xref: /original-bsd/sys/ufs/ffs/ffs_alloc.c (revision 333da485)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)ffs_alloc.c	8.5 (Berkeley) 01/13/94
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/buf.h>
13 #include <sys/proc.h>
14 #include <sys/vnode.h>
15 #include <sys/mount.h>
16 #include <sys/kernel.h>
17 #include <sys/syslog.h>
18 
19 #include <vm/vm.h>
20 
21 #include <ufs/ufs/quota.h>
22 #include <ufs/ufs/inode.h>
23 
24 #include <ufs/ffs/fs.h>
25 #include <ufs/ffs/ffs_extern.h>
26 
27 extern u_long nextgennumber;
28 
29 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
30 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
31 static ino_t	ffs_dirpref __P((struct fs *));
32 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
33 static void	ffs_fserr __P((struct fs *, u_int, char *));
34 static u_long	ffs_hashalloc
35 		    __P((struct inode *, int, long, int, u_long (*)()));
36 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
37 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
38 
39 /*
40  * Allocate a block in the file system.
41  *
42  * The size of the requested block is given, which must be some
43  * multiple of fs_fsize and <= fs_bsize.
44  * A preference may be optionally specified. If a preference is given
45  * the following hierarchy is used to allocate a block:
46  *   1) allocate the requested block.
47  *   2) allocate a rotationally optimal block in the same cylinder.
48  *   3) allocate a block in the same cylinder group.
49  *   4) quadradically rehash into other cylinder groups, until an
50  *      available block is located.
51  * If no block preference is given the following heirarchy is used
52  * to allocate a block:
53  *   1) allocate a block in the cylinder group that contains the
54  *      inode for the file.
55  *   2) quadradically rehash into other cylinder groups, until an
56  *      available block is located.
57  */
58 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
59 	register struct inode *ip;
60 	daddr_t lbn, bpref;
61 	int size;
62 	struct ucred *cred;
63 	daddr_t *bnp;
64 {
65 	register struct fs *fs;
66 	daddr_t bno;
67 	int cg, error;
68 
69 	*bnp = 0;
70 	fs = ip->i_fs;
71 #ifdef DIAGNOSTIC
72 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
73 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
74 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
75 		panic("ffs_alloc: bad size");
76 	}
77 	if (cred == NOCRED)
78 		panic("ffs_alloc: missing credential\n");
79 #endif /* DIAGNOSTIC */
80 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
81 		goto nospace;
82 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
83 		goto nospace;
84 #ifdef QUOTA
85 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
86 		return (error);
87 #endif
88 	if (bpref >= fs->fs_size)
89 		bpref = 0;
90 	if (bpref == 0)
91 		cg = ino_to_cg(fs, ip->i_number);
92 	else
93 		cg = dtog(fs, bpref);
94 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
95 	    (u_long (*)())ffs_alloccg);
96 	if (bno > 0) {
97 		ip->i_blocks += btodb(size);
98 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
99 		*bnp = bno;
100 		return (0);
101 	}
102 #ifdef QUOTA
103 	/*
104 	 * Restore user's disk quota because allocation failed.
105 	 */
106 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
107 #endif
108 nospace:
109 	ffs_fserr(fs, cred->cr_uid, "file system full");
110 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
111 	return (ENOSPC);
112 }
113 
114 /*
115  * Reallocate a fragment to a bigger size
116  *
117  * The number and size of the old block is given, and a preference
118  * and new size is also specified. The allocator attempts to extend
119  * the original block. Failing that, the regular block allocator is
120  * invoked to get an appropriate block.
121  */
122 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
123 	register struct inode *ip;
124 	daddr_t lbprev;
125 	daddr_t bpref;
126 	int osize, nsize;
127 	struct ucred *cred;
128 	struct buf **bpp;
129 {
130 	register struct fs *fs;
131 	struct buf *bp;
132 	int cg, request, error;
133 	daddr_t bprev, bno;
134 
135 	*bpp = 0;
136 	fs = ip->i_fs;
137 #ifdef DIAGNOSTIC
138 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
139 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
140 		printf(
141 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
142 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
143 		panic("ffs_realloccg: bad size");
144 	}
145 	if (cred == NOCRED)
146 		panic("ffs_realloccg: missing credential\n");
147 #endif /* DIAGNOSTIC */
148 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
149 		goto nospace;
150 	if ((bprev = ip->i_db[lbprev]) == 0) {
151 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
152 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
153 		panic("ffs_realloccg: bad bprev");
154 	}
155 	/*
156 	 * Allocate the extra space in the buffer.
157 	 */
158 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
159 		brelse(bp);
160 		return (error);
161 	}
162 #ifdef QUOTA
163 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
164 		brelse(bp);
165 		return (error);
166 	}
167 #endif
168 	/*
169 	 * Check for extension in the existing location.
170 	 */
171 	cg = dtog(fs, bprev);
172 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
173 		if (bp->b_blkno != fsbtodb(fs, bno))
174 			panic("bad blockno");
175 		ip->i_blocks += btodb(nsize - osize);
176 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
177 		allocbuf(bp, nsize);
178 		bp->b_flags |= B_DONE;
179 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
180 		*bpp = bp;
181 		return (0);
182 	}
183 	/*
184 	 * Allocate a new disk location.
185 	 */
186 	if (bpref >= fs->fs_size)
187 		bpref = 0;
188 	switch ((int)fs->fs_optim) {
189 	case FS_OPTSPACE:
190 		/*
191 		 * Allocate an exact sized fragment. Although this makes
192 		 * best use of space, we will waste time relocating it if
193 		 * the file continues to grow. If the fragmentation is
194 		 * less than half of the minimum free reserve, we choose
195 		 * to begin optimizing for time.
196 		 */
197 		request = nsize;
198 		if (fs->fs_minfree < 5 ||
199 		    fs->fs_cstotal.cs_nffree >
200 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
201 			break;
202 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
203 			fs->fs_fsmnt);
204 		fs->fs_optim = FS_OPTTIME;
205 		break;
206 	case FS_OPTTIME:
207 		/*
208 		 * At this point we have discovered a file that is trying to
209 		 * grow a small fragment to a larger fragment. To save time,
210 		 * we allocate a full sized block, then free the unused portion.
211 		 * If the file continues to grow, the `ffs_fragextend' call
212 		 * above will be able to grow it in place without further
213 		 * copying. If aberrant programs cause disk fragmentation to
214 		 * grow within 2% of the free reserve, we choose to begin
215 		 * optimizing for space.
216 		 */
217 		request = fs->fs_bsize;
218 		if (fs->fs_cstotal.cs_nffree <
219 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
220 			break;
221 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
222 			fs->fs_fsmnt);
223 		fs->fs_optim = FS_OPTSPACE;
224 		break;
225 	default:
226 		printf("dev = 0x%x, optim = %d, fs = %s\n",
227 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
228 		panic("ffs_realloccg: bad optim");
229 		/* NOTREACHED */
230 	}
231 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
232 	    (u_long (*)())ffs_alloccg);
233 	if (bno > 0) {
234 		bp->b_blkno = fsbtodb(fs, bno);
235 		(void) vnode_pager_uncache(ITOV(ip));
236 		ffs_blkfree(ip, bprev, (long)osize);
237 		if (nsize < request)
238 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
239 			    (long)(request - nsize));
240 		ip->i_blocks += btodb(nsize - osize);
241 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
242 		allocbuf(bp, nsize);
243 		bp->b_flags |= B_DONE;
244 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
245 		*bpp = bp;
246 		return (0);
247 	}
248 #ifdef QUOTA
249 	/*
250 	 * Restore user's disk quota because allocation failed.
251 	 */
252 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
253 #endif
254 	brelse(bp);
255 nospace:
256 	/*
257 	 * no space available
258 	 */
259 	ffs_fserr(fs, cred->cr_uid, "file system full");
260 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
261 	return (ENOSPC);
262 }
263 
264 /*
265  * Allocate an inode in the file system.
266  *
267  * If allocating a directory, use ffs_dirpref to select the inode.
268  * If allocating in a directory, the following hierarchy is followed:
269  *   1) allocate the preferred inode.
270  *   2) allocate an inode in the same cylinder group.
271  *   3) quadradically rehash into other cylinder groups, until an
272  *      available inode is located.
273  * If no inode preference is given the following heirarchy is used
274  * to allocate an inode:
275  *   1) allocate an inode in cylinder group 0.
276  *   2) quadradically rehash into other cylinder groups, until an
277  *      available inode is located.
278  */
279 ffs_valloc(ap)
280 	struct vop_valloc_args /* {
281 		struct vnode *a_pvp;
282 		int a_mode;
283 		struct ucred *a_cred;
284 		struct vnode **a_vpp;
285 	} */ *ap;
286 {
287 	register struct vnode *pvp = ap->a_pvp;
288 	register struct inode *pip;
289 	register struct fs *fs;
290 	register struct inode *ip;
291 	mode_t mode = ap->a_mode;
292 	ino_t ino, ipref;
293 	int cg, error;
294 
295 	*ap->a_vpp = NULL;
296 	pip = VTOI(pvp);
297 	fs = pip->i_fs;
298 	if (fs->fs_cstotal.cs_nifree == 0)
299 		goto noinodes;
300 
301 	if ((mode & IFMT) == IFDIR)
302 		ipref = ffs_dirpref(fs);
303 	else
304 		ipref = pip->i_number;
305 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
306 		ipref = 0;
307 	cg = ino_to_cg(fs, ipref);
308 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
309 	if (ino == 0)
310 		goto noinodes;
311 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
312 	if (error) {
313 		VOP_VFREE(pvp, ino, mode);
314 		return (error);
315 	}
316 	ip = VTOI(*ap->a_vpp);
317 	if (ip->i_mode) {
318 		printf("mode = 0%o, inum = %d, fs = %s\n",
319 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
320 		panic("ffs_valloc: dup alloc");
321 	}
322 	if (ip->i_blocks) {				/* XXX */
323 		printf("free inode %s/%d had %d blocks\n",
324 		    fs->fs_fsmnt, ino, ip->i_blocks);
325 		ip->i_blocks = 0;
326 	}
327 	ip->i_flags = 0;
328 	/*
329 	 * Set up a new generation number for this inode.
330 	 */
331 	if (++nextgennumber < (u_long)time.tv_sec)
332 		nextgennumber = time.tv_sec;
333 	ip->i_gen = nextgennumber;
334 	return (0);
335 noinodes:
336 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
337 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
338 	return (ENOSPC);
339 }
340 
341 /*
342  * Find a cylinder to place a directory.
343  *
344  * The policy implemented by this algorithm is to select from
345  * among those cylinder groups with above the average number of
346  * free inodes, the one with the smallest number of directories.
347  */
348 static ino_t
349 ffs_dirpref(fs)
350 	register struct fs *fs;
351 {
352 	int cg, minndir, mincg, avgifree;
353 
354 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
355 	minndir = fs->fs_ipg;
356 	mincg = 0;
357 	for (cg = 0; cg < fs->fs_ncg; cg++)
358 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
359 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
360 			mincg = cg;
361 			minndir = fs->fs_cs(fs, cg).cs_ndir;
362 		}
363 	return ((ino_t)(fs->fs_ipg * mincg));
364 }
365 
366 /*
367  * Select the desired position for the next block in a file.  The file is
368  * logically divided into sections. The first section is composed of the
369  * direct blocks. Each additional section contains fs_maxbpg blocks.
370  *
371  * If no blocks have been allocated in the first section, the policy is to
372  * request a block in the same cylinder group as the inode that describes
373  * the file. If no blocks have been allocated in any other section, the
374  * policy is to place the section in a cylinder group with a greater than
375  * average number of free blocks.  An appropriate cylinder group is found
376  * by using a rotor that sweeps the cylinder groups. When a new group of
377  * blocks is needed, the sweep begins in the cylinder group following the
378  * cylinder group from which the previous allocation was made. The sweep
379  * continues until a cylinder group with greater than the average number
380  * of free blocks is found. If the allocation is for the first block in an
381  * indirect block, the information on the previous allocation is unavailable;
382  * here a best guess is made based upon the logical block number being
383  * allocated.
384  *
385  * If a section is already partially allocated, the policy is to
386  * contiguously allocate fs_maxcontig blocks.  The end of one of these
387  * contiguous blocks and the beginning of the next is physically separated
388  * so that the disk head will be in transit between them for at least
389  * fs_rotdelay milliseconds.  This is to allow time for the processor to
390  * schedule another I/O transfer.
391  */
392 daddr_t
393 ffs_blkpref(ip, lbn, indx, bap)
394 	struct inode *ip;
395 	daddr_t lbn;
396 	int indx;
397 	daddr_t *bap;
398 {
399 	register struct fs *fs;
400 	register int cg;
401 	int avgbfree, startcg;
402 	daddr_t nextblk;
403 
404 	fs = ip->i_fs;
405 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
406 		if (lbn < NDADDR) {
407 			cg = ino_to_cg(fs, ip->i_number);
408 			return (fs->fs_fpg * cg + fs->fs_frag);
409 		}
410 		/*
411 		 * Find a cylinder with greater than average number of
412 		 * unused data blocks.
413 		 */
414 		if (indx == 0 || bap[indx - 1] == 0)
415 			startcg =
416 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
417 		else
418 			startcg = dtog(fs, bap[indx - 1]) + 1;
419 		startcg %= fs->fs_ncg;
420 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
421 		for (cg = startcg; cg < fs->fs_ncg; cg++)
422 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
423 				fs->fs_cgrotor = cg;
424 				return (fs->fs_fpg * cg + fs->fs_frag);
425 			}
426 		for (cg = 0; cg <= startcg; cg++)
427 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
428 				fs->fs_cgrotor = cg;
429 				return (fs->fs_fpg * cg + fs->fs_frag);
430 			}
431 		return (NULL);
432 	}
433 	/*
434 	 * One or more previous blocks have been laid out. If less
435 	 * than fs_maxcontig previous blocks are contiguous, the
436 	 * next block is requested contiguously, otherwise it is
437 	 * requested rotationally delayed by fs_rotdelay milliseconds.
438 	 */
439 	nextblk = bap[indx - 1] + fs->fs_frag;
440 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
441 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
442 		return (nextblk);
443 	if (fs->fs_rotdelay != 0)
444 		/*
445 		 * Here we convert ms of delay to frags as:
446 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
447 		 *	((sect/frag) * (ms/sec))
448 		 * then round up to the next block.
449 		 */
450 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
451 		    (NSPF(fs) * 1000), fs->fs_frag);
452 	return (nextblk);
453 }
454 
455 /*
456  * Implement the cylinder overflow algorithm.
457  *
458  * The policy implemented by this algorithm is:
459  *   1) allocate the block in its requested cylinder group.
460  *   2) quadradically rehash on the cylinder group number.
461  *   3) brute force search for a free block.
462  */
463 /*VARARGS5*/
464 static u_long
465 ffs_hashalloc(ip, cg, pref, size, allocator)
466 	struct inode *ip;
467 	int cg;
468 	long pref;
469 	int size;	/* size for data blocks, mode for inodes */
470 	u_long (*allocator)();
471 {
472 	register struct fs *fs;
473 	long result;
474 	int i, icg = cg;
475 
476 	fs = ip->i_fs;
477 	/*
478 	 * 1: preferred cylinder group
479 	 */
480 	result = (*allocator)(ip, cg, pref, size);
481 	if (result)
482 		return (result);
483 	/*
484 	 * 2: quadratic rehash
485 	 */
486 	for (i = 1; i < fs->fs_ncg; i *= 2) {
487 		cg += i;
488 		if (cg >= fs->fs_ncg)
489 			cg -= fs->fs_ncg;
490 		result = (*allocator)(ip, cg, 0, size);
491 		if (result)
492 			return (result);
493 	}
494 	/*
495 	 * 3: brute force search
496 	 * Note that we start at i == 2, since 0 was checked initially,
497 	 * and 1 is always checked in the quadratic rehash.
498 	 */
499 	cg = (icg + 2) % fs->fs_ncg;
500 	for (i = 2; i < fs->fs_ncg; i++) {
501 		result = (*allocator)(ip, cg, 0, size);
502 		if (result)
503 			return (result);
504 		cg++;
505 		if (cg == fs->fs_ncg)
506 			cg = 0;
507 	}
508 	return (NULL);
509 }
510 
511 /*
512  * Determine whether a fragment can be extended.
513  *
514  * Check to see if the necessary fragments are available, and
515  * if they are, allocate them.
516  */
517 static daddr_t
518 ffs_fragextend(ip, cg, bprev, osize, nsize)
519 	struct inode *ip;
520 	int cg;
521 	long bprev;
522 	int osize, nsize;
523 {
524 	register struct fs *fs;
525 	register struct cg *cgp;
526 	struct buf *bp;
527 	long bno;
528 	int frags, bbase;
529 	int i, error;
530 
531 	fs = ip->i_fs;
532 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
533 		return (NULL);
534 	frags = numfrags(fs, nsize);
535 	bbase = fragnum(fs, bprev);
536 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
537 		/* cannot extend across a block boundary */
538 		return (NULL);
539 	}
540 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
541 		(int)fs->fs_cgsize, NOCRED, &bp);
542 	if (error) {
543 		brelse(bp);
544 		return (NULL);
545 	}
546 	cgp = (struct cg *)bp->b_data;
547 	if (!cg_chkmagic(cgp)) {
548 		brelse(bp);
549 		return (NULL);
550 	}
551 	cgp->cg_time = time.tv_sec;
552 	bno = dtogd(fs, bprev);
553 	for (i = numfrags(fs, osize); i < frags; i++)
554 		if (isclr(cg_blksfree(cgp), bno + i)) {
555 			brelse(bp);
556 			return (NULL);
557 		}
558 	/*
559 	 * the current fragment can be extended
560 	 * deduct the count on fragment being extended into
561 	 * increase the count on the remaining fragment (if any)
562 	 * allocate the extended piece
563 	 */
564 	for (i = frags; i < fs->fs_frag - bbase; i++)
565 		if (isclr(cg_blksfree(cgp), bno + i))
566 			break;
567 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
568 	if (i != frags)
569 		cgp->cg_frsum[i - frags]++;
570 	for (i = numfrags(fs, osize); i < frags; i++) {
571 		clrbit(cg_blksfree(cgp), bno + i);
572 		cgp->cg_cs.cs_nffree--;
573 		fs->fs_cstotal.cs_nffree--;
574 		fs->fs_cs(fs, cg).cs_nffree--;
575 	}
576 	fs->fs_fmod = 1;
577 	bdwrite(bp);
578 	return (bprev);
579 }
580 
581 /*
582  * Determine whether a block can be allocated.
583  *
584  * Check to see if a block of the appropriate size is available,
585  * and if it is, allocate it.
586  */
587 static daddr_t
588 ffs_alloccg(ip, cg, bpref, size)
589 	struct inode *ip;
590 	int cg;
591 	daddr_t bpref;
592 	int size;
593 {
594 	register struct fs *fs;
595 	register struct cg *cgp;
596 	struct buf *bp;
597 	register int i;
598 	int error, bno, frags, allocsiz;
599 
600 	fs = ip->i_fs;
601 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
602 		return (NULL);
603 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
604 		(int)fs->fs_cgsize, NOCRED, &bp);
605 	if (error) {
606 		brelse(bp);
607 		return (NULL);
608 	}
609 	cgp = (struct cg *)bp->b_data;
610 	if (!cg_chkmagic(cgp) ||
611 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
612 		brelse(bp);
613 		return (NULL);
614 	}
615 	cgp->cg_time = time.tv_sec;
616 	if (size == fs->fs_bsize) {
617 		bno = ffs_alloccgblk(fs, cgp, bpref);
618 		bdwrite(bp);
619 		return (bno);
620 	}
621 	/*
622 	 * check to see if any fragments are already available
623 	 * allocsiz is the size which will be allocated, hacking
624 	 * it down to a smaller size if necessary
625 	 */
626 	frags = numfrags(fs, size);
627 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
628 		if (cgp->cg_frsum[allocsiz] != 0)
629 			break;
630 	if (allocsiz == fs->fs_frag) {
631 		/*
632 		 * no fragments were available, so a block will be
633 		 * allocated, and hacked up
634 		 */
635 		if (cgp->cg_cs.cs_nbfree == 0) {
636 			brelse(bp);
637 			return (NULL);
638 		}
639 		bno = ffs_alloccgblk(fs, cgp, bpref);
640 		bpref = dtogd(fs, bno);
641 		for (i = frags; i < fs->fs_frag; i++)
642 			setbit(cg_blksfree(cgp), bpref + i);
643 		i = fs->fs_frag - frags;
644 		cgp->cg_cs.cs_nffree += i;
645 		fs->fs_cstotal.cs_nffree += i;
646 		fs->fs_cs(fs, cg).cs_nffree += i;
647 		fs->fs_fmod = 1;
648 		cgp->cg_frsum[i]++;
649 		bdwrite(bp);
650 		return (bno);
651 	}
652 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
653 	if (bno < 0) {
654 		brelse(bp);
655 		return (NULL);
656 	}
657 	for (i = 0; i < frags; i++)
658 		clrbit(cg_blksfree(cgp), bno + i);
659 	cgp->cg_cs.cs_nffree -= frags;
660 	fs->fs_cstotal.cs_nffree -= frags;
661 	fs->fs_cs(fs, cg).cs_nffree -= frags;
662 	fs->fs_fmod = 1;
663 	cgp->cg_frsum[allocsiz]--;
664 	if (frags != allocsiz)
665 		cgp->cg_frsum[allocsiz - frags]++;
666 	bdwrite(bp);
667 	return (cg * fs->fs_fpg + bno);
668 }
669 
670 /*
671  * Allocate a block in a cylinder group.
672  *
673  * This algorithm implements the following policy:
674  *   1) allocate the requested block.
675  *   2) allocate a rotationally optimal block in the same cylinder.
676  *   3) allocate the next available block on the block rotor for the
677  *      specified cylinder group.
678  * Note that this routine only allocates fs_bsize blocks; these
679  * blocks may be fragmented by the routine that allocates them.
680  */
681 static daddr_t
682 ffs_alloccgblk(fs, cgp, bpref)
683 	register struct fs *fs;
684 	register struct cg *cgp;
685 	daddr_t bpref;
686 {
687 	daddr_t bno;
688 	int cylno, pos, delta;
689 	short *cylbp;
690 	register int i;
691 
692 	if (bpref == 0) {
693 		bpref = cgp->cg_rotor;
694 		goto norot;
695 	}
696 	bpref = blknum(fs, bpref);
697 	bpref = dtogd(fs, bpref);
698 	/*
699 	 * if the requested block is available, use it
700 	 */
701 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
702 		bno = bpref;
703 		goto gotit;
704 	}
705 	/*
706 	 * check for a block available on the same cylinder
707 	 */
708 	cylno = cbtocylno(fs, bpref);
709 	if (cg_blktot(cgp)[cylno] == 0)
710 		goto norot;
711 	if (fs->fs_cpc == 0) {
712 		/*
713 		 * Block layout information is not available.
714 		 * Leaving bpref unchanged means we take the
715 		 * next available free block following the one
716 		 * we just allocated. Hopefully this will at
717 		 * least hit a track cache on drives of unknown
718 		 * geometry (e.g. SCSI).
719 		 */
720 		goto norot;
721 	}
722 	/*
723 	 * check the summary information to see if a block is
724 	 * available in the requested cylinder starting at the
725 	 * requested rotational position and proceeding around.
726 	 */
727 	cylbp = cg_blks(fs, cgp, cylno);
728 	pos = cbtorpos(fs, bpref);
729 	for (i = pos; i < fs->fs_nrpos; i++)
730 		if (cylbp[i] > 0)
731 			break;
732 	if (i == fs->fs_nrpos)
733 		for (i = 0; i < pos; i++)
734 			if (cylbp[i] > 0)
735 				break;
736 	if (cylbp[i] > 0) {
737 		/*
738 		 * found a rotational position, now find the actual
739 		 * block. A panic if none is actually there.
740 		 */
741 		pos = cylno % fs->fs_cpc;
742 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
743 		if (fs_postbl(fs, pos)[i] == -1) {
744 			printf("pos = %d, i = %d, fs = %s\n",
745 			    pos, i, fs->fs_fsmnt);
746 			panic("ffs_alloccgblk: cyl groups corrupted");
747 		}
748 		for (i = fs_postbl(fs, pos)[i];; ) {
749 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
750 				bno = blkstofrags(fs, (bno + i));
751 				goto gotit;
752 			}
753 			delta = fs_rotbl(fs)[i];
754 			if (delta <= 0 ||
755 			    delta + i > fragstoblks(fs, fs->fs_fpg))
756 				break;
757 			i += delta;
758 		}
759 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
760 		panic("ffs_alloccgblk: can't find blk in cyl");
761 	}
762 norot:
763 	/*
764 	 * no blocks in the requested cylinder, so take next
765 	 * available one in this cylinder group.
766 	 */
767 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
768 	if (bno < 0)
769 		return (NULL);
770 	cgp->cg_rotor = bno;
771 gotit:
772 	ffs_clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
773 	cgp->cg_cs.cs_nbfree--;
774 	fs->fs_cstotal.cs_nbfree--;
775 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
776 	cylno = cbtocylno(fs, bno);
777 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
778 	cg_blktot(cgp)[cylno]--;
779 	fs->fs_fmod = 1;
780 	return (cgp->cg_cgx * fs->fs_fpg + bno);
781 }
782 
783 /*
784  * Determine whether an inode can be allocated.
785  *
786  * Check to see if an inode is available, and if it is,
787  * allocate it using the following policy:
788  *   1) allocate the requested inode.
789  *   2) allocate the next available inode after the requested
790  *      inode in the specified cylinder group.
791  */
792 static ino_t
793 ffs_nodealloccg(ip, cg, ipref, mode)
794 	struct inode *ip;
795 	int cg;
796 	daddr_t ipref;
797 	int mode;
798 {
799 	register struct fs *fs;
800 	register struct cg *cgp;
801 	struct buf *bp;
802 	int error, start, len, loc, map, i;
803 
804 	fs = ip->i_fs;
805 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
806 		return (NULL);
807 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
808 		(int)fs->fs_cgsize, NOCRED, &bp);
809 	if (error) {
810 		brelse(bp);
811 		return (NULL);
812 	}
813 	cgp = (struct cg *)bp->b_data;
814 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
815 		brelse(bp);
816 		return (NULL);
817 	}
818 	cgp->cg_time = time.tv_sec;
819 	if (ipref) {
820 		ipref %= fs->fs_ipg;
821 		if (isclr(cg_inosused(cgp), ipref))
822 			goto gotit;
823 	}
824 	start = cgp->cg_irotor / NBBY;
825 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
826 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
827 	if (loc == 0) {
828 		len = start + 1;
829 		start = 0;
830 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
831 		if (loc == 0) {
832 			printf("cg = %d, irotor = %d, fs = %s\n",
833 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
834 			panic("ffs_nodealloccg: map corrupted");
835 			/* NOTREACHED */
836 		}
837 	}
838 	i = start + len - loc;
839 	map = cg_inosused(cgp)[i];
840 	ipref = i * NBBY;
841 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
842 		if ((map & i) == 0) {
843 			cgp->cg_irotor = ipref;
844 			goto gotit;
845 		}
846 	}
847 	printf("fs = %s\n", fs->fs_fsmnt);
848 	panic("ffs_nodealloccg: block not in map");
849 	/* NOTREACHED */
850 gotit:
851 	setbit(cg_inosused(cgp), ipref);
852 	cgp->cg_cs.cs_nifree--;
853 	fs->fs_cstotal.cs_nifree--;
854 	fs->fs_cs(fs, cg).cs_nifree--;
855 	fs->fs_fmod = 1;
856 	if ((mode & IFMT) == IFDIR) {
857 		cgp->cg_cs.cs_ndir++;
858 		fs->fs_cstotal.cs_ndir++;
859 		fs->fs_cs(fs, cg).cs_ndir++;
860 	}
861 	bdwrite(bp);
862 	return (cg * fs->fs_ipg + ipref);
863 }
864 
865 /*
866  * Free a block or fragment.
867  *
868  * The specified block or fragment is placed back in the
869  * free map. If a fragment is deallocated, a possible
870  * block reassembly is checked.
871  */
872 ffs_blkfree(ip, bno, size)
873 	register struct inode *ip;
874 	daddr_t bno;
875 	long size;
876 {
877 	register struct fs *fs;
878 	register struct cg *cgp;
879 	struct buf *bp;
880 	int error, cg, blk, frags, bbase;
881 	register int i;
882 
883 	fs = ip->i_fs;
884 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
885 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
886 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
887 		panic("blkfree: bad size");
888 	}
889 	cg = dtog(fs, bno);
890 	if ((u_int)bno >= fs->fs_size) {
891 		printf("bad block %d, ino %d\n", bno, ip->i_number);
892 		ffs_fserr(fs, ip->i_uid, "bad block");
893 		return;
894 	}
895 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
896 		(int)fs->fs_cgsize, NOCRED, &bp);
897 	if (error) {
898 		brelse(bp);
899 		return;
900 	}
901 	cgp = (struct cg *)bp->b_data;
902 	if (!cg_chkmagic(cgp)) {
903 		brelse(bp);
904 		return;
905 	}
906 	cgp->cg_time = time.tv_sec;
907 	bno = dtogd(fs, bno);
908 	if (size == fs->fs_bsize) {
909 		if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
910 			printf("dev = 0x%x, block = %d, fs = %s\n",
911 			    ip->i_dev, bno, fs->fs_fsmnt);
912 			panic("blkfree: freeing free block");
913 		}
914 		ffs_setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
915 		cgp->cg_cs.cs_nbfree++;
916 		fs->fs_cstotal.cs_nbfree++;
917 		fs->fs_cs(fs, cg).cs_nbfree++;
918 		i = cbtocylno(fs, bno);
919 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
920 		cg_blktot(cgp)[i]++;
921 	} else {
922 		bbase = bno - fragnum(fs, bno);
923 		/*
924 		 * decrement the counts associated with the old frags
925 		 */
926 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
927 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
928 		/*
929 		 * deallocate the fragment
930 		 */
931 		frags = numfrags(fs, size);
932 		for (i = 0; i < frags; i++) {
933 			if (isset(cg_blksfree(cgp), bno + i)) {
934 				printf("dev = 0x%x, block = %d, fs = %s\n",
935 				    ip->i_dev, bno + i, fs->fs_fsmnt);
936 				panic("blkfree: freeing free frag");
937 			}
938 			setbit(cg_blksfree(cgp), bno + i);
939 		}
940 		cgp->cg_cs.cs_nffree += i;
941 		fs->fs_cstotal.cs_nffree += i;
942 		fs->fs_cs(fs, cg).cs_nffree += i;
943 		/*
944 		 * add back in counts associated with the new frags
945 		 */
946 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
947 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
948 		/*
949 		 * if a complete block has been reassembled, account for it
950 		 */
951 		if (ffs_isblock(fs, cg_blksfree(cgp),
952 		    (daddr_t)fragstoblks(fs, bbase))) {
953 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
954 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
955 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
956 			cgp->cg_cs.cs_nbfree++;
957 			fs->fs_cstotal.cs_nbfree++;
958 			fs->fs_cs(fs, cg).cs_nbfree++;
959 			i = cbtocylno(fs, bbase);
960 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
961 			cg_blktot(cgp)[i]++;
962 		}
963 	}
964 	fs->fs_fmod = 1;
965 	bdwrite(bp);
966 }
967 
968 /*
969  * Free an inode.
970  *
971  * The specified inode is placed back in the free map.
972  */
973 int
974 ffs_vfree(ap)
975 	struct vop_vfree_args /* {
976 		struct vnode *a_pvp;
977 		ino_t a_ino;
978 		int a_mode;
979 	} */ *ap;
980 {
981 	register struct fs *fs;
982 	register struct cg *cgp;
983 	register struct inode *pip;
984 	ino_t ino = ap->a_ino;
985 	struct buf *bp;
986 	int error, cg;
987 
988 	pip = VTOI(ap->a_pvp);
989 	fs = pip->i_fs;
990 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
991 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
992 		    pip->i_dev, ino, fs->fs_fsmnt);
993 	cg = ino_to_cg(fs, ino);
994 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
995 		(int)fs->fs_cgsize, NOCRED, &bp);
996 	if (error) {
997 		brelse(bp);
998 		return (0);
999 	}
1000 	cgp = (struct cg *)bp->b_data;
1001 	if (!cg_chkmagic(cgp)) {
1002 		brelse(bp);
1003 		return (0);
1004 	}
1005 	cgp->cg_time = time.tv_sec;
1006 	ino %= fs->fs_ipg;
1007 	if (isclr(cg_inosused(cgp), ino)) {
1008 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1009 		    pip->i_dev, ino, fs->fs_fsmnt);
1010 		if (fs->fs_ronly == 0)
1011 			panic("ifree: freeing free inode");
1012 	}
1013 	clrbit(cg_inosused(cgp), ino);
1014 	if (ino < cgp->cg_irotor)
1015 		cgp->cg_irotor = ino;
1016 	cgp->cg_cs.cs_nifree++;
1017 	fs->fs_cstotal.cs_nifree++;
1018 	fs->fs_cs(fs, cg).cs_nifree++;
1019 	if ((ap->a_mode & IFMT) == IFDIR) {
1020 		cgp->cg_cs.cs_ndir--;
1021 		fs->fs_cstotal.cs_ndir--;
1022 		fs->fs_cs(fs, cg).cs_ndir--;
1023 	}
1024 	fs->fs_fmod = 1;
1025 	bdwrite(bp);
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Find a block of the specified size in the specified cylinder group.
1031  *
1032  * It is a panic if a request is made to find a block if none are
1033  * available.
1034  */
1035 static daddr_t
1036 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1037 	register struct fs *fs;
1038 	register struct cg *cgp;
1039 	daddr_t bpref;
1040 	int allocsiz;
1041 {
1042 	daddr_t bno;
1043 	int start, len, loc, i;
1044 	int blk, field, subfield, pos;
1045 
1046 	/*
1047 	 * find the fragment by searching through the free block
1048 	 * map for an appropriate bit pattern
1049 	 */
1050 	if (bpref)
1051 		start = dtogd(fs, bpref) / NBBY;
1052 	else
1053 		start = cgp->cg_frotor / NBBY;
1054 	len = howmany(fs->fs_fpg, NBBY) - start;
1055 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1056 		(u_char *)fragtbl[fs->fs_frag],
1057 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1058 	if (loc == 0) {
1059 		len = start + 1;
1060 		start = 0;
1061 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1062 			(u_char *)fragtbl[fs->fs_frag],
1063 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1064 		if (loc == 0) {
1065 			printf("start = %d, len = %d, fs = %s\n",
1066 			    start, len, fs->fs_fsmnt);
1067 			panic("ffs_alloccg: map corrupted");
1068 			/* NOTREACHED */
1069 		}
1070 	}
1071 	bno = (start + len - loc) * NBBY;
1072 	cgp->cg_frotor = bno;
1073 	/*
1074 	 * found the byte in the map
1075 	 * sift through the bits to find the selected frag
1076 	 */
1077 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1078 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1079 		blk <<= 1;
1080 		field = around[allocsiz];
1081 		subfield = inside[allocsiz];
1082 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1083 			if ((blk & field) == subfield)
1084 				return (bno + pos);
1085 			field <<= 1;
1086 			subfield <<= 1;
1087 		}
1088 	}
1089 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1090 	panic("ffs_alloccg: block not in map");
1091 	return (-1);
1092 }
1093 
1094 /*
1095  * Fserr prints the name of a file system with an error diagnostic.
1096  *
1097  * The form of the error message is:
1098  *	fs: error message
1099  */
1100 static void
1101 ffs_fserr(fs, uid, cp)
1102 	struct fs *fs;
1103 	u_int uid;
1104 	char *cp;
1105 {
1106 
1107 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1108 }
1109