xref: /original-bsd/sys/pmax/pmax/vm_machdep.c (revision 3705696b)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1992, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department and Ralph Campbell.
9  *
10  * %sccs.include.redist.c%
11  *
12  * from: Utah $Hdr: vm_machdep.c 1.21 91/04/06$
13  *
14  *	@(#)vm_machdep.c	8.1 (Berkeley) 06/10/93
15  */
16 
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/proc.h>
20 #include <sys/malloc.h>
21 #include <sys/buf.h>
22 #include <sys/vnode.h>
23 #include <sys/user.h>
24 
25 #include <vm/vm.h>
26 #include <vm/vm_kern.h>
27 #include <vm/vm_page.h>
28 
29 #include <machine/pte.h>
30 
31 /*
32  * Finish a fork operation, with process p2 nearly set up.
33  * Copy and update the kernel stack and pcb, making the child
34  * ready to run, and marking it so that it can return differently
35  * than the parent.  Returns 1 in the child process, 0 in the parent.
36  * We currently double-map the user area so that the stack is at the same
37  * address in each process; in the future we will probably relocate
38  * the frame pointers on the stack after copying.
39  */
40 cpu_fork(p1, p2)
41 	register struct proc *p1, *p2;
42 {
43 	register struct user *up = p2->p_addr;
44 	register pt_entry_t *pte;
45 	register int i;
46 	extern struct proc *machFPCurProcPtr;
47 
48 	p2->p_md.md_regs = up->u_pcb.pcb_regs;
49 	p2->p_md.md_flags = p1->p_md.md_flags & (MDP_FPUSED | MDP_ULTRIX);
50 
51 	/*
52 	 * Convert the user struct virtual address to a physical one
53 	 * and cache it in the proc struct. Note: if the phyical address
54 	 * can change (due to memory compaction in kmem_alloc?),
55 	 * we will have to update things.
56 	 */
57 	pte = kvtopte(up);
58 	for (i = 0; i < UPAGES; i++) {
59 		p2->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
60 		pte++;
61 	}
62 
63 	/*
64 	 * Copy floating point state from the FP chip if this process
65 	 * has state stored there.
66 	 */
67 	if (p1 == machFPCurProcPtr)
68 		MachSaveCurFPState(p1);
69 
70 	/*
71 	 * Copy pcb and stack from proc p1 to p2.
72 	 * We do this as cheaply as possible, copying only the active
73 	 * part of the stack.  The stack and pcb need to agree;
74 	 */
75 	p2->p_addr->u_pcb = p1->p_addr->u_pcb;
76 	/* cache segtab for ULTBMiss() */
77 	p2->p_addr->u_pcb.pcb_segtab = (void *)p2->p_vmspace->vm_pmap.pm_segtab;
78 
79 	/*
80 	 * Arrange for a non-local goto when the new process
81 	 * is started, to resume here, returning nonzero from setjmp.
82 	 */
83 #ifdef DIAGNOSTIC
84 	if (p1 != curproc)
85 		panic("cpu_fork: curproc");
86 #endif
87 	if (copykstack(up)) {
88 		/*
89 		 * Return 1 in child.
90 		 */
91 		return (1);
92 	}
93 	return (0);
94 }
95 
96 /*
97  * cpu_exit is called as the last action during exit.
98  * We release the address space and machine-dependent resources,
99  * including the memory for the user structure and kernel stack.
100  * Once finished, we call swtch_exit, which switches to a temporary
101  * pcb and stack and never returns.  We block memory allocation
102  * until swtch_exit has made things safe again.
103  */
104 cpu_exit(p)
105 	struct proc *p;
106 {
107 	extern struct proc *machFPCurProcPtr;
108 
109 	if (machFPCurProcPtr == p)
110 		machFPCurProcPtr = (struct proc *)0;
111 
112 	vmspace_free(p->p_vmspace);
113 
114 	(void) splhigh();
115 	kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
116 	swtch_exit();
117 	/* NOTREACHED */
118 }
119 
120 /*
121  * Dump the machine specific header information at the start of a core dump.
122  */
123 cpu_coredump(p, vp, cred)
124 	struct proc *p;
125 	struct vnode *vp;
126 	struct ucred *cred;
127 {
128 	extern struct proc *machFPCurProcPtr;
129 
130 	/*
131 	 * Copy floating point state from the FP chip if this process
132 	 * has state stored there.
133 	 */
134 	if (p == machFPCurProcPtr)
135 		MachSaveCurFPState(p);
136 
137 	return (vn_rdwr(UIO_WRITE, vp, (caddr_t)p->p_addr, ctob(UPAGES),
138 	    (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
139 	    p));
140 }
141 
142 /*
143  * Move pages from one kernel virtual address to another.
144  * Both addresses are assumed to reside in the Sysmap,
145  * and size must be a multiple of CLSIZE.
146  */
147 pagemove(from, to, size)
148 	register caddr_t from, to;
149 	int size;
150 {
151 	register pt_entry_t *fpte, *tpte;
152 
153 	if (size % CLBYTES)
154 		panic("pagemove");
155 	fpte = kvtopte(from);
156 	tpte = kvtopte(to);
157 	while (size > 0) {
158 		MachTLBFlushAddr(from);
159 		MachTLBUpdate(to, *fpte);
160 		*tpte++ = *fpte;
161 		fpte->pt_entry = 0;
162 		fpte++;
163 		size -= NBPG;
164 		from += NBPG;
165 		to += NBPG;
166 	}
167 }
168 
169 extern vm_map_t phys_map;
170 
171 /*
172  * Map an IO request into kernel virtual address space.  Requests fall into
173  * one of five catagories:
174  *
175  *	B_PHYS|B_UAREA:	User u-area swap.
176  *			Address is relative to start of u-area (p_addr).
177  *	B_PHYS|B_PAGET:	User page table swap.
178  *			Address is a kernel VA in usrpt (Usrptmap).
179  *	B_PHYS|B_DIRTY:	Dirty page push.
180  *			Address is a VA in proc2's address space.
181  *	B_PHYS|B_PGIN:	Kernel pagein of user pages.
182  *			Address is VA in user's address space.
183  *	B_PHYS:		User "raw" IO request.
184  *			Address is VA in user's address space.
185  *
186  * All requests are (re)mapped into kernel VA space via the phys_map
187  */
188 vmapbuf(bp)
189 	register struct buf *bp;
190 {
191 	register caddr_t addr;
192 	register vm_size_t sz;
193 	struct proc *p;
194 	int off;
195 	vm_offset_t kva;
196 	register vm_offset_t pa;
197 
198 	if ((bp->b_flags & B_PHYS) == 0)
199 		panic("vmapbuf");
200 	addr = bp->b_saveaddr = bp->b_un.b_addr;
201 	off = (int)addr & PGOFSET;
202 	p = bp->b_proc;
203 	sz = round_page(bp->b_bcount + off);
204 	kva = kmem_alloc_wait(phys_map, sz);
205 	bp->b_un.b_addr = (caddr_t) (kva + off);
206 	sz = atop(sz);
207 	while (sz--) {
208 		pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
209 			(vm_offset_t)addr);
210 		if (pa == 0)
211 			panic("vmapbuf: null page frame");
212 		pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
213 			VM_PROT_READ|VM_PROT_WRITE, TRUE);
214 		addr += PAGE_SIZE;
215 		kva += PAGE_SIZE;
216 	}
217 }
218 
219 /*
220  * Free the io map PTEs associated with this IO operation.
221  * We also invalidate the TLB entries and restore the original b_addr.
222  */
223 vunmapbuf(bp)
224 	register struct buf *bp;
225 {
226 	register caddr_t addr = bp->b_un.b_addr;
227 	register vm_size_t sz;
228 	vm_offset_t kva;
229 
230 	if ((bp->b_flags & B_PHYS) == 0)
231 		panic("vunmapbuf");
232 	sz = round_page(bp->b_bcount + ((int)addr & PGOFSET));
233 	kva = (vm_offset_t)((int)addr & ~PGOFSET);
234 	kmem_free_wakeup(phys_map, kva, sz);
235 	bp->b_un.b_addr = bp->b_saveaddr;
236 	bp->b_saveaddr = NULL;
237 }
238