err, cache, frev, mrq, mbp, bposp)
1113 	int siz;
1114 	struct nfsd *nd;
1115 	int err;
1116 	int cache;
1117 	u_quad_t *frev;
1118 	struct mbuf **mrq;
1119 	struct mbuf **mbp;
1120 	caddr_t *bposp;
1121 {
1122 	register u_long *tl;
1123 	register struct mbuf *mreq;
1124 	caddr_t bpos;
1125 	struct mbuf *mb, *mb2;
1126 
1127 	MGETHDR(mreq, M_WAIT, MT_DATA);
1128 	mb = mreq;
1129 	/*
1130 	 * If this is a big reply, use a cluster else
1131 	 * try and leave leading space for the lower level headers.
1132 	 */
1133 	siz += RPC_REPLYSIZ;
1134 	if (siz >= MINCLSIZE) {
1135 		MCLGET(mreq, M_WAIT);
1136 	} else
1137 		mreq->m_data += max_hdr;
1138 	tl = mtod(mreq, u_long *);
1139 	mreq->m_len = 6*NFSX_UNSIGNED;
1140 	bpos = ((caddr_t)tl)+mreq->m_len;
1141 	*tl++ = nd->nd_retxid;
1142 	*tl++ = rpc_reply;
1143 	if (err == ERPCMISMATCH || err == NQNFS_AUTHERR) {
1144 		*tl++ = rpc_msgdenied;
1145 		if (err == NQNFS_AUTHERR) {
1146 			*tl++ = rpc_autherr;
1147 			*tl = rpc_rejectedcred;
1148 			mreq->m_len -= NFSX_UNSIGNED;
1149 			bpos -= NFSX_UNSIGNED;
1150 		} else {
1151 			*tl++ = rpc_mismatch;
1152 			*tl++ = txdr_unsigned(2);
1153 			*tl = txdr_unsigned(2);
1154 		}
1155 	} else {
1156 		*tl++ = rpc_msgaccepted;
1157 		*tl++ = 0;
1158 		*tl++ = 0;
1159 		switch (err) {
1160 		case EPROGUNAVAIL:
1161 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1162 			break;
1163 		case EPROGMISMATCH:
1164 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1165 			nfsm_build(tl, u_long *, 2*NFSX_UNSIGNED);
1166 			*tl++ = txdr_unsigned(2);
1167 			*tl = txdr_unsigned(2);	/* someday 3 */
1168 			break;
1169 		case EPROCUNAVAIL:
1170 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1171 			break;
1172 		default:
1173 			*tl = 0;
1174 			if (err != VNOVAL) {
1175 				nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1176 				if (err)
1177 					*tl = txdr_unsigned(nfsrv_errmap[err - 1]);
1178 				else
1179 					*tl = 0;
1180 			}
1181 			break;
1182 		};
1183 	}
1184 
1185 	/*
1186 	 * For nqnfs, piggyback lease as requested.
1187 	 */
1188 	if (nd->nd_nqlflag != NQL_NOVAL && err == 0) {
1189 		if (nd->nd_nqlflag) {
1190 			nfsm_build(tl, u_long *, 5*NFSX_UNSIGNED);
1191 			*tl++ = txdr_unsigned(nd->nd_nqlflag);
1192 			*tl++ = txdr_unsigned(cache);
1193 			*tl++ = txdr_unsigned(nd->nd_duration);
1194 			txdr_hyper(frev, tl);
1195 		} else {
1196 			if (nd->nd_nqlflag != 0)
1197 				panic("nqreph");
1198 			nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1199 			*tl = 0;
1200 		}
1201 	}
1202 	*mrq = mreq;
1203 	*mbp = mb;
1204 	*bposp = bpos;
1205 	if (err != 0 && err != VNOVAL)
1206 		nfsstats.srvrpc_errs++;
1207 	return (0);
1208 }
1209 
1210 /*
1211  * Nfs timer routine
1212  * Scan the nfsreq list and retranmit any requests that have timed out
1213  * To avoid retransmission attempts on STREAM sockets (in the future) make
1214  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1215  */
1216 nfs_timer()
1217 {
1218 	register struct nfsreq *rep;
1219 	register struct mbuf *m;
1220 	register struct socket *so;
1221 	register struct nfsmount *nmp;
1222 	register int timeo;
1223 	static long lasttime = 0;
1224 	int s, error;
1225 
1226 	s = splnet();
1227 	for (rep = nfsreqh.r_next; rep != &nfsreqh; rep = rep->r_next) {
1228 		nmp = rep->r_nmp;
1229 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1230 			continue;
1231 		if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1232 			rep->r_flags |= R_SOFTTERM;
1233 			continue;
1234 		}
1235 		if (rep->r_rtt >= 0) {
1236 			rep->r_rtt++;
1237 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1238 				timeo = nmp->nm_timeo;
1239 			else
1240 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1241 			if (nmp->nm_timeouts > 0)
1242 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1243 			if (rep->r_rtt <= timeo)
1244 				continue;
1245 			if (nmp->nm_timeouts < 8)
1246 				nmp->nm_timeouts++;
1247 		}
1248 		/*
1249 		 * Check for server not responding
1250 		 */
1251 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1252 		     rep->r_rexmit > nmp->nm_deadthresh) {
1253 			nfs_msg(rep->r_procp,
1254 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1255 			    "not responding");
1256 			rep->r_flags |= R_TPRINTFMSG;
1257 		}
1258 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1259 			nfsstats.rpctimeouts++;
1260 			rep->r_flags |= R_SOFTTERM;
1261 			continue;
1262 		}
1263 		if (nmp->nm_sotype != SOCK_DGRAM) {
1264 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1265 				rep->r_rexmit = NFS_MAXREXMIT;
1266 			continue;
1267 		}
1268 		if ((so = nmp->nm_so) == NULL)
1269 			continue;
1270 
1271 		/*
1272 		 * If there is enough space and the window allows..
1273 		 *	Resend it
1274 		 * Set r_rtt to -1 in case we fail to send it now.
1275 		 */
1276 		rep->r_rtt = -1;
1277 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1278 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1279 		    (rep->r_flags & R_SENT) ||
1280 		    nmp->nm_sent < nmp->nm_cwnd) &&
1281 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1282 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1283 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1284 			    (struct mbuf *)0, (struct mbuf *)0);
1285 			else
1286 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1287 			    nmp->nm_nam, (struct mbuf *)0);
1288 			if (error) {
1289 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1290 					so->so_error = 0;
1291 			} else {
1292 				/*
1293 				 * Iff first send, start timing
1294 				 * else turn timing off, backoff timer
1295 				 * and divide congestion window by 2.
1296 				 */
1297 				if (rep->r_flags & R_SENT) {
1298 					rep->r_flags &= ~R_TIMING;
1299 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1300 						rep->r_rexmit = NFS_MAXREXMIT;
1301 					nmp->nm_cwnd >>= 1;
1302 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1303 						nmp->nm_cwnd = NFS_CWNDSCALE;
1304 					nfsstats.rpcretries++;
1305 				} else {
1306 					rep->r_flags |= R_SENT;
1307 					nmp->nm_sent += NFS_CWNDSCALE;
1308 				}
1309 				rep->r_rtt = 0;
1310 			}
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * Call the nqnfs server timer once a second to handle leases.
1316 	 */
1317 	if (lasttime != time.tv_sec) {
1318 		lasttime = time.tv_sec;
1319 		nqnfs_serverd();
1320 	}
1321 	splx(s);
1322 	timeout(nfs_timer, (caddr_t)0, hz/NFS_HZ);
1323 }
1324 
1325 /*
1326  * Test for a termination condition pending on the process.
1327  * This is used for NFSMNT_INT mounts.
1328  */
1329 nfs_sigintr(nmp, rep, p)
1330 	struct nfsmount *nmp;
1331 	struct nfsreq *rep;
1332 	register struct proc *p;
1333 {
1334 
1335 	if (rep && (rep->r_flags & R_SOFTTERM))
1336 		return (EINTR);
1337 	if (!(nmp->nm_flag & NFSMNT_INT))
1338 		return (0);
1339 	if (p && p->p_sig && (((p->p_sig &~ p->p_sigmask) &~ p->p_sigignore) &
1340 	    NFSINT_SIGMASK))
1341 		return (EINTR);
1342 	return (0);
1343 }
1344 
1345 /*
1346  * Lock a socket against others.
1347  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1348  * and also to avoid race conditions between the processes with nfs requests
1349  * in progress when a reconnect is necessary.
1350  */
1351 nfs_sndlock(flagp, rep)
1352 	register int *flagp;
1353 	struct nfsreq *rep;
1354 {
1355 	struct proc *p;
1356 
1357 	if (rep)
1358 		p = rep->r_procp;
1359 	else
1360 		p = (struct proc *)0;
1361 	while (*flagp & NFSMNT_SNDLOCK) {
1362 		if (nfs_sigintr(rep->r_nmp, rep, p))
1363 			return (EINTR);
1364 		*flagp |= NFSMNT_WANTSND;
1365 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsndlck", 0);
1366 	}
1367 	*flagp |= NFSMNT_SNDLOCK;
1368 	return (0);
1369 }
1370 
1371 /*
1372  * Unlock the stream socket for others.
1373  */
1374 void
1375 nfs_sndunlock(flagp)
1376 	register int *flagp;
1377 {
1378 
1379 	if ((*flagp & NFSMNT_SNDLOCK) == 0)
1380 		panic("nfs sndunlock");
1381 	*flagp &= ~NFSMNT_SNDLOCK;
1382 	if (*flagp & NFSMNT_WANTSND) {
1383 		*flagp &= ~NFSMNT_WANTSND;
1384 		wakeup((caddr_t)flagp);
1385 	}
1386 }
1387 
1388 nfs_rcvlock(rep)
1389 	register struct nfsreq *rep;
1390 {
1391 	register int *flagp = &rep->r_nmp->nm_flag;
1392 
1393 	while (*flagp & NFSMNT_RCVLOCK) {
1394 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1395 			return (EINTR);
1396 		*flagp |= NFSMNT_WANTRCV;
1397 		(void) tsleep((caddr_t)flagp, PZERO-1, "nfsrcvlck", 0);
1398 	}
1399 	*flagp |= NFSMNT_RCVLOCK;
1400 	return (0);
1401 }
1402 
1403 /*
1404  * Unlock the stream socket for others.
1405  */
1406 void
1407 nfs_rcvunlock(flagp)
1408 	register int *flagp;
1409 {
1410 
1411 	if ((*flagp & NFSMNT_RCVLOCK) == 0)
1412 		panic("nfs rcvunlock");
1413 	*flagp &= ~NFSMNT_RCVLOCK;
1414 	if (*flagp & NFSMNT_WANTRCV) {
1415 		*flagp &= ~NFSMNT_WANTRCV;
1416 		wakeup((caddr_t)flagp);
1417 	}
1418 }
1419 
1420 /*
1421  * This function compares two net addresses by family and returns TRUE
1422  * if they are the same host.
1423  * If there is any doubt, return FALSE.
1424  * The AF_INET family is handled as a special case so that address mbufs
1425  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1426  */
1427 nfs_netaddr_match(family, haddr, hmask, nam)
1428 	int family;
1429 	union nethostaddr *haddr;
1430 	union nethostaddr *hmask;
1431 	struct mbuf *nam;
1432 {
1433 	register struct sockaddr_in *inetaddr;
1434 #ifdef ISO
1435 	register struct sockaddr_iso *isoaddr1, *isoaddr2;
1436 #endif
1437 
1438 
1439 	switch (family) {
1440 	case AF_INET:
1441 		inetaddr = mtod(nam, struct sockaddr_in *);
1442 		if (inetaddr->sin_family != AF_INET)
1443 			return (0);
1444 		if (hmask) {
1445 			if ((inetaddr->sin_addr.s_addr & hmask->had_inetaddr) ==
1446 			    (haddr->had_inetaddr & hmask->had_inetaddr))
1447 				return (1);
1448 		} else if (inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1449 			return (1);
1450 		break;
1451 #ifdef ISO
1452 	case AF_ISO:
1453 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
1454 		if (isoaddr1->siso_family != AF_ISO)
1455 			return (0);
1456 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
1457 		if (isoaddr1->siso_nlen > 0 &&
1458 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
1459 		    SAME_ISOADDR(isoaddr1, isoaddr2))
1460 			return (1);
1461 		break;
1462 #endif	/* ISO */
1463 	default:
1464 		break;
1465 	};
1466 	return (0);
1467 }
1468 
1469 /*
1470  * Build hash lists of net addresses and hang them off the mount point.
1471  * Called by ufs_mount() to set up the lists of export addresses.
1472  */
1473 hang_addrlist(mp, argp)
1474 	struct mount *mp;
1475 	struct ufs_args *argp;
1476 {
1477 	register struct netaddrhash *np, **hnp;
1478 	register int i;
1479 	struct ufsmount *ump;
1480 	struct sockaddr *saddr;
1481 	struct mbuf *nam, *msk = (struct mbuf *)0;
1482 	union nethostaddr netmsk;
1483 	int error;
1484 
1485 	if (error = sockargs(&nam, (caddr_t)argp->saddr, argp->slen,
1486 	    MT_SONAME))
1487 	    return (error);
1488 	saddr = mtod(nam, struct sockaddr *);
1489 	ump = VFSTOUFS(mp);
1490 	if (saddr->sa_family == AF_INET &&
1491 	    ((struct sockaddr_in *)saddr)->sin_addr.s_addr == INADDR_ANY) {
1492 	    m_freem(nam);
1493 	    if (mp->mnt_flag & MNT_DEFEXPORTED)
1494 		return (EPERM);
1495 	    np = &ump->um_defexported;
1496 	    np->neth_exflags = argp->exflags;
1497 	    np->neth_anon = argp->anon;
1498 	    np->neth_anon.cr_ref = 1;
1499 	    mp->mnt_flag |= MNT_DEFEXPORTED;
1500 	    return (0);
1501 	}
1502 	if (argp->msklen > 0) {
1503 	    if (error = sockargs(&msk, (caddr_t)argp->smask, argp->msklen,
1504 		MT_SONAME)) {
1505 		m_freem(nam);
1506 		return (error);
1507 	    }
1508 
1509 	    /*
1510 	     * Scan all the hash lists to check against duplications.
1511 	     * For the net list, try both masks to catch a subnet
1512 	     * of another network.
1513 	     */
1514 	    hnp = &ump->um_netaddr[NETMASK_HASH];
1515 	    np = *hnp;
1516 	    if (saddr->sa_family == AF_INET)
1517 		netmsk.had_inetaddr =
1518 		    mtod(msk, struct sockaddr_in *)->sin_addr.s_addr;
1519 	    else
1520 		netmsk.had_nam = msk;
1521 	    while (np) {
1522 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1523 		    &np->neth_hmask, nam) ||
1524 		    nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1525 		    &netmsk, nam)) {
1526 			m_freem(nam);
1527 			m_freem(msk);
1528 			return (EPERM);
1529 		}
1530 		np = np->neth_next;
1531 	    }
1532 	    for (i = 0; i < NETHASHSZ; i++) {
1533 		np = ump->um_netaddr[i];
1534 		while (np) {
1535 		    if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1536 			&netmsk, nam)) {
1537 			m_freem(nam);
1538 			m_freem(msk);
1539 			return (EPERM);
1540 		    }
1541 		    np = np->neth_next;
1542 		}
1543 	    }
1544 	} else {
1545 	    hnp = &ump->um_netaddr[NETADDRHASH(saddr)];
1546 	    np = ump->um_netaddr[NETMASK_HASH];
1547 	    while (np) {
1548 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1549 		    &np->neth_hmask, nam)) {
1550 		    m_freem(nam);
1551 		    return (EPERM);
1552 		}
1553 		np = np->neth_next;
1554 	    }
1555 	    np = *hnp;
1556 	    while (np) {
1557 		if (nfs_netaddr_match(np->neth_family, &np->neth_haddr,
1558 		    (union nethostaddr *)0, nam)) {
1559 		    m_freem(nam);
1560 		    return (EPERM);
1561 		}
1562 		np = np->neth_next;
1563 	    }
1564 	}
1565 	np = (struct netaddrhash *) malloc(sizeof(struct netaddrhash), M_NETADDR,
1566 	    M_WAITOK);
1567 	np->neth_family = saddr->sa_family;
1568 	if (saddr->sa_family == AF_INET) {
1569 		np->neth_inetaddr = ((struct sockaddr_in *)saddr)->sin_addr.s_addr;
1570 		m_freem(nam);
1571 		if (msk) {
1572 			np->neth_inetmask = netmsk.had_inetaddr;
1573 			m_freem(msk);
1574 			if (np->neth_inetaddr &~ np->neth_inetmask)
1575 				return (EPERM);
1576 		} else
1577 			np->neth_inetmask = 0xffffffff;
1578 	} else {
1579 		np->neth_nam = nam;
1580 		np->neth_msk = msk;
1581 	}
1582 	np->neth_exflags = argp->exflags;
1583 	np->neth_anon = argp->anon;
1584 	np->neth_anon.cr_ref = 1;
1585 	np->neth_next = *hnp;
1586 	*hnp = np;
1587 	return (0);
1588 }
1589 
1590 /*
1591  * Free the net address hash lists that are hanging off the mount points.
1592  */
1593 free_addrlist(ump)
1594 	struct ufsmount *ump;
1595 {
1596 	register struct netaddrhash *np, *onp;
1597 	register int i;
1598 
1599 	for (i = 0; i <= NETHASHSZ; i++) {
1600 		np = ump->um_netaddr[i];
1601 		ump->um_netaddr[i] = (struct netaddrhash *)0;
1602 		while (np) {
1603 			onp = np;
1604 			np = np->neth_next;
1605 			if (onp->neth_family != AF_INET) {
1606 				m_freem(onp->neth_nam);
1607 				m_freem(onp->neth_msk);
1608 			}
1609 			free((caddr_t)onp, M_NETADDR);
1610 		}
1611 	}
1612 }
1613 
1614 /*
1615  * Generate a hash code for an iso host address. Used by NETADDRHASH() for
1616  * iso addresses.
1617  */
1618 iso_addrhash(saddr)
1619 	struct sockaddr *saddr;
1620 {
1621 #ifdef ISO
1622 	register struct sockaddr_iso *siso;
1623 	register int i, sum;
1624 
1625 	sum = 0;
1626 	for (i = 0; i < siso->siso_nlen; i++)
1627 		sum += siso->siso_data[i];
1628 	return (sum & (NETHASHSZ - 1));
1629 #else
1630 	return (0);
1631 #endif	/* ISO */
1632 }
1633 
1634 /*
1635  * Check for badly aligned mbuf data areas and
1636  * realign data in an mbuf list by copying the data areas up, as required.
1637  */
1638 void
1639 nfs_realign(m, hsiz)
1640 	register struct mbuf *m;
1641 	int hsiz;
1642 {
1643 	register struct mbuf *m2;
1644 	register int siz, mlen, olen;
1645 	register caddr_t tcp, fcp;
1646 	struct mbuf *mnew;
1647 
1648 	while (m) {
1649 	    /*
1650 	     * This never happens for UDP, rarely happens for TCP
1651 	     * but frequently happens for iso transport.
1652 	     */
1653 	    if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
1654 		olen = m->m_len;
1655 		fcp = mtod(m, caddr_t);
1656 		m->m_flags &= ~M_PKTHDR;
1657 		if (m->m_flags & M_EXT)
1658 			m->m_data = m->m_ext.ext_buf;
1659 		else
1660 			m->m_data = m->m_dat;
1661 		m->m_len = 0;
1662 		tcp = mtod(m, caddr_t);
1663 		mnew = m;
1664 		m2 = m->m_next;
1665 
1666 		/*
1667 		 * If possible, only put the first invariant part
1668 		 * of the RPC header in the first mbuf.
1669 		 */
1670 		if (olen <= hsiz)
1671 			mlen = hsiz;
1672 		else
1673 			mlen = M_TRAILINGSPACE(m);
1674 
1675 		/*
1676 		 * Loop through the mbuf list consolidating data.
1677 		 */
1678 		while (m) {
1679 			while (olen > 0) {
1680 				if (mlen == 0) {
1681 					m2->m_flags &= ~M_PKTHDR;
1682 					if (m2->m_flags & M_EXT)
1683 						m2->m_data = m2->m_ext.ext_buf;
1684 					else
1685 						m2->m_data = m2->m_dat;
1686 					m2->m_len = 0;
1687 					mlen = M_TRAILINGSPACE(m2);
1688 					tcp = mtod(m2, caddr_t);
1689 					mnew = m2;
1690 					m2 = m2->m_next;
1691 				}
1692 				siz = MIN(mlen, olen);
1693 				if (tcp != fcp)
1694 					bcopy(fcp, tcp, siz);
1695 				mnew->m_len += siz;
1696 				mlen -= siz;
1697 				olen -= siz;
1698 				tcp += siz;
1699 				fcp += siz;
1700 			}
1701 			m = m->m_next;
1702 			if (m) {
1703 				olen = m->m_len;
1704 				fcp = mtod(m, caddr_t);
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * Finally, set m_len == 0 for any trailing mbufs that have
1710 		 * been copied out of.
1711 		 */
1712 		while (m2) {
1713 			m2->m_len = 0;
1714 			m2 = m2->m_next;
1715 		}
1716 		return;
1717 	    }
1718 	    m = m->m_next;
1719 	}
1720 }
1721 
1722 /*
1723  * Socket upcall routine for the nfsd sockets.
1724  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1725  * Essentially do as much as possible non-blocking, else punt and it will
1726  * be called with M_WAIT from an nfsd.
1727  */
1728 void
1729 nfsrv_rcv(so, arg, waitflag)
1730 	struct socket *so;
1731 	caddr_t arg;
1732 	int waitflag;
1733 {
1734 	register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1735 	register struct mbuf *m;
1736 	struct mbuf *mp, *nam;
1737 	struct uio auio;
1738 	int flags, error;
1739 
1740 	if ((slp->ns_flag & SLP_VALID) == 0)
1741 		return;
1742 #ifdef notdef
1743 	/*
1744 	 * Define this to test for nfsds handling this under heavy load.
1745 	 */
1746 	if (waitflag == M_DONTWAIT) {
1747 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1748 	}
1749 #endif
1750 	auio.uio_procp = NULL;
1751 	if (so->so_type == SOCK_STREAM) {
1752 		/*
1753 		 * If there are already records on the queue, defer soreceive()
1754 		 * to an nfsd so that there is feedback to the TCP layer that
1755 		 * the nfs servers are heavily loaded.
1756 		 */
1757 		if (slp->ns_rec && waitflag == M_DONTWAIT) {
1758 			slp->ns_flag |= SLP_NEEDQ;
1759 			goto dorecs;
1760 		}
1761 
1762 		/*
1763 		 * Do soreceive().
1764 		 */
1765 		auio.uio_resid = 1000000000;
1766 		flags = MSG_DONTWAIT;
1767 		error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1768 		if (error || mp == (struct mbuf *)0) {
1769 			if (error == EWOULDBLOCK)
1770 				slp->ns_flag |= SLP_NEEDQ;
1771 			else
1772 				slp->ns_flag |= SLP_DISCONN;
1773 			goto dorecs;
1774 		}
1775 		m = mp;
1776 		if (slp->ns_rawend) {
1777 			slp->ns_rawend->m_next = m;
1778 			slp->ns_cc += 1000000000 - auio.uio_resid;
1779 		} else {
1780 			slp->ns_raw = m;
1781 			slp->ns_cc = 1000000000 - auio.uio_resid;
1782 		}
1783 		while (m->m_next)
1784 			m = m->m_next;
1785 		slp->ns_rawend = m;
1786 
1787 		/*
1788 		 * Now try and parse record(s) out of the raw stream data.
1789 		 */
1790 		if (error = nfsrv_getstream(slp, waitflag)) {
1791 			if (error == EPERM)
1792 				slp->ns_flag |= SLP_DISCONN;
1793 			else
1794 				slp->ns_flag |= SLP_NEEDQ;
1795 		}
1796 	} else {
1797 		do {
1798 			auio.uio_resid = 1000000000;
1799 			flags = MSG_DONTWAIT;
1800 			error = soreceive(so, &nam, &auio, &mp,
1801 						(struct mbuf **)0, &flags);
1802 			if (mp) {
1803 				nfs_realign(mp, 10 * NFSX_UNSIGNED);
1804 				if (nam) {
1805 					m = nam;
1806 					m->m_next = mp;
1807 				} else
1808 					m = mp;
1809 				if (slp->ns_recend)
1810 					slp->ns_recend->m_nextpkt = m;
1811 				else
1812 					slp->ns_rec = m;
1813 				slp->ns_recend = m;
1814 				m->m_nextpkt = (struct mbuf *)0;
1815 			}
1816 			if (error) {
1817 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1818 					&& error != EWOULDBLOCK) {
1819 					slp->ns_flag |= SLP_DISCONN;
1820 					goto dorecs;
1821 				}
1822 			}
1823 		} while (mp);
1824 	}
1825 
1826 	/*
1827 	 * Now try and process the request records, non-blocking.
1828 	 */
1829 dorecs:
1830 	if (waitflag == M_DONTWAIT &&
1831 		(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1832 		nfsrv_wakenfsd(slp);
1833 }
1834 
1835 /*
1836  * Try and extract an RPC request from the mbuf data list received on a
1837  * stream socket. The "waitflag" argument indicates whether or not it
1838  * can sleep.
1839  */
1840 nfsrv_getstream(slp, waitflag)
1841 	register struct nfssvc_sock *slp;
1842 	int waitflag;
1843 {
1844 	register struct mbuf *m;
1845 	register char *cp1, *cp2;
1846 	register int len;
1847 	struct mbuf *om, *m2, *recm;
1848 	u_long recmark;
1849 
1850 	if (slp->ns_flag & SLP_GETSTREAM)
1851 		panic("nfs getstream");
1852 	slp->ns_flag |= SLP_GETSTREAM;
1853 	for (;;) {
1854 	    if (slp->ns_reclen == 0) {
1855 		if (slp->ns_cc < NFSX_UNSIGNED) {
1856 			slp->ns_flag &= ~SLP_GETSTREAM;
1857 			return (0);
1858 		}
1859 		m = slp->ns_raw;
1860 		if (m->m_len >= NFSX_UNSIGNED) {
1861 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1862 			m->m_data += NFSX_UNSIGNED;
1863 			m->m_len -= NFSX_UNSIGNED;
1864 		} else {
1865 			cp1 = (caddr_t)&recmark;
1866 			cp2 = mtod(m, caddr_t);
1867 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1868 				while (m->m_len == 0) {
1869 					m = m->m_next;
1870 					cp2 = mtod(m, caddr_t);
1871 				}
1872 				*cp1++ = *cp2++;
1873 				m->m_data++;
1874 				m->m_len--;
1875 			}
1876 		}
1877 		slp->ns_cc -= NFSX_UNSIGNED;
1878 		slp->ns_reclen = ntohl(recmark) & ~0x80000000;
1879 		if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
1880 			slp->ns_flag &= ~SLP_GETSTREAM;
1881 			return (EPERM);
1882 		}
1883 	    }
1884 
1885 	    /*
1886 	     * Now get the record part.
1887 	     */
1888 	    if (slp->ns_cc == slp->ns_reclen) {
1889 		recm = slp->ns_raw;
1890 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1891 		slp->ns_cc = slp->ns_reclen = 0;
1892 	    } else if (slp->ns_cc > slp->ns_reclen) {
1893 		len = 0;
1894 		m = slp->ns_raw;
1895 		om = (struct mbuf *)0;
1896 		while (len < slp->ns_reclen) {
1897 			if ((len + m->m_len) > slp->ns_reclen) {
1898 				m2 = m_copym(m, 0, slp->ns_reclen - len,
1899 					waitflag);
1900 				if (m2) {
1901 					if (om) {
1902 						om->m_next = m2;
1903 						recm = slp->ns_raw;
1904 					} else
1905 						recm = m2;
1906 					m->m_data += slp->ns_reclen - len;
1907 					m->m_len -= slp->ns_reclen - len;
1908 					len = slp->ns_reclen;
1909 				} else {
1910 					slp->ns_flag &= ~SLP_GETSTREAM;
1911 					return (EWOULDBLOCK);
1912 				}
1913 			} else if ((len + m->m_len) == slp->ns_reclen) {
1914 				om = m;
1915 				len += m->m_len;
1916 				m = m->m_next;
1917 				recm = slp->ns_raw;
1918 				om->m_next = (struct mbuf *)0;
1919 			} else {
1920 				om = m;
1921 				len += m->m_len;
1922 				m = m->m_next;
1923 			}
1924 		}
1925 		slp->ns_raw = m;
1926 		slp->ns_cc -= len;
1927 		slp->ns_reclen = 0;
1928 	    } else {
1929 		slp->ns_flag &= ~SLP_GETSTREAM;
1930 		return (0);
1931 	    }
1932 	    nfs_realign(recm, 10 * NFSX_UNSIGNED);
1933 	    if (slp->ns_recend)
1934 		slp->ns_recend->m_nextpkt = recm;
1935 	    else
1936 		slp->ns_rec = recm;
1937 	    slp->ns_recend = recm;
1938 	}
1939 }
1940 
1941 /*
1942  * Parse an RPC header.
1943  */
1944 nfsrv_dorec(slp, nd)
1945 	register struct nfssvc_sock *slp;
1946 	register struct nfsd *nd;
1947 {
1948 	register struct mbuf *m;
1949 	int error;
1950 
1951 	if ((slp->ns_flag & SLP_VALID) == 0 ||
1952 	    (m = slp->ns_rec) == (struct mbuf *)0)
1953 		return (ENOBUFS);
1954 	if (slp->ns_rec = m->m_nextpkt)
1955 		m->m_nextpkt = (struct mbuf *)0;
1956 	else
1957 		slp->ns_recend = (struct mbuf *)0;
1958 	if (m->m_type == MT_SONAME) {
1959 		nd->nd_nam = m;
1960 		nd->nd_md = nd->nd_mrep = m->m_next;
1961 		m->m_next = (struct mbuf *)0;
1962 	} else {
1963 		nd->nd_nam = (struct mbuf *)0;
1964 		nd->nd_md = nd->nd_mrep = m;
1965 	}
1966 	nd->nd_dpos = mtod(nd->nd_md, caddr_t);
1967 	if (error = nfs_getreq(nd, TRUE)) {
1968 		m_freem(nd->nd_nam);
1969 		return (error);
1970 	}
1971 	return (0);
1972 }
1973 
1974 /*
1975  * Parse an RPC request
1976  * - verify it
1977  * - fill in the cred struct.
1978  */
1979 nfs_getreq(nd, has_header)
1980 	register struct nfsd *nd;
1981 	int has_header;
1982 {
1983 	register int len, i;
1984 	register u_long *tl;
1985 	register long t1;
1986 	struct uio uio;
1987 	struct iovec iov;
1988 	caddr_t dpos, cp2;
1989 	u_long nfsvers, auth_type;
1990 	int error = 0, nqnfs = 0;
1991 	struct mbuf *mrep, *md;
1992 
1993 	mrep = nd->nd_mrep;
1994 	md = nd->nd_md;
1995 	dpos = nd->nd_dpos;
1996 	if (has_header) {
1997 		nfsm_dissect(tl, u_long *, 10*NFSX_UNSIGNED);
1998 		nd->nd_retxid = *tl++;
1999 		if (*tl++ != rpc_call) {
2000 			m_freem(mrep);
2001 			return (EBADRPC);
2002 		}
2003 	} else {
2004 		nfsm_dissect(tl, u_long *, 8*NFSX_UNSIGNED);
2005 	}
2006 	nd->nd_repstat = 0;
2007 	if (*tl++ != rpc_vers) {
2008 		nd->nd_repstat = ERPCMISMATCH;
2009 		nd->nd_procnum = NFSPROC_NOOP;
2010 		return (0);
2011 	}
2012 	nfsvers = nfs_vers;
2013 	if (*tl != nfs_prog) {
2014 		if (*tl == nqnfs_prog) {
2015 			nqnfs++;
2016 			nfsvers = nqnfs_vers;
2017 		} else {
2018 			nd->nd_repstat = EPROGUNAVAIL;
2019 			nd->nd_procnum = NFSPROC_NOOP;
2020 			return (0);
2021 		}
2022 	}
2023 	tl++;
2024 	if (*tl++ != nfsvers) {
2025 		nd->nd_repstat = EPROGMISMATCH;
2026 		nd->nd_procnum = NFSPROC_NOOP;
2027 		return (0);
2028 	}
2029 	nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
2030 	if (nd->nd_procnum == NFSPROC_NULL)
2031 		return (0);
2032 	if (nd->nd_procnum >= NFS_NPROCS ||
2033 		(!nqnfs && nd->nd_procnum > NFSPROC_STATFS) ||
2034 		(*tl != rpc_auth_unix && *tl != rpc_auth_kerb)) {
2035 		nd->nd_repstat = EPROCUNAVAIL;
2036 		nd->nd_procnum = NFSPROC_NOOP;
2037 		return (0);
2038 	}
2039 	auth_type = *tl++;
2040 	len = fxdr_unsigned(int, *tl++);
2041 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2042 		m_freem(mrep);
2043 		return (EBADRPC);
2044 	}
2045 
2046 	/*
2047 	 * Handle auth_unix or auth_kerb.
2048 	 */
2049 	if (auth_type == rpc_auth_unix) {
2050 		len = fxdr_unsigned(int, *++tl);
2051 		if (len < 0 || len > NFS_MAXNAMLEN) {
2052 			m_freem(mrep);
2053 			return (EBADRPC);
2054 		}
2055 		nfsm_adv(nfsm_rndup(len));
2056 		nfsm_dissect(tl, u_long *, 3*NFSX_UNSIGNED);
2057 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2058 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2059 		len = fxdr_unsigned(int, *tl);
2060 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2061 			m_freem(mrep);
2062 			return (EBADRPC);
2063 		}
2064 		nfsm_dissect(tl, u_long *, (len + 2)*NFSX_UNSIGNED);
2065 		for (i = 1; i <= len; i++)
2066 			if (i < NGROUPS)
2067 				nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2068 			else
2069 				tl++;
2070 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2071 	} else if (auth_type == rpc_auth_kerb) {
2072 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2073 		nd->nd_authlen = fxdr_unsigned(int, *tl);
2074 		iov.iov_len = uio.uio_resid = nfsm_rndup(nd->nd_authlen);
2075 		if (uio.uio_resid > (len - 2*NFSX_UNSIGNED)) {
2076 			m_freem(mrep);
2077 			return (EBADRPC);
2078 		}
2079 		uio.uio_offset = 0;
2080 		uio.uio_iov = &iov;
2081 		uio.uio_iovcnt = 1;
2082 		uio.uio_segflg = UIO_SYSSPACE;
2083 		iov.iov_base = (caddr_t)nd->nd_authstr;
2084 		nfsm_mtouio(&uio, uio.uio_resid);
2085 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
2086 		nd->nd_flag |= NFSD_NEEDAUTH;
2087 	}
2088 
2089 	/*
2090 	 * Do we have any use for the verifier.
2091 	 * According to the "Remote Procedure Call Protocol Spec." it
2092 	 * should be AUTH_NULL, but some clients make it AUTH_UNIX?
2093 	 * For now, just skip over it
2094 	 */
2095 	len = fxdr_unsigned(int, *++tl);
2096 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2097 		m_freem(mrep);
2098 		return (EBADRPC);
2099 	}
2100 	if (len > 0) {
2101 		nfsm_adv(nfsm_rndup(len));
2102 	}
2103 
2104 	/*
2105 	 * For nqnfs, get piggybacked lease request.
2106 	 */
2107 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2108 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2109 		nd->nd_nqlflag = fxdr_unsigned(int, *tl);
2110 		if (nd->nd_nqlflag) {
2111 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2112 			nd->nd_duration = fxdr_unsigned(int, *tl);
2113 		} else
2114 			nd->nd_duration = NQ_MINLEASE;
2115 	} else {
2116 		nd->nd_nqlflag = NQL_NOVAL;
2117 		nd->nd_duration = NQ_MINLEASE;
2118 	}
2119 	nd->nd_md = md;
2120 	nd->nd_dpos = dpos;
2121 	return (0);
2122 nfsmout:
2123 	return (error);
2124 }
2125 
2126 /*
2127  * Search for a sleeping nfsd and wake it up.
2128  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2129  * running nfsds will go look for the work in the nfssvc_sock list.
2130  */
2131 void
2132 nfsrv_wakenfsd(slp)
2133 	struct nfssvc_sock *slp;
2134 {
2135 	register struct nfsd *nd = nfsd_head.nd_next;
2136 
2137 	if ((slp->ns_flag & SLP_VALID) == 0)
2138 		return;
2139 	while (nd != (struct nfsd *)&nfsd_head) {
2140 		if (nd->nd_flag & NFSD_WAITING) {
2141 			nd->nd_flag &= ~NFSD_WAITING;
2142 			if (nd->nd_slp)
2143 				panic("nfsd wakeup");
2144 			slp->ns_sref++;
2145 			nd->nd_slp = slp;
2146 			wakeup((caddr_t)nd);
2147 			return;
2148 		}
2149 		nd = nd->nd_next;
2150 	}
2151 	slp->ns_flag |= SLP_DOREC;
2152 	nfsd_head.nd_flag |= NFSD_CHECKSLP;
2153 }
2154 
2155 nfs_msg(p, server, msg)
2156 	struct proc *p;
2157 	char *server, *msg;
2158 {
2159 	tpr_t tpr;
2160 
2161 	if (p)
2162 		tpr = tprintf_open(p);
2163 	else
2164 		tpr = NULL;
2165 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2166 	tprintf_close(tpr);
2167 }
2168