xref: /original-bsd/sys/sparc/fpu/fpu_subr.c (revision 3705696b)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratory.
13  *
14  * %sccs.include.redist.c%
15  *
16  *	@(#)fpu_subr.c	8.1 (Berkeley) 06/11/93
17  *
18  * from: $Header: fpu_subr.c,v 1.4 92/12/01 08:46:52 torek Exp $
19  */
20 
21 /*
22  * FPU subroutines.
23  */
24 
25 #include <sys/types.h>
26 
27 #include <machine/reg.h>
28 
29 #include <sparc/fpu/fpu_arith.h>
30 #include <sparc/fpu/fpu_emu.h>
31 
32 /*
33  * Shift the given number right rsh bits.  Any bits that `fall off' will get
34  * shoved into the sticky field; we return the resulting sticky.  Note that
35  * shifting NaNs is legal (this will never shift all bits out); a NaN's
36  * sticky field is ignored anyway.
37  */
38 int
39 fpu_shr(register struct fpn *fp, register int rsh)
40 {
41 	register u_int m0, m1, m2, m3, s;
42 	register int lsh;
43 
44 #ifdef DIAGNOSTIC
45 	if (rsh <= 0 || (fp->fp_class != FPC_NUM && !ISNAN(fp)))
46 		panic("fpu_rightshift 1");
47 #endif
48 
49 	m0 = fp->fp_mant[0];
50 	m1 = fp->fp_mant[1];
51 	m2 = fp->fp_mant[2];
52 	m3 = fp->fp_mant[3];
53 
54 	/* If shifting all the bits out, take a shortcut. */
55 	if (rsh >= FP_NMANT) {
56 #ifdef DIAGNOSTIC
57 		if ((m0 | m1 | m2 | m3) == 0)
58 			panic("fpu_rightshift 2");
59 #endif
60 		fp->fp_mant[0] = 0;
61 		fp->fp_mant[1] = 0;
62 		fp->fp_mant[2] = 0;
63 		fp->fp_mant[3] = 0;
64 #ifdef notdef
65 		if ((m0 | m1 | m2 | m3) == 0)
66 			fp->fp_class = FPC_ZERO;
67 		else
68 #endif
69 			fp->fp_sticky = 1;
70 		return (1);
71 	}
72 
73 	/* Squish out full words. */
74 	s = fp->fp_sticky;
75 	if (rsh >= 32 * 3) {
76 		s |= m3 | m2 | m1;
77 		m3 = m0, m2 = 0, m1 = 0, m0 = 0;
78 	} else if (rsh >= 32 * 2) {
79 		s |= m3 | m2;
80 		m3 = m1, m2 = m0, m1 = 0, m0 = 0;
81 	} else if (rsh >= 32) {
82 		s |= m3;
83 		m3 = m2, m2 = m1, m1 = m0, m0 = 0;
84 	}
85 
86 	/* Handle any remaining partial word. */
87 	if ((rsh &= 31) != 0) {
88 		lsh = 32 - rsh;
89 		s |= m3 << lsh;
90 		m3 = (m3 >> rsh) | (m2 << lsh);
91 		m2 = (m2 >> rsh) | (m1 << lsh);
92 		m1 = (m1 >> rsh) | (m0 << lsh);
93 		m0 >>= rsh;
94 	}
95 	fp->fp_mant[0] = m0;
96 	fp->fp_mant[1] = m1;
97 	fp->fp_mant[2] = m2;
98 	fp->fp_mant[3] = m3;
99 	fp->fp_sticky = s;
100 	return (s);
101 }
102 
103 /*
104  * Force a number to be normal, i.e., make its fraction have all zero
105  * bits before FP_1, then FP_1, then all 1 bits.  This is used for denorms
106  * and (sometimes) for intermediate results.
107  *
108  * Internally, this may use a `supernormal' -- a number whose fp_mant
109  * is greater than or equal to 2.0 -- so as a side effect you can hand it
110  * a supernormal and it will fix it (provided fp->fp_mant[3] == 0).
111  */
112 void
113 fpu_norm(register struct fpn *fp)
114 {
115 	register u_int m0, m1, m2, m3, top, sup, nrm;
116 	register int lsh, rsh, exp;
117 
118 	exp = fp->fp_exp;
119 	m0 = fp->fp_mant[0];
120 	m1 = fp->fp_mant[1];
121 	m2 = fp->fp_mant[2];
122 	m3 = fp->fp_mant[3];
123 
124 	/* Handle severe subnormals with 32-bit moves. */
125 	if (m0 == 0) {
126 		if (m1)
127 			m0 = m1, m1 = m2, m2 = m3, m3 = 0, exp -= 32;
128 		else if (m2)
129 			m0 = m2, m1 = m3, m2 = 0, m3 = 0, exp -= 2 * 32;
130 		else if (m3)
131 			m0 = m3, m1 = 0, m2 = 0, m3 = 0, exp -= 3 * 32;
132 		else {
133 			fp->fp_class = FPC_ZERO;
134 			return;
135 		}
136 	}
137 
138 	/* Now fix any supernormal or remaining subnormal. */
139 	nrm = FP_1;
140 	sup = nrm << 1;
141 	if (m0 >= sup) {
142 		/*
143 		 * We have a supernormal number.  We need to shift it right.
144 		 * We may assume m3==0.
145 		 */
146 		for (rsh = 1, top = m0 >> 1; top >= sup; rsh++)	/* XXX slow */
147 			top >>= 1;
148 		exp += rsh;
149 		lsh = 32 - rsh;
150 		m3 = m2 << lsh;
151 		m2 = (m2 >> rsh) | (m1 << lsh);
152 		m1 = (m1 >> rsh) | (m0 << lsh);
153 		m0 = top;
154 	} else if (m0 < nrm) {
155 		/*
156 		 * We have a regular denorm (a subnormal number), and need
157 		 * to shift it left.
158 		 */
159 		for (lsh = 1, top = m0 << 1; top < nrm; lsh++)	/* XXX slow */
160 			top <<= 1;
161 		exp -= lsh;
162 		rsh = 32 - lsh;
163 		m0 = top | (m1 >> rsh);
164 		m1 = (m1 << lsh) | (m2 >> rsh);
165 		m2 = (m2 << lsh) | (m3 >> rsh);
166 		m3 <<= lsh;
167 	}
168 
169 	fp->fp_exp = exp;
170 	fp->fp_mant[0] = m0;
171 	fp->fp_mant[1] = m1;
172 	fp->fp_mant[2] = m2;
173 	fp->fp_mant[3] = m3;
174 }
175 
176 /*
177  * Concoct a `fresh' Quiet NaN per Appendix N.
178  * As a side effect, we set NV (invalid) for the current exceptions.
179  */
180 struct fpn *
181 fpu_newnan(register struct fpemu *fe)
182 {
183 	register struct fpn *fp;
184 
185 	fe->fe_cx = FSR_NV;
186 	fp = &fe->fe_f3;
187 	fp->fp_class = FPC_QNAN;
188 	fp->fp_sign = 0;
189 	fp->fp_mant[0] = FP_1 - 1;
190 	fp->fp_mant[1] = fp->fp_mant[2] = fp->fp_mant[3] = ~0;
191 	return (fp);
192 }
193