xref: /original-bsd/sys/pmax/pmax/vm_machdep.c (revision 2611fccd)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1992 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department and Ralph Campbell.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
13  *
14  *	@(#)vm_machdep.c	7.1 (Berkeley) 01/07/92
15  */
16 
17 #include "param.h"
18 #include "systm.h"
19 #include "proc.h"
20 #include "malloc.h"
21 #include "buf.h"
22 #include "user.h"
23 
24 #include "vm/vm.h"
25 #include "vm/vm_kern.h"
26 #include "vm/vm_page.h"
27 
28 #include "pte.h"
29 
30 /*
31  * Finish a fork operation, with process p2 nearly set up.
32  * Copy and update the kernel stack and pcb, making the child
33  * ready to run, and marking it so that it can return differently
34  * than the parent.  Returns 1 in the child process, 0 in the parent.
35  * We currently double-map the user area so that the stack is at the same
36  * address in each process; in the future we will probably relocate
37  * the frame pointers on the stack after copying.
38  */
39 cpu_fork(p1, p2)
40 	register struct proc *p1, *p2;
41 {
42 	register struct user *up = p2->p_addr;
43 	register pt_entry_t *pte;
44 	register int i;
45 
46 	p2->p_regs = up->u_pcb.pcb_regs;
47 	p2->p_md.md_flags = p1->p_md.md_flags & (MDP_FPUSED | MDP_ULTRIX);
48 
49 	/*
50 	 * Convert the user struct virtual address to a physical one
51 	 * and cache it in the proc struct. Note: if the phyical address
52 	 * can change (due to memory compaction in kmem_alloc?),
53 	 * we will have to update things.
54 	 */
55 	pte = kvtopte(up);
56 	for (i = 0; i < UPAGES; i++) {
57 		p2->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
58 		pte++;
59 	}
60 
61 	/*
62 	 * Copy pcb and stack from proc p1 to p2.
63 	 * We do this as cheaply as possible, copying only the active
64 	 * part of the stack.  The stack and pcb need to agree;
65 	 */
66 	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
67 
68 	/*
69 	 * Arrange for a non-local goto when the new process
70 	 * is started, to resume here, returning nonzero from setjmp.
71 	 */
72 #ifdef DIAGNOSTIC
73 	if (p1 != curproc)
74 		panic("cpu_fork: curproc");
75 #endif
76 	if (copykstack(up)) {
77 		/*
78 		 * Return 1 in child.
79 		 */
80 		return (1);
81 	}
82 	return (0);
83 }
84 
85 /*
86  * cpu_exit is called as the last action during exit.
87  * We release the address space and machine-dependent resources,
88  * including the memory for the user structure and kernel stack.
89  * Once finished, we call swtch_exit, which switches to a temporary
90  * pcb and stack and never returns.  We block memory allocation
91  * until swtch_exit has made things safe again.
92  */
93 cpu_exit(p)
94 	struct proc *p;
95 {
96 	extern struct proc *machFPCurProcPtr;
97 
98 	if (machFPCurProcPtr == p)
99 		machFPCurProcPtr = (struct proc *)0;
100 
101 	vmspace_free(p->p_vmspace);
102 
103 	(void) splhigh();
104 	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
105 	swtch_exit();
106 	/* NOTREACHED */
107 }
108 
109 /*
110  * Move pages from one kernel virtual address to another.
111  * Both addresses are assumed to reside in the Sysmap,
112  * and size must be a multiple of CLSIZE.
113  */
114 pagemove(from, to, size)
115 	register caddr_t from, to;
116 	int size;
117 {
118 	register pt_entry_t *fpte, *tpte;
119 
120 	if (size % CLBYTES)
121 		panic("pagemove");
122 	fpte = kvtopte(from);
123 	tpte = kvtopte(to);
124 	while (size > 0) {
125 		MachTLBFlushAddr(from);
126 		MachTLBUpdate(to, *fpte);
127 		*tpte++ = *fpte;
128 		fpte->pt_entry = 0;
129 		fpte++;
130 		size -= NBPG;
131 		from += NBPG;
132 		to += NBPG;
133 	}
134 }
135 
136 extern vm_map_t phys_map;
137 
138 /*
139  * Map an IO request into kernel virtual address space.  Requests fall into
140  * one of five catagories:
141  *
142  *	B_PHYS|B_UAREA:	User u-area swap.
143  *			Address is relative to start of u-area (p_addr).
144  *	B_PHYS|B_PAGET:	User page table swap.
145  *			Address is a kernel VA in usrpt (Usrptmap).
146  *	B_PHYS|B_DIRTY:	Dirty page push.
147  *			Address is a VA in proc2's address space.
148  *	B_PHYS|B_PGIN:	Kernel pagein of user pages.
149  *			Address is VA in user's address space.
150  *	B_PHYS:		User "raw" IO request.
151  *			Address is VA in user's address space.
152  *
153  * All requests are (re)mapped into kernel VA space via the phys_map
154  */
155 vmapbuf(bp)
156 	register struct buf *bp;
157 {
158 	register caddr_t addr;
159 	register vm_size_t sz;
160 	struct proc *p;
161 	int off;
162 	vm_offset_t kva;
163 	register vm_offset_t pa;
164 
165 	if ((bp->b_flags & B_PHYS) == 0)
166 		panic("vmapbuf");
167 	addr = bp->b_saveaddr = bp->b_un.b_addr;
168 	off = (int)addr & PGOFSET;
169 	p = bp->b_proc;
170 	sz = round_page(bp->b_bcount + off);
171 	kva = kmem_alloc_wait(phys_map, sz);
172 	bp->b_un.b_addr = (caddr_t) (kva + off);
173 	sz = atop(sz);
174 	while (sz--) {
175 		pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
176 			(vm_offset_t)addr);
177 		if (pa == 0)
178 			panic("vmapbuf: null page frame");
179 		pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
180 			VM_PROT_READ|VM_PROT_WRITE, TRUE);
181 		addr += PAGE_SIZE;
182 		kva += PAGE_SIZE;
183 	}
184 }
185 
186 /*
187  * Free the io map PTEs associated with this IO operation.
188  * We also invalidate the TLB entries and restore the original b_addr.
189  */
190 vunmapbuf(bp)
191 	register struct buf *bp;
192 {
193 	register caddr_t addr = bp->b_un.b_addr;
194 	register vm_size_t sz;
195 	vm_offset_t kva;
196 
197 	if ((bp->b_flags & B_PHYS) == 0)
198 		panic("vunmapbuf");
199 	sz = round_page(bp->b_bcount + ((int)addr & PGOFSET));
200 	kva = (vm_offset_t)((int)addr & ~PGOFSET);
201 	kmem_free_wakeup(phys_map, kva, sz);
202 	bp->b_un.b_addr = bp->b_saveaddr;
203 	bp->b_saveaddr = NULL;
204 }
205