xref: /original-bsd/sys/sparc/fpu/fpu_implode.c (revision 088910ec)
1 /*
2  * Copyright (c) 1992 The Regents of the University of California.
3  * All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratories.
13  *
14  * %sccs.include.redist.c%
15  *
16  *	@(#)fpu_implode.c	7.2 (Berkeley) 07/21/92
17  *
18  * from: $Header: fpu_implode.c,v 1.4 92/06/17 05:41:33 torek Exp $
19  */
20 
21 /*
22  * FPU subroutines: `implode' internal format numbers into the machine's
23  * `packed binary' format.
24  */
25 
26 #include "sys/types.h"
27 
28 #include "machine/ieee.h"
29 #include "machine/instr.h"
30 #include "machine/reg.h"
31 
32 #include "fpu_arith.h"
33 #include "fpu_emu.h"
34 
35 /*
36  * Round a number (algorithm from Motorola MC68882 manual, modified for
37  * our internal format).  Set inexact exception if rounding is required.
38  * Return true iff we rounded up.
39  *
40  * After rounding, we discard the guard and round bits by shifting right
41  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
42  * This saves effort later.
43  *
44  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
45  * responsibility to fix this if necessary.
46  */
47 static int
48 round(register struct fpemu *fe, register struct fpn *fp)
49 {
50 	register u_int m0, m1, m2, m3;
51 	register int gr, s, ret;
52 
53 	m0 = fp->fp_mant[0];
54 	m1 = fp->fp_mant[1];
55 	m2 = fp->fp_mant[2];
56 	m3 = fp->fp_mant[3];
57 	gr = m3 & 3;
58 	s = fp->fp_sticky;
59 
60 	/* mant >>= FP_NG */
61 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
62 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
63 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
64 	m0 >>= FP_NG;
65 
66 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
67 		goto rounddown;
68 
69 	fe->fe_cx |= FSR_NX;	/* inexact */
70 
71 	/* Go to rounddown to round down; break to round up. */
72 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
73 
74 	case FSR_RD_RN:
75 	default:
76 		/*
77 		 * Round only if guard is set (gr & 2).  If guard is set,
78 		 * but round & sticky both clear, then we want to round
79 		 * but have a tie, so round to even, i.e., add 1 iff odd.
80 		 */
81 		if ((gr & 2) == 0)
82 			goto rounddown;
83 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
84 			break;
85 		goto rounddown;
86 
87 	case FSR_RD_RZ:
88 		/* Round towards zero, i.e., down. */
89 		goto rounddown;
90 
91 	case FSR_RD_RM:
92 		/* Round towards -Inf: up if negative, down if positive. */
93 		if (fp->fp_sign)
94 			break;
95 		goto rounddown;
96 
97 	case FSR_RD_RP:
98 		/* Round towards +Inf: up if positive, down otherwise. */
99 		if (!fp->fp_sign)
100 			break;
101 		goto rounddown;
102 	}
103 
104 	/* Bump low bit of mantissa, with carry. */
105 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
106 	FPU_ADDS(m3, m3, 1);
107 	FPU_ADDCS(m2, m2, 0);
108 	FPU_ADDCS(m1, m1, 0);
109 	FPU_ADDC(m0, m0, 0);
110 #else
111 	if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
112 		m0++;
113 #endif
114 	fp->fp_mant[0] = m0;
115 	fp->fp_mant[1] = m1;
116 	fp->fp_mant[2] = m2;
117 	fp->fp_mant[3] = m3;
118 	return (1);
119 
120 rounddown:
121 	fp->fp_mant[0] = m0;
122 	fp->fp_mant[1] = m1;
123 	fp->fp_mant[2] = m2;
124 	fp->fp_mant[3] = m3;
125 	return (0);
126 }
127 
128 /*
129  * For overflow: return true if overflow is to go to +/-Inf, according
130  * to the sign of the overflowing result.  If false, overflow is to go
131  * to the largest magnitude value instead.
132  */
133 static int
134 toinf(struct fpemu *fe, int sign)
135 {
136 	int inf;
137 
138 	/* look at rounding direction */
139 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
140 
141 	default:
142 	case FSR_RD_RN:		/* the nearest value is always Inf */
143 		inf = 1;
144 		break;
145 
146 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
147 		inf = 0;
148 		break;
149 
150 	case FSR_RD_RP:		/* toward +Inf iff positive */
151 		inf = sign == 0;
152 		break;
153 
154 	case FSR_RD_RM:		/* toward -Inf iff negative */
155 		inf = sign;
156 		break;
157 	}
158 	return (inf);
159 }
160 
161 /*
162  * fpn -> int (int value returned as return value).
163  *
164  * N.B.: this conversion always rounds towards zero (this is a peculiarity
165  * of the SPARC instruction set).
166  */
167 u_int
168 fpu_ftoi(fe, fp)
169 	struct fpemu *fe;
170 	register struct fpn *fp;
171 {
172 	register u_int i;
173 	register int sign, exp;
174 
175 	sign = fp->fp_sign;
176 	switch (fp->fp_class) {
177 
178 	case FPC_ZERO:
179 		return (0);
180 
181 	case FPC_NUM:
182 		/*
183 		 * If exp >= 2^32, overflow.  Otherwise shift value right
184 		 * into last mantissa word (this will not exceed 0xffffffff),
185 		 * shifting any guard and round bits out into the sticky
186 		 * bit.  Then ``round'' towards zero, i.e., just set an
187 		 * inexact exception if sticky is set (see round()).
188 		 * If the result is > 0x80000000, or is positive and equals
189 		 * 0x80000000, overflow; otherwise the last fraction word
190 		 * is the result.
191 		 */
192 		if ((exp = fp->fp_exp) >= 32)
193 			break;
194 		/* NB: the following includes exp < 0 cases */
195 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
196 			fe->fe_cx |= FSR_NX;
197 		i = fp->fp_mant[3];
198 		if (i >= ((u_int)0x80000000 + sign))
199 			break;
200 		return (sign ? -i : i);
201 
202 	default:		/* Inf, qNaN, sNaN */
203 		break;
204 	}
205 	/* overflow: replace any inexact exception with invalid */
206 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
207 	return (0x7fffffff + sign);
208 }
209 
210 /*
211  * fpn -> single (32 bit single returned as return value).
212  * We assume <= 29 bits in a single-precision fraction (1.f part).
213  */
214 u_int
215 fpu_ftos(fe, fp)
216 	struct fpemu *fe;
217 	register struct fpn *fp;
218 {
219 	register u_int sign = fp->fp_sign << 31;
220 	register int exp;
221 
222 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
223 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
224 
225 	/* Take care of non-numbers first. */
226 	if (ISNAN(fp)) {
227 		/*
228 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
229 		 * Note that fp->fp_mant[0] has the quiet bit set,
230 		 * even if it is classified as a signalling NaN.
231 		 */
232 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
233 		exp = SNG_EXP_INFNAN;
234 		goto done;
235 	}
236 	if (ISINF(fp))
237 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
238 	if (ISZERO(fp))
239 		return (sign);
240 
241 	/*
242 	 * Normals (including subnormals).  Drop all the fraction bits
243 	 * (including the explicit ``implied'' 1 bit) down into the
244 	 * single-precision range.  If the number is subnormal, move
245 	 * the ``implied'' 1 into the explicit range as well, and shift
246 	 * right to introduce leading zeroes.  Rounding then acts
247 	 * differently for normals and subnormals: the largest subnormal
248 	 * may round to the smallest normal (1.0 x 2^minexp), or may
249 	 * remain subnormal.  In the latter case, signal an underflow
250 	 * if the result was inexact or if underflow traps are enabled.
251 	 *
252 	 * Rounding a normal, on the other hand, always produces another
253 	 * normal (although either way the result might be too big for
254 	 * single precision, and cause an overflow).  If rounding a
255 	 * normal produces 2.0 in the fraction, we need not adjust that
256 	 * fraction at all, since both 1.0 and 2.0 are zero under the
257 	 * fraction mask.
258 	 *
259 	 * Note that the guard and round bits vanish from the number after
260 	 * rounding.
261 	 */
262 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
263 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
264 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
265 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
266 			return (sign | SNG_EXP(1) | 0);
267 		if ((fe->fe_cx & FSR_NX) ||
268 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
269 			fe->fe_cx |= FSR_UF;
270 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
271 	}
272 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
273 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
274 #ifdef DIAGNOSTIC
275 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
276 		panic("fpu_ftos");
277 #endif
278 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
279 		exp++;
280 	if (exp >= SNG_EXP_INFNAN) {
281 		/* overflow to inf or to max single */
282 		fe->fe_cx |= FSR_OF | FSR_NX;
283 		if (toinf(fe, sign))
284 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
285 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
286 	}
287 done:
288 	/* phew, made it */
289 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
290 }
291 
292 /*
293  * fpn -> double (32 bit high-order result returned; 32-bit low order result
294  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
295  *
296  * This code mimics fpu_ftos; see it for comments.
297  */
298 u_int
299 fpu_ftod(fe, fp, res)
300 	struct fpemu *fe;
301 	register struct fpn *fp;
302 	u_int *res;
303 {
304 	register u_int sign = fp->fp_sign << 31;
305 	register int exp;
306 
307 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
308 #define	DBL_MASK	(DBL_EXP(1) - 1)
309 
310 	if (ISNAN(fp)) {
311 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
312 		exp = DBL_EXP_INFNAN;
313 		goto done;
314 	}
315 	if (ISINF(fp)) {
316 		sign |= DBL_EXP(DBL_EXP_INFNAN);
317 		goto zero;
318 	}
319 	if (ISZERO(fp)) {
320 zero:		res[1] = 0;
321 		return (sign);
322 	}
323 
324 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
325 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
326 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
327 			res[1] = 0;
328 			return (sign | DBL_EXP(1) | 0);
329 		}
330 		if ((fe->fe_cx & FSR_NX) ||
331 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
332 			fe->fe_cx |= FSR_UF;
333 		exp = 0;
334 		goto done;
335 	}
336 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
337 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
338 		exp++;
339 	if (exp >= DBL_EXP_INFNAN) {
340 		fe->fe_cx |= FSR_OF | FSR_NX;
341 		if (toinf(fe, sign)) {
342 			res[1] = 0;
343 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
344 		}
345 		res[1] = ~0;
346 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
347 	}
348 done:
349 	res[1] = fp->fp_mant[3];
350 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
351 }
352 
353 /*
354  * fpn -> extended (32 bit high-order result returned; low-order fraction
355  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
356  * our internal format *is* extended precision, plus 2 bits for guard/round,
357  * so we can avoid a small bit of work.
358  */
359 u_int
360 fpu_ftox(fe, fp, res)
361 	struct fpemu *fe;
362 	register struct fpn *fp;
363 	u_int *res;
364 {
365 	register u_int sign = fp->fp_sign << 31;
366 	register int exp;
367 
368 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
369 #define	EXT_MASK	(EXT_EXP(1) - 1)
370 
371 	if (ISNAN(fp)) {
372 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
373 		exp = EXT_EXP_INFNAN;
374 		goto done;
375 	}
376 	if (ISINF(fp)) {
377 		sign |= EXT_EXP(EXT_EXP_INFNAN);
378 		goto zero;
379 	}
380 	if (ISZERO(fp)) {
381 zero:		res[1] = res[2] = res[3] = 0;
382 		return (sign);
383 	}
384 
385 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
386 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
387 		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
388 			res[1] = res[2] = res[3] = 0;
389 			return (sign | EXT_EXP(1) | 0);
390 		}
391 		if ((fe->fe_cx & FSR_NX) ||
392 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
393 			fe->fe_cx |= FSR_UF;
394 		exp = 0;
395 		goto done;
396 	}
397 	/* Since internal == extended, no need to shift here. */
398 	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
399 		exp++;
400 	if (exp >= EXT_EXP_INFNAN) {
401 		fe->fe_cx |= FSR_OF | FSR_NX;
402 		if (toinf(fe, sign)) {
403 			res[1] = res[2] = res[3] = 0;
404 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
405 		}
406 		res[1] = res[2] = res[3] = ~0;
407 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
408 	}
409 done:
410 	res[1] = fp->fp_mant[1];
411 	res[2] = fp->fp_mant[2];
412 	res[3] = fp->fp_mant[3];
413 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
414 }
415 
416 /*
417  * Implode an fpn, writing the result into the given space.
418  */
419 void
420 fpu_implode(fe, fp, type, space)
421 	struct fpemu *fe;
422 	register struct fpn *fp;
423 	int type;
424 	register u_int *space;
425 {
426 
427 	switch (type) {
428 
429 	case FTYPE_INT:
430 		space[0] = fpu_ftoi(fe, fp);
431 		break;
432 
433 	case FTYPE_SNG:
434 		space[0] = fpu_ftos(fe, fp);
435 		break;
436 
437 	case FTYPE_DBL:
438 		space[0] = fpu_ftod(fe, fp, space);
439 		break;
440 
441 	case FTYPE_EXT:
442 		/* funky rounding precision options ?? */
443 		space[0] = fpu_ftox(fe, fp, space);
444 		break;
445 
446 	default:
447 		panic("fpu_implode");
448 	}
449 }
450