xref: /original-bsd/sys/sparc/fpu/fpu_explode.c (revision 3705696b)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratory.
13  *
14  * %sccs.include.redist.c%
15  *
16  *	@(#)fpu_explode.c	8.1 (Berkeley) 06/11/93
17  *
18  * from: $Header: fpu_explode.c,v 1.3 92/11/26 01:39:48 torek Exp $
19  */
20 
21 /*
22  * FPU subroutines: `explode' the machine's `packed binary' format numbers
23  * into our internal format.
24  */
25 
26 #include <sys/types.h>
27 
28 #include <machine/ieee.h>
29 #include <machine/instr.h>
30 #include <machine/reg.h>
31 
32 #include <sparc/fpu/fpu_arith.h>
33 #include <sparc/fpu/fpu_emu.h>
34 
35 /*
36  * N.B.: in all of the following, we assume the FP format is
37  *
38  *	---------------------------
39  *	| s | exponent | fraction |
40  *	---------------------------
41  *
42  * (which represents -1**s * 1.fraction * 2**exponent), so that the
43  * sign bit is way at the top (bit 31), the exponent is next, and
44  * then the remaining bits mark the fraction.  A zero exponent means
45  * zero or denormalized (0.fraction rather than 1.fraction), and the
46  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
47  *
48  * Since the sign bit is always the topmost bit---this holds even for
49  * integers---we set that outside all the *tof functions.  Each function
50  * returns the class code for the new number (but note that we use
51  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
52  */
53 
54 /*
55  * int -> fpn.
56  */
57 int
58 fpu_itof(fp, i)
59 	register struct fpn *fp;
60 	register u_int i;
61 {
62 
63 	if (i == 0)
64 		return (FPC_ZERO);
65 	/*
66 	 * The value FP_1 represents 2^FP_LG, so set the exponent
67 	 * there and let normalization fix it up.  Convert negative
68 	 * numbers to sign-and-magnitude.  Note that this relies on
69 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
70 	 */
71 	fp->fp_exp = FP_LG;
72 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
73 	fp->fp_mant[1] = 0;
74 	fp->fp_mant[2] = 0;
75 	fp->fp_mant[3] = 0;
76 	fpu_norm(fp);
77 	return (FPC_NUM);
78 }
79 
80 #define	mask(nbits) ((1 << (nbits)) - 1)
81 
82 /*
83  * All external floating formats convert to internal in the same manner,
84  * as defined here.  Note that only normals get an implied 1.0 inserted.
85  */
86 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
87 	if (exp == 0) { \
88 		if (allfrac == 0) \
89 			return (FPC_ZERO); \
90 		fp->fp_exp = 1 - expbias; \
91 		fp->fp_mant[0] = f0; \
92 		fp->fp_mant[1] = f1; \
93 		fp->fp_mant[2] = f2; \
94 		fp->fp_mant[3] = f3; \
95 		fpu_norm(fp); \
96 		return (FPC_NUM); \
97 	} \
98 	if (exp == (2 * expbias + 1)) { \
99 		if (allfrac == 0) \
100 			return (FPC_INF); \
101 		fp->fp_mant[0] = f0; \
102 		fp->fp_mant[1] = f1; \
103 		fp->fp_mant[2] = f2; \
104 		fp->fp_mant[3] = f3; \
105 		return (FPC_QNAN); \
106 	} \
107 	fp->fp_exp = exp - expbias; \
108 	fp->fp_mant[0] = FP_1 | f0; \
109 	fp->fp_mant[1] = f1; \
110 	fp->fp_mant[2] = f2; \
111 	fp->fp_mant[3] = f3; \
112 	return (FPC_NUM)
113 
114 /*
115  * 32-bit single precision -> fpn.
116  * We assume a single occupies at most (64-FP_LG) bits in the internal
117  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
118  */
119 int
120 fpu_stof(fp, i)
121 	register struct fpn *fp;
122 	register u_int i;
123 {
124 	register int exp;
125 	register u_int frac, f0, f1;
126 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
127 
128 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
129 	frac = i & mask(SNG_FRACBITS);
130 	f0 = frac >> SNG_SHIFT;
131 	f1 = frac << (32 - SNG_SHIFT);
132 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
133 }
134 
135 /*
136  * 64-bit double -> fpn.
137  * We assume this uses at most (96-FP_LG) bits.
138  */
139 int
140 fpu_dtof(fp, i, j)
141 	register struct fpn *fp;
142 	register u_int i, j;
143 {
144 	register int exp;
145 	register u_int frac, f0, f1, f2;
146 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
147 
148 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
149 	frac = i & mask(DBL_FRACBITS - 32);
150 	f0 = frac >> DBL_SHIFT;
151 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
152 	f2 = j << (32 - DBL_SHIFT);
153 	frac |= j;
154 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
155 }
156 
157 /*
158  * 128-bit extended -> fpn.
159  */
160 int
161 fpu_xtof(fp, i, j, k, l)
162 	register struct fpn *fp;
163 	register u_int i, j, k, l;
164 {
165 	register int exp;
166 	register u_int frac, f0, f1, f2, f3;
167 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
168 
169 	/*
170 	 * Note that ext and fpn `line up', hence no shifting needed.
171 	 */
172 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
173 	frac = i & mask(EXT_FRACBITS - 3 * 32);
174 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
175 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
176 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
177 	f3 = l << EXT_SHIFT;
178 	frac |= j | k | l;
179 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
180 }
181 
182 /*
183  * Explode the contents of a register / regpair / regquad.
184  * If the input is a signalling NaN, an NV (invalid) exception
185  * will be set.  (Note that nothing but NV can occur until ALU
186  * operations are performed.)
187  */
188 void
189 fpu_explode(fe, fp, type, reg)
190 	register struct fpemu *fe;
191 	register struct fpn *fp;
192 	int type, reg;
193 {
194 	register u_int s, *space;
195 
196 	space = &fe->fe_fpstate->fs_regs[reg];
197 	s = space[0];
198 	fp->fp_sign = s >> 31;
199 	fp->fp_sticky = 0;
200 	switch (type) {
201 
202 	case FTYPE_INT:
203 		s = fpu_itof(fp, s);
204 		break;
205 
206 	case FTYPE_SNG:
207 		s = fpu_stof(fp, s);
208 		break;
209 
210 	case FTYPE_DBL:
211 		s = fpu_dtof(fp, s, space[1]);
212 		break;
213 
214 	case FTYPE_EXT:
215 		s = fpu_xtof(fp, s, space[1], space[2], space[3]);
216 		break;
217 
218 	default:
219 		panic("fpu_explode");
220 	}
221 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
222 		/*
223 		 * Input is a signalling NaN.  All operations that return
224 		 * an input NaN operand put it through a ``NaN conversion'',
225 		 * which basically just means ``turn on the quiet bit''.
226 		 * We do this here so that all NaNs internally look quiet
227 		 * (we can tell signalling ones by their class).
228 		 */
229 		fp->fp_mant[0] |= FP_QUIETBIT;
230 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
231 		s = FPC_SNAN;
232 	}
233 	fp->fp_class = s;
234 }
235