xref: /original-bsd/sys/ufs/ffs/ffs_alloc.c (revision 58e44de2)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)ffs_alloc.c	8.9 (Berkeley) 06/15/94
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/buf.h>
13 #include <sys/proc.h>
14 #include <sys/vnode.h>
15 #include <sys/mount.h>
16 #include <sys/kernel.h>
17 #include <sys/syslog.h>
18 
19 #include <vm/vm.h>
20 
21 #include <ufs/ufs/quota.h>
22 #include <ufs/ufs/inode.h>
23 
24 #include <ufs/ffs/fs.h>
25 #include <ufs/ffs/ffs_extern.h>
26 
27 extern u_long nextgennumber;
28 
29 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
30 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
31 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
32 static ino_t	ffs_dirpref __P((struct fs *));
33 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
34 static void	ffs_fserr __P((struct fs *, u_int, char *));
35 static u_long	ffs_hashalloc
36 		    __P((struct inode *, int, long, int, u_long (*)()));
37 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
38 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
39 
40 /*
41  * Allocate a block in the file system.
42  *
43  * The size of the requested block is given, which must be some
44  * multiple of fs_fsize and <= fs_bsize.
45  * A preference may be optionally specified. If a preference is given
46  * the following hierarchy is used to allocate a block:
47  *   1) allocate the requested block.
48  *   2) allocate a rotationally optimal block in the same cylinder.
49  *   3) allocate a block in the same cylinder group.
50  *   4) quadradically rehash into other cylinder groups, until an
51  *      available block is located.
52  * If no block preference is given the following heirarchy is used
53  * to allocate a block:
54  *   1) allocate a block in the cylinder group that contains the
55  *      inode for the file.
56  *   2) quadradically rehash into other cylinder groups, until an
57  *      available block is located.
58  */
59 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
60 	register struct inode *ip;
61 	daddr_t lbn, bpref;
62 	int size;
63 	struct ucred *cred;
64 	daddr_t *bnp;
65 {
66 	register struct fs *fs;
67 	daddr_t bno;
68 	int cg, error;
69 
70 	*bnp = 0;
71 	fs = ip->i_fs;
72 #ifdef DIAGNOSTIC
73 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
74 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
75 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
76 		panic("ffs_alloc: bad size");
77 	}
78 	if (cred == NOCRED)
79 		panic("ffs_alloc: missing credential\n");
80 #endif /* DIAGNOSTIC */
81 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
82 		goto nospace;
83 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
84 		goto nospace;
85 #ifdef QUOTA
86 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
87 		return (error);
88 #endif
89 	if (bpref >= fs->fs_size)
90 		bpref = 0;
91 	if (bpref == 0)
92 		cg = ino_to_cg(fs, ip->i_number);
93 	else
94 		cg = dtog(fs, bpref);
95 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
96 	    (u_long (*)())ffs_alloccg);
97 	if (bno > 0) {
98 		ip->i_blocks += btodb(size);
99 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
100 		*bnp = bno;
101 		return (0);
102 	}
103 #ifdef QUOTA
104 	/*
105 	 * Restore user's disk quota because allocation failed.
106 	 */
107 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
108 #endif
109 nospace:
110 	ffs_fserr(fs, cred->cr_uid, "file system full");
111 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
112 	return (ENOSPC);
113 }
114 
115 /*
116  * Reallocate a fragment to a bigger size
117  *
118  * The number and size of the old block is given, and a preference
119  * and new size is also specified. The allocator attempts to extend
120  * the original block. Failing that, the regular block allocator is
121  * invoked to get an appropriate block.
122  */
123 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
124 	register struct inode *ip;
125 	daddr_t lbprev;
126 	daddr_t bpref;
127 	int osize, nsize;
128 	struct ucred *cred;
129 	struct buf **bpp;
130 {
131 	register struct fs *fs;
132 	struct buf *bp;
133 	int cg, request, error;
134 	daddr_t bprev, bno;
135 
136 	*bpp = 0;
137 	fs = ip->i_fs;
138 #ifdef DIAGNOSTIC
139 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
140 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
141 		printf(
142 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
143 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
144 		panic("ffs_realloccg: bad size");
145 	}
146 	if (cred == NOCRED)
147 		panic("ffs_realloccg: missing credential\n");
148 #endif /* DIAGNOSTIC */
149 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
150 		goto nospace;
151 	if ((bprev = ip->i_db[lbprev]) == 0) {
152 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
153 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
154 		panic("ffs_realloccg: bad bprev");
155 	}
156 	/*
157 	 * Allocate the extra space in the buffer.
158 	 */
159 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
160 		brelse(bp);
161 		return (error);
162 	}
163 #ifdef QUOTA
164 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
165 		brelse(bp);
166 		return (error);
167 	}
168 #endif
169 	/*
170 	 * Check for extension in the existing location.
171 	 */
172 	cg = dtog(fs, bprev);
173 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
174 		if (bp->b_blkno != fsbtodb(fs, bno))
175 			panic("bad blockno");
176 		ip->i_blocks += btodb(nsize - osize);
177 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
178 		allocbuf(bp, nsize);
179 		bp->b_flags |= B_DONE;
180 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
181 		*bpp = bp;
182 		return (0);
183 	}
184 	/*
185 	 * Allocate a new disk location.
186 	 */
187 	if (bpref >= fs->fs_size)
188 		bpref = 0;
189 	switch ((int)fs->fs_optim) {
190 	case FS_OPTSPACE:
191 		/*
192 		 * Allocate an exact sized fragment. Although this makes
193 		 * best use of space, we will waste time relocating it if
194 		 * the file continues to grow. If the fragmentation is
195 		 * less than half of the minimum free reserve, we choose
196 		 * to begin optimizing for time.
197 		 */
198 		request = nsize;
199 		if (fs->fs_minfree < 5 ||
200 		    fs->fs_cstotal.cs_nffree >
201 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
202 			break;
203 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
204 			fs->fs_fsmnt);
205 		fs->fs_optim = FS_OPTTIME;
206 		break;
207 	case FS_OPTTIME:
208 		/*
209 		 * At this point we have discovered a file that is trying to
210 		 * grow a small fragment to a larger fragment. To save time,
211 		 * we allocate a full sized block, then free the unused portion.
212 		 * If the file continues to grow, the `ffs_fragextend' call
213 		 * above will be able to grow it in place without further
214 		 * copying. If aberrant programs cause disk fragmentation to
215 		 * grow within 2% of the free reserve, we choose to begin
216 		 * optimizing for space.
217 		 */
218 		request = fs->fs_bsize;
219 		if (fs->fs_cstotal.cs_nffree <
220 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
221 			break;
222 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
223 			fs->fs_fsmnt);
224 		fs->fs_optim = FS_OPTSPACE;
225 		break;
226 	default:
227 		printf("dev = 0x%x, optim = %d, fs = %s\n",
228 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
229 		panic("ffs_realloccg: bad optim");
230 		/* NOTREACHED */
231 	}
232 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
233 	    (u_long (*)())ffs_alloccg);
234 	if (bno > 0) {
235 		bp->b_blkno = fsbtodb(fs, bno);
236 		(void) vnode_pager_uncache(ITOV(ip));
237 		ffs_blkfree(ip, bprev, (long)osize);
238 		if (nsize < request)
239 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
240 			    (long)(request - nsize));
241 		ip->i_blocks += btodb(nsize - osize);
242 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
243 		allocbuf(bp, nsize);
244 		bp->b_flags |= B_DONE;
245 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
246 		*bpp = bp;
247 		return (0);
248 	}
249 #ifdef QUOTA
250 	/*
251 	 * Restore user's disk quota because allocation failed.
252 	 */
253 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
254 #endif
255 	brelse(bp);
256 nospace:
257 	/*
258 	 * no space available
259 	 */
260 	ffs_fserr(fs, cred->cr_uid, "file system full");
261 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
262 	return (ENOSPC);
263 }
264 
265 /*
266  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
267  *
268  * The vnode and an array of buffer pointers for a range of sequential
269  * logical blocks to be made contiguous is given. The allocator attempts
270  * to find a range of sequential blocks starting as close as possible to
271  * an fs_rotdelay offset from the end of the allocation for the logical
272  * block immediately preceeding the current range. If successful, the
273  * physical block numbers in the buffer pointers and in the inode are
274  * changed to reflect the new allocation. If unsuccessful, the allocation
275  * is left unchanged. The success in doing the reallocation is returned.
276  * Note that the error return is not reflected back to the user. Rather
277  * the previous block allocation will be used.
278  */
279 #include <sys/sysctl.h>
280 int doasyncfree = 1;
281 #ifdef DEBUG
282 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
283 #endif
284 
285 int
286 ffs_reallocblks(ap)
287 	struct vop_reallocblks_args /* {
288 		struct vnode *a_vp;
289 		struct cluster_save *a_buflist;
290 	} */ *ap;
291 {
292 	struct fs *fs;
293 	struct inode *ip;
294 	struct vnode *vp;
295 	struct buf *sbp, *ebp;
296 	daddr_t *bap, *sbap, *ebap;
297 	struct cluster_save *buflist;
298 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
299 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
300 	int i, len, start_lvl, end_lvl, pref, ssize;
301 
302 	vp = ap->a_vp;
303 	ip = VTOI(vp);
304 	fs = ip->i_fs;
305 	if (fs->fs_contigsumsize <= 0)
306 		return (ENOSPC);
307 	buflist = ap->a_buflist;
308 	len = buflist->bs_nchildren;
309 	start_lbn = buflist->bs_children[0]->b_lblkno;
310 	end_lbn = start_lbn + len - 1;
311 #ifdef DIAGNOSTIC
312 	for (i = 1; i < len; i++)
313 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
314 			panic("ffs_reallocblks: non-cluster");
315 #endif
316 	/*
317 	 * If the latest allocation is in a new cylinder group, assume that
318 	 * the filesystem has decided to move and do not force it back to
319 	 * the previous cylinder group.
320 	 */
321 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
322 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
323 		return (ENOSPC);
324 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
325 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
326 		return (ENOSPC);
327 	/*
328 	 * Get the starting offset and block map for the first block.
329 	 */
330 	if (start_lvl == 0) {
331 		sbap = &ip->i_db[0];
332 		soff = start_lbn;
333 	} else {
334 		idp = &start_ap[start_lvl - 1];
335 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
336 			brelse(sbp);
337 			return (ENOSPC);
338 		}
339 		sbap = (daddr_t *)sbp->b_data;
340 		soff = idp->in_off;
341 	}
342 	/*
343 	 * Find the preferred location for the cluster.
344 	 */
345 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
346 	/*
347 	 * If the block range spans two block maps, get the second map.
348 	 */
349 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
350 		ssize = len;
351 	} else {
352 #ifdef DIAGNOSTIC
353 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
354 			panic("ffs_reallocblk: start == end");
355 #endif
356 		ssize = len - (idp->in_off + 1);
357 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
358 			goto fail;
359 		ebap = (daddr_t *)ebp->b_data;
360 	}
361 	/*
362 	 * Search the block map looking for an allocation of the desired size.
363 	 */
364 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
365 	    len, (u_long (*)())ffs_clusteralloc)) == 0)
366 		goto fail;
367 	/*
368 	 * We have found a new contiguous block.
369 	 *
370 	 * First we have to replace the old block pointers with the new
371 	 * block pointers in the inode and indirect blocks associated
372 	 * with the file.
373 	 */
374 	blkno = newblk;
375 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
376 		if (i == ssize)
377 			bap = ebap;
378 #ifdef DIAGNOSTIC
379 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
380 			panic("ffs_reallocblks: alloc mismatch");
381 #endif
382 		*bap++ = blkno;
383 	}
384 	/*
385 	 * Next we must write out the modified inode and indirect blocks.
386 	 * For strict correctness, the writes should be synchronous since
387 	 * the old block values may have been written to disk. In practise
388 	 * they are almost never written, but if we are concerned about
389 	 * strict correctness, the `doasyncfree' flag should be set to zero.
390 	 *
391 	 * The test on `doasyncfree' should be changed to test a flag
392 	 * that shows whether the associated buffers and inodes have
393 	 * been written. The flag should be set when the cluster is
394 	 * started and cleared whenever the buffer or inode is flushed.
395 	 * We can then check below to see if it is set, and do the
396 	 * synchronous write only when it has been cleared.
397 	 */
398 	if (sbap != &ip->i_db[0]) {
399 		if (doasyncfree)
400 			bdwrite(sbp);
401 		else
402 			bwrite(sbp);
403 	} else {
404 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
405 		if (!doasyncfree)
406 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
407 	}
408 	if (ssize < len)
409 		if (doasyncfree)
410 			bdwrite(ebp);
411 		else
412 			bwrite(ebp);
413 	/*
414 	 * Last, free the old blocks and assign the new blocks to the buffers.
415 	 */
416 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
417 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
418 		    fs->fs_bsize);
419 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
420 	}
421 	return (0);
422 
423 fail:
424 	if (ssize < len)
425 		brelse(ebp);
426 	if (sbap != &ip->i_db[0])
427 		brelse(sbp);
428 	return (ENOSPC);
429 }
430 
431 /*
432  * Allocate an inode in the file system.
433  *
434  * If allocating a directory, use ffs_dirpref to select the inode.
435  * If allocating in a directory, the following hierarchy is followed:
436  *   1) allocate the preferred inode.
437  *   2) allocate an inode in the same cylinder group.
438  *   3) quadradically rehash into other cylinder groups, until an
439  *      available inode is located.
440  * If no inode preference is given the following heirarchy is used
441  * to allocate an inode:
442  *   1) allocate an inode in cylinder group 0.
443  *   2) quadradically rehash into other cylinder groups, until an
444  *      available inode is located.
445  */
446 ffs_valloc(ap)
447 	struct vop_valloc_args /* {
448 		struct vnode *a_pvp;
449 		int a_mode;
450 		struct ucred *a_cred;
451 		struct vnode **a_vpp;
452 	} */ *ap;
453 {
454 	register struct vnode *pvp = ap->a_pvp;
455 	register struct inode *pip;
456 	register struct fs *fs;
457 	register struct inode *ip;
458 	mode_t mode = ap->a_mode;
459 	ino_t ino, ipref;
460 	int cg, error;
461 
462 	*ap->a_vpp = NULL;
463 	pip = VTOI(pvp);
464 	fs = pip->i_fs;
465 	if (fs->fs_cstotal.cs_nifree == 0)
466 		goto noinodes;
467 
468 	if ((mode & IFMT) == IFDIR)
469 		ipref = ffs_dirpref(fs);
470 	else
471 		ipref = pip->i_number;
472 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
473 		ipref = 0;
474 	cg = ino_to_cg(fs, ipref);
475 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
476 	if (ino == 0)
477 		goto noinodes;
478 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
479 	if (error) {
480 		VOP_VFREE(pvp, ino, mode);
481 		return (error);
482 	}
483 	ip = VTOI(*ap->a_vpp);
484 	if (ip->i_mode) {
485 		printf("mode = 0%o, inum = %d, fs = %s\n",
486 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
487 		panic("ffs_valloc: dup alloc");
488 	}
489 	if (ip->i_blocks) {				/* XXX */
490 		printf("free inode %s/%d had %d blocks\n",
491 		    fs->fs_fsmnt, ino, ip->i_blocks);
492 		ip->i_blocks = 0;
493 	}
494 	ip->i_flags = 0;
495 	/*
496 	 * Set up a new generation number for this inode.
497 	 */
498 	if (++nextgennumber < (u_long)time.tv_sec)
499 		nextgennumber = time.tv_sec;
500 	ip->i_gen = nextgennumber;
501 	return (0);
502 noinodes:
503 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
504 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
505 	return (ENOSPC);
506 }
507 
508 /*
509  * Find a cylinder to place a directory.
510  *
511  * The policy implemented by this algorithm is to select from
512  * among those cylinder groups with above the average number of
513  * free inodes, the one with the smallest number of directories.
514  */
515 static ino_t
516 ffs_dirpref(fs)
517 	register struct fs *fs;
518 {
519 	int cg, minndir, mincg, avgifree;
520 
521 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
522 	minndir = fs->fs_ipg;
523 	mincg = 0;
524 	for (cg = 0; cg < fs->fs_ncg; cg++)
525 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
526 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
527 			mincg = cg;
528 			minndir = fs->fs_cs(fs, cg).cs_ndir;
529 		}
530 	return ((ino_t)(fs->fs_ipg * mincg));
531 }
532 
533 /*
534  * Select the desired position for the next block in a file.  The file is
535  * logically divided into sections. The first section is composed of the
536  * direct blocks. Each additional section contains fs_maxbpg blocks.
537  *
538  * If no blocks have been allocated in the first section, the policy is to
539  * request a block in the same cylinder group as the inode that describes
540  * the file. If no blocks have been allocated in any other section, the
541  * policy is to place the section in a cylinder group with a greater than
542  * average number of free blocks.  An appropriate cylinder group is found
543  * by using a rotor that sweeps the cylinder groups. When a new group of
544  * blocks is needed, the sweep begins in the cylinder group following the
545  * cylinder group from which the previous allocation was made. The sweep
546  * continues until a cylinder group with greater than the average number
547  * of free blocks is found. If the allocation is for the first block in an
548  * indirect block, the information on the previous allocation is unavailable;
549  * here a best guess is made based upon the logical block number being
550  * allocated.
551  *
552  * If a section is already partially allocated, the policy is to
553  * contiguously allocate fs_maxcontig blocks.  The end of one of these
554  * contiguous blocks and the beginning of the next is physically separated
555  * so that the disk head will be in transit between them for at least
556  * fs_rotdelay milliseconds.  This is to allow time for the processor to
557  * schedule another I/O transfer.
558  */
559 daddr_t
560 ffs_blkpref(ip, lbn, indx, bap)
561 	struct inode *ip;
562 	daddr_t lbn;
563 	int indx;
564 	daddr_t *bap;
565 {
566 	register struct fs *fs;
567 	register int cg;
568 	int avgbfree, startcg;
569 	daddr_t nextblk;
570 
571 	fs = ip->i_fs;
572 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
573 		if (lbn < NDADDR) {
574 			cg = ino_to_cg(fs, ip->i_number);
575 			return (fs->fs_fpg * cg + fs->fs_frag);
576 		}
577 		/*
578 		 * Find a cylinder with greater than average number of
579 		 * unused data blocks.
580 		 */
581 		if (indx == 0 || bap[indx - 1] == 0)
582 			startcg =
583 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
584 		else
585 			startcg = dtog(fs, bap[indx - 1]) + 1;
586 		startcg %= fs->fs_ncg;
587 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
588 		for (cg = startcg; cg < fs->fs_ncg; cg++)
589 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
590 				fs->fs_cgrotor = cg;
591 				return (fs->fs_fpg * cg + fs->fs_frag);
592 			}
593 		for (cg = 0; cg <= startcg; cg++)
594 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
595 				fs->fs_cgrotor = cg;
596 				return (fs->fs_fpg * cg + fs->fs_frag);
597 			}
598 		return (NULL);
599 	}
600 	/*
601 	 * One or more previous blocks have been laid out. If less
602 	 * than fs_maxcontig previous blocks are contiguous, the
603 	 * next block is requested contiguously, otherwise it is
604 	 * requested rotationally delayed by fs_rotdelay milliseconds.
605 	 */
606 	nextblk = bap[indx - 1] + fs->fs_frag;
607 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
608 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
609 		return (nextblk);
610 	if (fs->fs_rotdelay != 0)
611 		/*
612 		 * Here we convert ms of delay to frags as:
613 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
614 		 *	((sect/frag) * (ms/sec))
615 		 * then round up to the next block.
616 		 */
617 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
618 		    (NSPF(fs) * 1000), fs->fs_frag);
619 	return (nextblk);
620 }
621 
622 /*
623  * Implement the cylinder overflow algorithm.
624  *
625  * The policy implemented by this algorithm is:
626  *   1) allocate the block in its requested cylinder group.
627  *   2) quadradically rehash on the cylinder group number.
628  *   3) brute force search for a free block.
629  */
630 /*VARARGS5*/
631 static u_long
632 ffs_hashalloc(ip, cg, pref, size, allocator)
633 	struct inode *ip;
634 	int cg;
635 	long pref;
636 	int size;	/* size for data blocks, mode for inodes */
637 	u_long (*allocator)();
638 {
639 	register struct fs *fs;
640 	long result;
641 	int i, icg = cg;
642 
643 	fs = ip->i_fs;
644 	/*
645 	 * 1: preferred cylinder group
646 	 */
647 	result = (*allocator)(ip, cg, pref, size);
648 	if (result)
649 		return (result);
650 	/*
651 	 * 2: quadratic rehash
652 	 */
653 	for (i = 1; i < fs->fs_ncg; i *= 2) {
654 		cg += i;
655 		if (cg >= fs->fs_ncg)
656 			cg -= fs->fs_ncg;
657 		result = (*allocator)(ip, cg, 0, size);
658 		if (result)
659 			return (result);
660 	}
661 	/*
662 	 * 3: brute force search
663 	 * Note that we start at i == 2, since 0 was checked initially,
664 	 * and 1 is always checked in the quadratic rehash.
665 	 */
666 	cg = (icg + 2) % fs->fs_ncg;
667 	for (i = 2; i < fs->fs_ncg; i++) {
668 		result = (*allocator)(ip, cg, 0, size);
669 		if (result)
670 			return (result);
671 		cg++;
672 		if (cg == fs->fs_ncg)
673 			cg = 0;
674 	}
675 	return (NULL);
676 }
677 
678 /*
679  * Determine whether a fragment can be extended.
680  *
681  * Check to see if the necessary fragments are available, and
682  * if they are, allocate them.
683  */
684 static daddr_t
685 ffs_fragextend(ip, cg, bprev, osize, nsize)
686 	struct inode *ip;
687 	int cg;
688 	long bprev;
689 	int osize, nsize;
690 {
691 	register struct fs *fs;
692 	register struct cg *cgp;
693 	struct buf *bp;
694 	long bno;
695 	int frags, bbase;
696 	int i, error;
697 
698 	fs = ip->i_fs;
699 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
700 		return (NULL);
701 	frags = numfrags(fs, nsize);
702 	bbase = fragnum(fs, bprev);
703 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
704 		/* cannot extend across a block boundary */
705 		return (NULL);
706 	}
707 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
708 		(int)fs->fs_cgsize, NOCRED, &bp);
709 	if (error) {
710 		brelse(bp);
711 		return (NULL);
712 	}
713 	cgp = (struct cg *)bp->b_data;
714 	if (!cg_chkmagic(cgp)) {
715 		brelse(bp);
716 		return (NULL);
717 	}
718 	cgp->cg_time = time.tv_sec;
719 	bno = dtogd(fs, bprev);
720 	for (i = numfrags(fs, osize); i < frags; i++)
721 		if (isclr(cg_blksfree(cgp), bno + i)) {
722 			brelse(bp);
723 			return (NULL);
724 		}
725 	/*
726 	 * the current fragment can be extended
727 	 * deduct the count on fragment being extended into
728 	 * increase the count on the remaining fragment (if any)
729 	 * allocate the extended piece
730 	 */
731 	for (i = frags; i < fs->fs_frag - bbase; i++)
732 		if (isclr(cg_blksfree(cgp), bno + i))
733 			break;
734 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
735 	if (i != frags)
736 		cgp->cg_frsum[i - frags]++;
737 	for (i = numfrags(fs, osize); i < frags; i++) {
738 		clrbit(cg_blksfree(cgp), bno + i);
739 		cgp->cg_cs.cs_nffree--;
740 		fs->fs_cstotal.cs_nffree--;
741 		fs->fs_cs(fs, cg).cs_nffree--;
742 	}
743 	fs->fs_fmod = 1;
744 	bdwrite(bp);
745 	return (bprev);
746 }
747 
748 /*
749  * Determine whether a block can be allocated.
750  *
751  * Check to see if a block of the appropriate size is available,
752  * and if it is, allocate it.
753  */
754 static daddr_t
755 ffs_alloccg(ip, cg, bpref, size)
756 	struct inode *ip;
757 	int cg;
758 	daddr_t bpref;
759 	int size;
760 {
761 	register struct fs *fs;
762 	register struct cg *cgp;
763 	struct buf *bp;
764 	register int i;
765 	int error, bno, frags, allocsiz;
766 
767 	fs = ip->i_fs;
768 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
769 		return (NULL);
770 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
771 		(int)fs->fs_cgsize, NOCRED, &bp);
772 	if (error) {
773 		brelse(bp);
774 		return (NULL);
775 	}
776 	cgp = (struct cg *)bp->b_data;
777 	if (!cg_chkmagic(cgp) ||
778 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
779 		brelse(bp);
780 		return (NULL);
781 	}
782 	cgp->cg_time = time.tv_sec;
783 	if (size == fs->fs_bsize) {
784 		bno = ffs_alloccgblk(fs, cgp, bpref);
785 		bdwrite(bp);
786 		return (bno);
787 	}
788 	/*
789 	 * check to see if any fragments are already available
790 	 * allocsiz is the size which will be allocated, hacking
791 	 * it down to a smaller size if necessary
792 	 */
793 	frags = numfrags(fs, size);
794 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
795 		if (cgp->cg_frsum[allocsiz] != 0)
796 			break;
797 	if (allocsiz == fs->fs_frag) {
798 		/*
799 		 * no fragments were available, so a block will be
800 		 * allocated, and hacked up
801 		 */
802 		if (cgp->cg_cs.cs_nbfree == 0) {
803 			brelse(bp);
804 			return (NULL);
805 		}
806 		bno = ffs_alloccgblk(fs, cgp, bpref);
807 		bpref = dtogd(fs, bno);
808 		for (i = frags; i < fs->fs_frag; i++)
809 			setbit(cg_blksfree(cgp), bpref + i);
810 		i = fs->fs_frag - frags;
811 		cgp->cg_cs.cs_nffree += i;
812 		fs->fs_cstotal.cs_nffree += i;
813 		fs->fs_cs(fs, cg).cs_nffree += i;
814 		fs->fs_fmod = 1;
815 		cgp->cg_frsum[i]++;
816 		bdwrite(bp);
817 		return (bno);
818 	}
819 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
820 	if (bno < 0) {
821 		brelse(bp);
822 		return (NULL);
823 	}
824 	for (i = 0; i < frags; i++)
825 		clrbit(cg_blksfree(cgp), bno + i);
826 	cgp->cg_cs.cs_nffree -= frags;
827 	fs->fs_cstotal.cs_nffree -= frags;
828 	fs->fs_cs(fs, cg).cs_nffree -= frags;
829 	fs->fs_fmod = 1;
830 	cgp->cg_frsum[allocsiz]--;
831 	if (frags != allocsiz)
832 		cgp->cg_frsum[allocsiz - frags]++;
833 	bdwrite(bp);
834 	return (cg * fs->fs_fpg + bno);
835 }
836 
837 /*
838  * Allocate a block in a cylinder group.
839  *
840  * This algorithm implements the following policy:
841  *   1) allocate the requested block.
842  *   2) allocate a rotationally optimal block in the same cylinder.
843  *   3) allocate the next available block on the block rotor for the
844  *      specified cylinder group.
845  * Note that this routine only allocates fs_bsize blocks; these
846  * blocks may be fragmented by the routine that allocates them.
847  */
848 static daddr_t
849 ffs_alloccgblk(fs, cgp, bpref)
850 	register struct fs *fs;
851 	register struct cg *cgp;
852 	daddr_t bpref;
853 {
854 	daddr_t bno, blkno;
855 	int cylno, pos, delta;
856 	short *cylbp;
857 	register int i;
858 
859 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
860 		bpref = cgp->cg_rotor;
861 		goto norot;
862 	}
863 	bpref = blknum(fs, bpref);
864 	bpref = dtogd(fs, bpref);
865 	/*
866 	 * if the requested block is available, use it
867 	 */
868 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
869 		bno = bpref;
870 		goto gotit;
871 	}
872 	/*
873 	 * check for a block available on the same cylinder
874 	 */
875 	cylno = cbtocylno(fs, bpref);
876 	if (cg_blktot(cgp)[cylno] == 0)
877 		goto norot;
878 	if (fs->fs_cpc == 0) {
879 		/*
880 		 * Block layout information is not available.
881 		 * Leaving bpref unchanged means we take the
882 		 * next available free block following the one
883 		 * we just allocated. Hopefully this will at
884 		 * least hit a track cache on drives of unknown
885 		 * geometry (e.g. SCSI).
886 		 */
887 		goto norot;
888 	}
889 	/*
890 	 * check the summary information to see if a block is
891 	 * available in the requested cylinder starting at the
892 	 * requested rotational position and proceeding around.
893 	 */
894 	cylbp = cg_blks(fs, cgp, cylno);
895 	pos = cbtorpos(fs, bpref);
896 	for (i = pos; i < fs->fs_nrpos; i++)
897 		if (cylbp[i] > 0)
898 			break;
899 	if (i == fs->fs_nrpos)
900 		for (i = 0; i < pos; i++)
901 			if (cylbp[i] > 0)
902 				break;
903 	if (cylbp[i] > 0) {
904 		/*
905 		 * found a rotational position, now find the actual
906 		 * block. A panic if none is actually there.
907 		 */
908 		pos = cylno % fs->fs_cpc;
909 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
910 		if (fs_postbl(fs, pos)[i] == -1) {
911 			printf("pos = %d, i = %d, fs = %s\n",
912 			    pos, i, fs->fs_fsmnt);
913 			panic("ffs_alloccgblk: cyl groups corrupted");
914 		}
915 		for (i = fs_postbl(fs, pos)[i];; ) {
916 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
917 				bno = blkstofrags(fs, (bno + i));
918 				goto gotit;
919 			}
920 			delta = fs_rotbl(fs)[i];
921 			if (delta <= 0 ||
922 			    delta + i > fragstoblks(fs, fs->fs_fpg))
923 				break;
924 			i += delta;
925 		}
926 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
927 		panic("ffs_alloccgblk: can't find blk in cyl");
928 	}
929 norot:
930 	/*
931 	 * no blocks in the requested cylinder, so take next
932 	 * available one in this cylinder group.
933 	 */
934 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
935 	if (bno < 0)
936 		return (NULL);
937 	cgp->cg_rotor = bno;
938 gotit:
939 	blkno = fragstoblks(fs, bno);
940 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
941 	ffs_clusteracct(fs, cgp, blkno, -1);
942 	cgp->cg_cs.cs_nbfree--;
943 	fs->fs_cstotal.cs_nbfree--;
944 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
945 	cylno = cbtocylno(fs, bno);
946 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
947 	cg_blktot(cgp)[cylno]--;
948 	fs->fs_fmod = 1;
949 	return (cgp->cg_cgx * fs->fs_fpg + bno);
950 }
951 
952 /*
953  * Determine whether a cluster can be allocated.
954  *
955  * We do not currently check for optimal rotational layout if there
956  * are multiple choices in the same cylinder group. Instead we just
957  * take the first one that we find following bpref.
958  */
959 static daddr_t
960 ffs_clusteralloc(ip, cg, bpref, len)
961 	struct inode *ip;
962 	int cg;
963 	daddr_t bpref;
964 	int len;
965 {
966 	register struct fs *fs;
967 	register struct cg *cgp;
968 	struct buf *bp;
969 	int i, run, bno, bit, map;
970 	u_char *mapp;
971 
972 	fs = ip->i_fs;
973 	if (fs->fs_cs(fs, cg).cs_nbfree < len)
974 		return (NULL);
975 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
976 	    NOCRED, &bp))
977 		goto fail;
978 	cgp = (struct cg *)bp->b_data;
979 	if (!cg_chkmagic(cgp))
980 		goto fail;
981 	/*
982 	 * Check to see if a cluster of the needed size (or bigger) is
983 	 * available in this cylinder group.
984 	 */
985 	for (i = len; i <= fs->fs_contigsumsize; i++)
986 		if (cg_clustersum(cgp)[i] > 0)
987 			break;
988 	if (i > fs->fs_contigsumsize)
989 		goto fail;
990 	/*
991 	 * Search the cluster map to find a big enough cluster.
992 	 * We take the first one that we find, even if it is larger
993 	 * than we need as we prefer to get one close to the previous
994 	 * block allocation. We do not search before the current
995 	 * preference point as we do not want to allocate a block
996 	 * that is allocated before the previous one (as we will
997 	 * then have to wait for another pass of the elevator
998 	 * algorithm before it will be read). We prefer to fail and
999 	 * be recalled to try an allocation in the next cylinder group.
1000 	 */
1001 	if (dtog(fs, bpref) != cg)
1002 		bpref = 0;
1003 	else
1004 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1005 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1006 	map = *mapp++;
1007 	bit = 1 << (bpref % NBBY);
1008 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1009 		if ((map & bit) == 0) {
1010 			run = 0;
1011 		} else {
1012 			run++;
1013 			if (run == len)
1014 				break;
1015 		}
1016 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1017 			bit <<= 1;
1018 		} else {
1019 			map = *mapp++;
1020 			bit = 1;
1021 		}
1022 	}
1023 	if (i == cgp->cg_nclusterblks)
1024 		goto fail;
1025 	/*
1026 	 * Allocate the cluster that we have found.
1027 	 */
1028 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1029 	len = blkstofrags(fs, len);
1030 	for (i = 0; i < len; i += fs->fs_frag)
1031 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1032 			panic("ffs_clusteralloc: lost block");
1033 	brelse(bp);
1034 	return (bno);
1035 
1036 fail:
1037 	brelse(bp);
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Determine whether an inode can be allocated.
1043  *
1044  * Check to see if an inode is available, and if it is,
1045  * allocate it using the following policy:
1046  *   1) allocate the requested inode.
1047  *   2) allocate the next available inode after the requested
1048  *      inode in the specified cylinder group.
1049  */
1050 static ino_t
1051 ffs_nodealloccg(ip, cg, ipref, mode)
1052 	struct inode *ip;
1053 	int cg;
1054 	daddr_t ipref;
1055 	int mode;
1056 {
1057 	register struct fs *fs;
1058 	register struct cg *cgp;
1059 	struct buf *bp;
1060 	int error, start, len, loc, map, i;
1061 
1062 	fs = ip->i_fs;
1063 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1064 		return (NULL);
1065 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1066 		(int)fs->fs_cgsize, NOCRED, &bp);
1067 	if (error) {
1068 		brelse(bp);
1069 		return (NULL);
1070 	}
1071 	cgp = (struct cg *)bp->b_data;
1072 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1073 		brelse(bp);
1074 		return (NULL);
1075 	}
1076 	cgp->cg_time = time.tv_sec;
1077 	if (ipref) {
1078 		ipref %= fs->fs_ipg;
1079 		if (isclr(cg_inosused(cgp), ipref))
1080 			goto gotit;
1081 	}
1082 	start = cgp->cg_irotor / NBBY;
1083 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1084 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1085 	if (loc == 0) {
1086 		len = start + 1;
1087 		start = 0;
1088 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1089 		if (loc == 0) {
1090 			printf("cg = %d, irotor = %d, fs = %s\n",
1091 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1092 			panic("ffs_nodealloccg: map corrupted");
1093 			/* NOTREACHED */
1094 		}
1095 	}
1096 	i = start + len - loc;
1097 	map = cg_inosused(cgp)[i];
1098 	ipref = i * NBBY;
1099 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1100 		if ((map & i) == 0) {
1101 			cgp->cg_irotor = ipref;
1102 			goto gotit;
1103 		}
1104 	}
1105 	printf("fs = %s\n", fs->fs_fsmnt);
1106 	panic("ffs_nodealloccg: block not in map");
1107 	/* NOTREACHED */
1108 gotit:
1109 	setbit(cg_inosused(cgp), ipref);
1110 	cgp->cg_cs.cs_nifree--;
1111 	fs->fs_cstotal.cs_nifree--;
1112 	fs->fs_cs(fs, cg).cs_nifree--;
1113 	fs->fs_fmod = 1;
1114 	if ((mode & IFMT) == IFDIR) {
1115 		cgp->cg_cs.cs_ndir++;
1116 		fs->fs_cstotal.cs_ndir++;
1117 		fs->fs_cs(fs, cg).cs_ndir++;
1118 	}
1119 	bdwrite(bp);
1120 	return (cg * fs->fs_ipg + ipref);
1121 }
1122 
1123 /*
1124  * Free a block or fragment.
1125  *
1126  * The specified block or fragment is placed back in the
1127  * free map. If a fragment is deallocated, a possible
1128  * block reassembly is checked.
1129  */
1130 ffs_blkfree(ip, bno, size)
1131 	register struct inode *ip;
1132 	daddr_t bno;
1133 	long size;
1134 {
1135 	register struct fs *fs;
1136 	register struct cg *cgp;
1137 	struct buf *bp;
1138 	daddr_t blkno;
1139 	int i, error, cg, blk, frags, bbase;
1140 
1141 	fs = ip->i_fs;
1142 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1143 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1144 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1145 		panic("blkfree: bad size");
1146 	}
1147 	cg = dtog(fs, bno);
1148 	if ((u_int)bno >= fs->fs_size) {
1149 		printf("bad block %d, ino %d\n", bno, ip->i_number);
1150 		ffs_fserr(fs, ip->i_uid, "bad block");
1151 		return;
1152 	}
1153 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1154 		(int)fs->fs_cgsize, NOCRED, &bp);
1155 	if (error) {
1156 		brelse(bp);
1157 		return;
1158 	}
1159 	cgp = (struct cg *)bp->b_data;
1160 	if (!cg_chkmagic(cgp)) {
1161 		brelse(bp);
1162 		return;
1163 	}
1164 	cgp->cg_time = time.tv_sec;
1165 	bno = dtogd(fs, bno);
1166 	if (size == fs->fs_bsize) {
1167 		blkno = fragstoblks(fs, bno);
1168 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1169 			printf("dev = 0x%x, block = %d, fs = %s\n",
1170 			    ip->i_dev, bno, fs->fs_fsmnt);
1171 			panic("blkfree: freeing free block");
1172 		}
1173 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1174 		ffs_clusteracct(fs, cgp, blkno, 1);
1175 		cgp->cg_cs.cs_nbfree++;
1176 		fs->fs_cstotal.cs_nbfree++;
1177 		fs->fs_cs(fs, cg).cs_nbfree++;
1178 		i = cbtocylno(fs, bno);
1179 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1180 		cg_blktot(cgp)[i]++;
1181 	} else {
1182 		bbase = bno - fragnum(fs, bno);
1183 		/*
1184 		 * decrement the counts associated with the old frags
1185 		 */
1186 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1187 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1188 		/*
1189 		 * deallocate the fragment
1190 		 */
1191 		frags = numfrags(fs, size);
1192 		for (i = 0; i < frags; i++) {
1193 			if (isset(cg_blksfree(cgp), bno + i)) {
1194 				printf("dev = 0x%x, block = %d, fs = %s\n",
1195 				    ip->i_dev, bno + i, fs->fs_fsmnt);
1196 				panic("blkfree: freeing free frag");
1197 			}
1198 			setbit(cg_blksfree(cgp), bno + i);
1199 		}
1200 		cgp->cg_cs.cs_nffree += i;
1201 		fs->fs_cstotal.cs_nffree += i;
1202 		fs->fs_cs(fs, cg).cs_nffree += i;
1203 		/*
1204 		 * add back in counts associated with the new frags
1205 		 */
1206 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1207 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1208 		/*
1209 		 * if a complete block has been reassembled, account for it
1210 		 */
1211 		blkno = fragstoblks(fs, bbase);
1212 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1213 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1214 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1215 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1216 			ffs_clusteracct(fs, cgp, blkno, 1);
1217 			cgp->cg_cs.cs_nbfree++;
1218 			fs->fs_cstotal.cs_nbfree++;
1219 			fs->fs_cs(fs, cg).cs_nbfree++;
1220 			i = cbtocylno(fs, bbase);
1221 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1222 			cg_blktot(cgp)[i]++;
1223 		}
1224 	}
1225 	fs->fs_fmod = 1;
1226 	bdwrite(bp);
1227 }
1228 
1229 /*
1230  * Free an inode.
1231  *
1232  * The specified inode is placed back in the free map.
1233  */
1234 int
1235 ffs_vfree(ap)
1236 	struct vop_vfree_args /* {
1237 		struct vnode *a_pvp;
1238 		ino_t a_ino;
1239 		int a_mode;
1240 	} */ *ap;
1241 {
1242 	register struct fs *fs;
1243 	register struct cg *cgp;
1244 	register struct inode *pip;
1245 	ino_t ino = ap->a_ino;
1246 	struct buf *bp;
1247 	int error, cg;
1248 
1249 	pip = VTOI(ap->a_pvp);
1250 	fs = pip->i_fs;
1251 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1252 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1253 		    pip->i_dev, ino, fs->fs_fsmnt);
1254 	cg = ino_to_cg(fs, ino);
1255 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1256 		(int)fs->fs_cgsize, NOCRED, &bp);
1257 	if (error) {
1258 		brelse(bp);
1259 		return (0);
1260 	}
1261 	cgp = (struct cg *)bp->b_data;
1262 	if (!cg_chkmagic(cgp)) {
1263 		brelse(bp);
1264 		return (0);
1265 	}
1266 	cgp->cg_time = time.tv_sec;
1267 	ino %= fs->fs_ipg;
1268 	if (isclr(cg_inosused(cgp), ino)) {
1269 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1270 		    pip->i_dev, ino, fs->fs_fsmnt);
1271 		if (fs->fs_ronly == 0)
1272 			panic("ifree: freeing free inode");
1273 	}
1274 	clrbit(cg_inosused(cgp), ino);
1275 	if (ino < cgp->cg_irotor)
1276 		cgp->cg_irotor = ino;
1277 	cgp->cg_cs.cs_nifree++;
1278 	fs->fs_cstotal.cs_nifree++;
1279 	fs->fs_cs(fs, cg).cs_nifree++;
1280 	if ((ap->a_mode & IFMT) == IFDIR) {
1281 		cgp->cg_cs.cs_ndir--;
1282 		fs->fs_cstotal.cs_ndir--;
1283 		fs->fs_cs(fs, cg).cs_ndir--;
1284 	}
1285 	fs->fs_fmod = 1;
1286 	bdwrite(bp);
1287 	return (0);
1288 }
1289 
1290 /*
1291  * Find a block of the specified size in the specified cylinder group.
1292  *
1293  * It is a panic if a request is made to find a block if none are
1294  * available.
1295  */
1296 static daddr_t
1297 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1298 	register struct fs *fs;
1299 	register struct cg *cgp;
1300 	daddr_t bpref;
1301 	int allocsiz;
1302 {
1303 	daddr_t bno;
1304 	int start, len, loc, i;
1305 	int blk, field, subfield, pos;
1306 
1307 	/*
1308 	 * find the fragment by searching through the free block
1309 	 * map for an appropriate bit pattern
1310 	 */
1311 	if (bpref)
1312 		start = dtogd(fs, bpref) / NBBY;
1313 	else
1314 		start = cgp->cg_frotor / NBBY;
1315 	len = howmany(fs->fs_fpg, NBBY) - start;
1316 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1317 		(u_char *)fragtbl[fs->fs_frag],
1318 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1319 	if (loc == 0) {
1320 		len = start + 1;
1321 		start = 0;
1322 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1323 			(u_char *)fragtbl[fs->fs_frag],
1324 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1325 		if (loc == 0) {
1326 			printf("start = %d, len = %d, fs = %s\n",
1327 			    start, len, fs->fs_fsmnt);
1328 			panic("ffs_alloccg: map corrupted");
1329 			/* NOTREACHED */
1330 		}
1331 	}
1332 	bno = (start + len - loc) * NBBY;
1333 	cgp->cg_frotor = bno;
1334 	/*
1335 	 * found the byte in the map
1336 	 * sift through the bits to find the selected frag
1337 	 */
1338 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1339 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1340 		blk <<= 1;
1341 		field = around[allocsiz];
1342 		subfield = inside[allocsiz];
1343 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1344 			if ((blk & field) == subfield)
1345 				return (bno + pos);
1346 			field <<= 1;
1347 			subfield <<= 1;
1348 		}
1349 	}
1350 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1351 	panic("ffs_alloccg: block not in map");
1352 	return (-1);
1353 }
1354 
1355 /*
1356  * Update the cluster map because of an allocation or free.
1357  *
1358  * Cnt == 1 means free; cnt == -1 means allocating.
1359  */
1360 ffs_clusteracct(fs, cgp, blkno, cnt)
1361 	struct fs *fs;
1362 	struct cg *cgp;
1363 	daddr_t blkno;
1364 	int cnt;
1365 {
1366 	long *sump;
1367 	u_char *freemapp, *mapp;
1368 	int i, start, end, forw, back, map, bit;
1369 
1370 	if (fs->fs_contigsumsize <= 0)
1371 		return;
1372 	freemapp = cg_clustersfree(cgp);
1373 	sump = cg_clustersum(cgp);
1374 	/*
1375 	 * Allocate or clear the actual block.
1376 	 */
1377 	if (cnt > 0)
1378 		setbit(freemapp, blkno);
1379 	else
1380 		clrbit(freemapp, blkno);
1381 	/*
1382 	 * Find the size of the cluster going forward.
1383 	 */
1384 	start = blkno + 1;
1385 	end = start + fs->fs_contigsumsize;
1386 	if (end >= cgp->cg_nclusterblks)
1387 		end = cgp->cg_nclusterblks;
1388 	mapp = &freemapp[start / NBBY];
1389 	map = *mapp++;
1390 	bit = 1 << (start % NBBY);
1391 	for (i = start; i < end; i++) {
1392 		if ((map & bit) == 0)
1393 			break;
1394 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1395 			bit <<= 1;
1396 		} else {
1397 			map = *mapp++;
1398 			bit = 1;
1399 		}
1400 	}
1401 	forw = i - start;
1402 	/*
1403 	 * Find the size of the cluster going backward.
1404 	 */
1405 	start = blkno - 1;
1406 	end = start - fs->fs_contigsumsize;
1407 	if (end < 0)
1408 		end = -1;
1409 	mapp = &freemapp[start / NBBY];
1410 	map = *mapp--;
1411 	bit = 1 << (start % NBBY);
1412 	for (i = start; i > end; i--) {
1413 		if ((map & bit) == 0)
1414 			break;
1415 		if ((i & (NBBY - 1)) != 0) {
1416 			bit >>= 1;
1417 		} else {
1418 			map = *mapp--;
1419 			bit = 1 << (NBBY - 1);
1420 		}
1421 	}
1422 	back = start - i;
1423 	/*
1424 	 * Account for old cluster and the possibly new forward and
1425 	 * back clusters.
1426 	 */
1427 	i = back + forw + 1;
1428 	if (i > fs->fs_contigsumsize)
1429 		i = fs->fs_contigsumsize;
1430 	sump[i] += cnt;
1431 	if (back > 0)
1432 		sump[back] -= cnt;
1433 	if (forw > 0)
1434 		sump[forw] -= cnt;
1435 }
1436 
1437 /*
1438  * Fserr prints the name of a file system with an error diagnostic.
1439  *
1440  * The form of the error message is:
1441  *	fs: error message
1442  */
1443 static void
1444 ffs_fserr(fs, uid, cp)
1445 	struct fs *fs;
1446 	u_int uid;
1447 	char *cp;
1448 {
1449 
1450 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1451 }
1452