xref: /original-bsd/sys/ufs/ffs/ffs_alloc.c (revision f25de740)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that this notice is preserved and that due credit is given
7  * to the University of California at Berkeley. The name of the University
8  * may not be used to endorse or promote products derived from this
9  * software without specific prior written permission. This software
10  * is provided ``as is'' without express or implied warranty.
11  *
12  *	@(#)ffs_alloc.c	7.7 (Berkeley) 05/24/88
13  */
14 
15 #include "param.h"
16 #include "systm.h"
17 #include "mount.h"
18 #include "fs.h"
19 #include "buf.h"
20 #include "inode.h"
21 #include "dir.h"
22 #include "user.h"
23 #include "quota.h"
24 #include "kernel.h"
25 #include "syslog.h"
26 #include "cmap.h"
27 
28 extern u_long		hashalloc();
29 extern ino_t		ialloccg();
30 extern daddr_t		alloccg();
31 extern daddr_t		alloccgblk();
32 extern daddr_t		fragextend();
33 extern daddr_t		blkpref();
34 extern daddr_t		mapsearch();
35 extern int		inside[], around[];
36 extern unsigned char	*fragtbl[];
37 
38 /*
39  * Allocate a block in the file system.
40  *
41  * The size of the requested block is given, which must be some
42  * multiple of fs_fsize and <= fs_bsize.
43  * A preference may be optionally specified. If a preference is given
44  * the following hierarchy is used to allocate a block:
45  *   1) allocate the requested block.
46  *   2) allocate a rotationally optimal block in the same cylinder.
47  *   3) allocate a block in the same cylinder group.
48  *   4) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  * If no block preference is given the following heirarchy is used
51  * to allocate a block:
52  *   1) allocate a block in the cylinder group that contains the
53  *      inode for the file.
54  *   2) quadradically rehash into other cylinder groups, until an
55  *      available block is located.
56  */
57 struct buf *
58 alloc(ip, bpref, size)
59 	register struct inode *ip;
60 	daddr_t bpref;
61 	int size;
62 {
63 	daddr_t bno;
64 	register struct fs *fs;
65 	register struct buf *bp;
66 	int cg;
67 
68 	fs = ip->i_fs;
69 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
70 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
71 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
72 		panic("alloc: bad size");
73 	}
74 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
75 		goto nospace;
76 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
77 		goto nospace;
78 #ifdef QUOTA
79 	u.u_error = chkdq(ip, (long)btodb(size), 0);
80 	if (u.u_error)
81 		return (NULL);
82 #endif
83 	if (bpref >= fs->fs_size)
84 		bpref = 0;
85 	if (bpref == 0)
86 		cg = itog(fs, ip->i_number);
87 	else
88 		cg = dtog(fs, bpref);
89 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
90 		(u_long (*)())alloccg);
91 	if (bno <= 0)
92 		goto nospace;
93 	ip->i_blocks += btodb(size);
94 	ip->i_flag |= IUPD|ICHG;
95 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
96 	clrbuf(bp);
97 	return (bp);
98 nospace:
99 	fserr(fs, "file system full");
100 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
101 	u.u_error = ENOSPC;
102 	return (NULL);
103 }
104 
105 /*
106  * Reallocate a fragment to a bigger size
107  *
108  * The number and size of the old block is given, and a preference
109  * and new size is also specified. The allocator attempts to extend
110  * the original block. Failing that, the regular block allocator is
111  * invoked to get an appropriate block.
112  */
113 struct buf *
114 realloccg(ip, bprev, bpref, osize, nsize)
115 	register struct inode *ip;
116 	daddr_t bprev, bpref;
117 	int osize, nsize;
118 {
119 	register struct fs *fs;
120 	register struct buf *bp, *obp;
121 	int cg, request;
122 	daddr_t bno, bn;
123 	int i, count;
124 
125 	fs = ip->i_fs;
126 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
127 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
128 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
129 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
130 		panic("realloccg: bad size");
131 	}
132 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
133 		goto nospace;
134 	if (bprev == 0) {
135 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
136 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
137 		panic("realloccg: bad bprev");
138 	}
139 #ifdef QUOTA
140 	u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
141 	if (u.u_error)
142 		return (NULL);
143 #endif
144 	cg = dtog(fs, bprev);
145 	bno = fragextend(ip, cg, (long)bprev, osize, nsize);
146 	if (bno != 0) {
147 		do {
148 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
149 			if (bp->b_flags & B_ERROR) {
150 				brelse(bp);
151 				return (NULL);
152 			}
153 		} while (brealloc(bp, nsize) == 0);
154 		bp->b_flags |= B_DONE;
155 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
156 		ip->i_blocks += btodb(nsize - osize);
157 		ip->i_flag |= IUPD|ICHG;
158 		return (bp);
159 	}
160 	if (bpref >= fs->fs_size)
161 		bpref = 0;
162 	switch ((int)fs->fs_optim) {
163 	case FS_OPTSPACE:
164 		/*
165 		 * Allocate an exact sized fragment. Although this makes
166 		 * best use of space, we will waste time relocating it if
167 		 * the file continues to grow. If the fragmentation is
168 		 * less than half of the minimum free reserve, we choose
169 		 * to begin optimizing for time.
170 		 */
171 		request = nsize;
172 		if (fs->fs_minfree < 5 ||
173 		    fs->fs_cstotal.cs_nffree >
174 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
175 			break;
176 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
177 			fs->fs_fsmnt);
178 		fs->fs_optim = FS_OPTTIME;
179 		break;
180 	case FS_OPTTIME:
181 		/*
182 		 * At this point we have discovered a file that is trying
183 		 * to grow a small fragment to a larger fragment. To save
184 		 * time, we allocate a full sized block, then free the
185 		 * unused portion. If the file continues to grow, the
186 		 * `fragextend' call above will be able to grow it in place
187 		 * without further copying. If aberrant programs cause
188 		 * disk fragmentation to grow within 2% of the free reserve,
189 		 * we choose to begin optimizing for space.
190 		 */
191 		request = fs->fs_bsize;
192 		if (fs->fs_cstotal.cs_nffree <
193 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
194 			break;
195 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
196 			fs->fs_fsmnt);
197 		fs->fs_optim = FS_OPTSPACE;
198 		break;
199 	default:
200 		printf("dev = 0x%x, optim = %d, fs = %s\n",
201 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
202 		panic("realloccg: bad optim");
203 		/* NOTREACHED */
204 	}
205 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
206 		(u_long (*)())alloccg);
207 	if (bno > 0) {
208 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
209 		if (obp->b_flags & B_ERROR) {
210 			brelse(obp);
211 			return (NULL);
212 		}
213 		bn = fsbtodb(fs, bno);
214 		bp = getblk(ip->i_dev, bn, nsize);
215 		bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
216 		count = howmany(osize, CLBYTES);
217 		for (i = 0; i < count; i++)
218 			munhash(ip->i_dev, bn + i * CLBYTES / DEV_BSIZE);
219 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
220 		if (obp->b_flags & B_DELWRI) {
221 			obp->b_flags &= ~B_DELWRI;
222 			u.u_ru.ru_oublock--;		/* delete charge */
223 		}
224 		brelse(obp);
225 		blkfree(ip, bprev, (off_t)osize);
226 		if (nsize < request)
227 			blkfree(ip, bno + numfrags(fs, nsize),
228 				(off_t)(request - nsize));
229 		ip->i_blocks += btodb(nsize - osize);
230 		ip->i_flag |= IUPD|ICHG;
231 		return (bp);
232 	}
233 nospace:
234 	/*
235 	 * no space available
236 	 */
237 	fserr(fs, "file system full");
238 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
239 	u.u_error = ENOSPC;
240 	return (NULL);
241 }
242 
243 /*
244  * Allocate an inode in the file system.
245  *
246  * A preference may be optionally specified. If a preference is given
247  * the following hierarchy is used to allocate an inode:
248  *   1) allocate the requested inode.
249  *   2) allocate an inode in the same cylinder group.
250  *   3) quadradically rehash into other cylinder groups, until an
251  *      available inode is located.
252  * If no inode preference is given the following heirarchy is used
253  * to allocate an inode:
254  *   1) allocate an inode in cylinder group 0.
255  *   2) quadradically rehash into other cylinder groups, until an
256  *      available inode is located.
257  */
258 struct inode *
259 ialloc(pip, ipref, mode)
260 	register struct inode *pip;
261 	ino_t ipref;
262 	int mode;
263 {
264 	ino_t ino;
265 	register struct fs *fs;
266 	register struct inode *ip;
267 	int cg;
268 
269 	fs = pip->i_fs;
270 	if (fs->fs_cstotal.cs_nifree == 0)
271 		goto noinodes;
272 #ifdef QUOTA
273 	u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
274 	if (u.u_error)
275 		return (NULL);
276 #endif
277 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
278 		ipref = 0;
279 	cg = itog(fs, ipref);
280 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
281 	if (ino == 0)
282 		goto noinodes;
283 	ip = iget(pip->i_dev, pip->i_fs, ino);
284 	if (ip == NULL) {
285 		ifree(pip, ino, 0);
286 		return (NULL);
287 	}
288 	if (ip->i_mode) {
289 		printf("mode = 0%o, inum = %d, fs = %s\n",
290 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
291 		panic("ialloc: dup alloc");
292 	}
293 	if (ip->i_blocks) {				/* XXX */
294 		printf("free inode %s/%d had %d blocks\n",
295 		    fs->fs_fsmnt, ino, ip->i_blocks);
296 		ip->i_blocks = 0;
297 	}
298 	return (ip);
299 noinodes:
300 	fserr(fs, "out of inodes");
301 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
302 	u.u_error = ENOSPC;
303 	return (NULL);
304 }
305 
306 /*
307  * Find a cylinder to place a directory.
308  *
309  * The policy implemented by this algorithm is to select from
310  * among those cylinder groups with above the average number of
311  * free inodes, the one with the smallest number of directories.
312  */
313 ino_t
314 dirpref(fs)
315 	register struct fs *fs;
316 {
317 	int cg, minndir, mincg, avgifree;
318 
319 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
320 	minndir = fs->fs_ipg;
321 	mincg = 0;
322 	for (cg = 0; cg < fs->fs_ncg; cg++)
323 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
324 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
325 			mincg = cg;
326 			minndir = fs->fs_cs(fs, cg).cs_ndir;
327 		}
328 	return ((ino_t)(fs->fs_ipg * mincg));
329 }
330 
331 /*
332  * Select the desired position for the next block in a file.  The file is
333  * logically divided into sections. The first section is composed of the
334  * direct blocks. Each additional section contains fs_maxbpg blocks.
335  *
336  * If no blocks have been allocated in the first section, the policy is to
337  * request a block in the same cylinder group as the inode that describes
338  * the file. If no blocks have been allocated in any other section, the
339  * policy is to place the section in a cylinder group with a greater than
340  * average number of free blocks.  An appropriate cylinder group is found
341  * by using a rotor that sweeps the cylinder groups. When a new group of
342  * blocks is needed, the sweep begins in the cylinder group following the
343  * cylinder group from which the previous allocation was made. The sweep
344  * continues until a cylinder group with greater than the average number
345  * of free blocks is found. If the allocation is for the first block in an
346  * indirect block, the information on the previous allocation is unavailable;
347  * here a best guess is made based upon the logical block number being
348  * allocated.
349  *
350  * If a section is already partially allocated, the policy is to
351  * contiguously allocate fs_maxcontig blocks.  The end of one of these
352  * contiguous blocks and the beginning of the next is physically separated
353  * so that the disk head will be in transit between them for at least
354  * fs_rotdelay milliseconds.  This is to allow time for the processor to
355  * schedule another I/O transfer.
356  */
357 daddr_t
358 blkpref(ip, lbn, indx, bap)
359 	struct inode *ip;
360 	daddr_t lbn;
361 	int indx;
362 	daddr_t *bap;
363 {
364 	register struct fs *fs;
365 	register int cg;
366 	int avgbfree, startcg;
367 	daddr_t nextblk;
368 
369 	fs = ip->i_fs;
370 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
371 		if (lbn < NDADDR) {
372 			cg = itog(fs, ip->i_number);
373 			return (fs->fs_fpg * cg + fs->fs_frag);
374 		}
375 		/*
376 		 * Find a cylinder with greater than average number of
377 		 * unused data blocks.
378 		 */
379 		if (indx == 0 || bap[indx - 1] == 0)
380 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
381 		else
382 			startcg = dtog(fs, bap[indx - 1]) + 1;
383 		startcg %= fs->fs_ncg;
384 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
385 		for (cg = startcg; cg < fs->fs_ncg; cg++)
386 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
387 				fs->fs_cgrotor = cg;
388 				return (fs->fs_fpg * cg + fs->fs_frag);
389 			}
390 		for (cg = 0; cg <= startcg; cg++)
391 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
392 				fs->fs_cgrotor = cg;
393 				return (fs->fs_fpg * cg + fs->fs_frag);
394 			}
395 		return (NULL);
396 	}
397 	/*
398 	 * One or more previous blocks have been laid out. If less
399 	 * than fs_maxcontig previous blocks are contiguous, the
400 	 * next block is requested contiguously, otherwise it is
401 	 * requested rotationally delayed by fs_rotdelay milliseconds.
402 	 */
403 	nextblk = bap[indx - 1] + fs->fs_frag;
404 	if (indx > fs->fs_maxcontig &&
405 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
406 	    != nextblk)
407 		return (nextblk);
408 	if (fs->fs_rotdelay != 0)
409 		/*
410 		 * Here we convert ms of delay to frags as:
411 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
412 		 *	((sect/frag) * (ms/sec))
413 		 * then round up to the next block.
414 		 */
415 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
416 		    (NSPF(fs) * 1000), fs->fs_frag);
417 	return (nextblk);
418 }
419 
420 /*
421  * Implement the cylinder overflow algorithm.
422  *
423  * The policy implemented by this algorithm is:
424  *   1) allocate the block in its requested cylinder group.
425  *   2) quadradically rehash on the cylinder group number.
426  *   3) brute force search for a free block.
427  */
428 /*VARARGS5*/
429 u_long
430 hashalloc(ip, cg, pref, size, allocator)
431 	struct inode *ip;
432 	int cg;
433 	long pref;
434 	int size;	/* size for data blocks, mode for inodes */
435 	u_long (*allocator)();
436 {
437 	register struct fs *fs;
438 	long result;
439 	int i, icg = cg;
440 
441 	fs = ip->i_fs;
442 	/*
443 	 * 1: preferred cylinder group
444 	 */
445 	result = (*allocator)(ip, cg, pref, size);
446 	if (result)
447 		return (result);
448 	/*
449 	 * 2: quadratic rehash
450 	 */
451 	for (i = 1; i < fs->fs_ncg; i *= 2) {
452 		cg += i;
453 		if (cg >= fs->fs_ncg)
454 			cg -= fs->fs_ncg;
455 		result = (*allocator)(ip, cg, 0, size);
456 		if (result)
457 			return (result);
458 	}
459 	/*
460 	 * 3: brute force search
461 	 * Note that we start at i == 2, since 0 was checked initially,
462 	 * and 1 is always checked in the quadratic rehash.
463 	 */
464 	cg = (icg + 2) % fs->fs_ncg;
465 	for (i = 2; i < fs->fs_ncg; i++) {
466 		result = (*allocator)(ip, cg, 0, size);
467 		if (result)
468 			return (result);
469 		cg++;
470 		if (cg == fs->fs_ncg)
471 			cg = 0;
472 	}
473 	return (NULL);
474 }
475 
476 /*
477  * Determine whether a fragment can be extended.
478  *
479  * Check to see if the necessary fragments are available, and
480  * if they are, allocate them.
481  */
482 daddr_t
483 fragextend(ip, cg, bprev, osize, nsize)
484 	struct inode *ip;
485 	int cg;
486 	long bprev;
487 	int osize, nsize;
488 {
489 	register struct fs *fs;
490 	register struct buf *bp;
491 	register struct cg *cgp;
492 	long bno;
493 	int frags, bbase;
494 	int i;
495 
496 	fs = ip->i_fs;
497 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
498 		return (NULL);
499 	frags = numfrags(fs, nsize);
500 	bbase = fragnum(fs, bprev);
501 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
502 		/* cannot extend across a block boundary */
503 		return (NULL);
504 	}
505 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
506 	cgp = bp->b_un.b_cg;
507 	if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) {
508 		brelse(bp);
509 		return (NULL);
510 	}
511 	cgp->cg_time = time.tv_sec;
512 	bno = dtogd(fs, bprev);
513 	for (i = numfrags(fs, osize); i < frags; i++)
514 		if (isclr(cg_blksfree(cgp), bno + i)) {
515 			brelse(bp);
516 			return (NULL);
517 		}
518 	/*
519 	 * the current fragment can be extended
520 	 * deduct the count on fragment being extended into
521 	 * increase the count on the remaining fragment (if any)
522 	 * allocate the extended piece
523 	 */
524 	for (i = frags; i < fs->fs_frag - bbase; i++)
525 		if (isclr(cg_blksfree(cgp), bno + i))
526 			break;
527 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
528 	if (i != frags)
529 		cgp->cg_frsum[i - frags]++;
530 	for (i = numfrags(fs, osize); i < frags; i++) {
531 		clrbit(cg_blksfree(cgp), bno + i);
532 		cgp->cg_cs.cs_nffree--;
533 		fs->fs_cstotal.cs_nffree--;
534 		fs->fs_cs(fs, cg).cs_nffree--;
535 	}
536 	fs->fs_fmod++;
537 	bdwrite(bp);
538 	return (bprev);
539 }
540 
541 /*
542  * Determine whether a block can be allocated.
543  *
544  * Check to see if a block of the apprpriate size is available,
545  * and if it is, allocate it.
546  */
547 daddr_t
548 alloccg(ip, cg, bpref, size)
549 	struct inode *ip;
550 	int cg;
551 	daddr_t bpref;
552 	int size;
553 {
554 	register struct fs *fs;
555 	register struct buf *bp;
556 	register struct cg *cgp;
557 	int bno, frags;
558 	int allocsiz;
559 	register int i;
560 
561 	fs = ip->i_fs;
562 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
563 		return (NULL);
564 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
565 	cgp = bp->b_un.b_cg;
566 	if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) ||
567 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
568 		brelse(bp);
569 		return (NULL);
570 	}
571 	cgp->cg_time = time.tv_sec;
572 	if (size == fs->fs_bsize) {
573 		bno = alloccgblk(fs, cgp, bpref);
574 		bdwrite(bp);
575 		return (bno);
576 	}
577 	/*
578 	 * check to see if any fragments are already available
579 	 * allocsiz is the size which will be allocated, hacking
580 	 * it down to a smaller size if necessary
581 	 */
582 	frags = numfrags(fs, size);
583 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
584 		if (cgp->cg_frsum[allocsiz] != 0)
585 			break;
586 	if (allocsiz == fs->fs_frag) {
587 		/*
588 		 * no fragments were available, so a block will be
589 		 * allocated, and hacked up
590 		 */
591 		if (cgp->cg_cs.cs_nbfree == 0) {
592 			brelse(bp);
593 			return (NULL);
594 		}
595 		bno = alloccgblk(fs, cgp, bpref);
596 		bpref = dtogd(fs, bno);
597 		for (i = frags; i < fs->fs_frag; i++)
598 			setbit(cg_blksfree(cgp), bpref + i);
599 		i = fs->fs_frag - frags;
600 		cgp->cg_cs.cs_nffree += i;
601 		fs->fs_cstotal.cs_nffree += i;
602 		fs->fs_cs(fs, cg).cs_nffree += i;
603 		fs->fs_fmod++;
604 		cgp->cg_frsum[i]++;
605 		bdwrite(bp);
606 		return (bno);
607 	}
608 	bno = mapsearch(fs, cgp, bpref, allocsiz);
609 	if (bno < 0) {
610 		brelse(bp);
611 		return (NULL);
612 	}
613 	for (i = 0; i < frags; i++)
614 		clrbit(cg_blksfree(cgp), bno + i);
615 	cgp->cg_cs.cs_nffree -= frags;
616 	fs->fs_cstotal.cs_nffree -= frags;
617 	fs->fs_cs(fs, cg).cs_nffree -= frags;
618 	fs->fs_fmod++;
619 	cgp->cg_frsum[allocsiz]--;
620 	if (frags != allocsiz)
621 		cgp->cg_frsum[allocsiz - frags]++;
622 	bdwrite(bp);
623 	return (cg * fs->fs_fpg + bno);
624 }
625 
626 /*
627  * Allocate a block in a cylinder group.
628  *
629  * This algorithm implements the following policy:
630  *   1) allocate the requested block.
631  *   2) allocate a rotationally optimal block in the same cylinder.
632  *   3) allocate the next available block on the block rotor for the
633  *      specified cylinder group.
634  * Note that this routine only allocates fs_bsize blocks; these
635  * blocks may be fragmented by the routine that allocates them.
636  */
637 daddr_t
638 alloccgblk(fs, cgp, bpref)
639 	register struct fs *fs;
640 	register struct cg *cgp;
641 	daddr_t bpref;
642 {
643 	daddr_t bno;
644 	int cylno, pos, delta;
645 	short *cylbp;
646 	register int i;
647 
648 	if (bpref == 0) {
649 		bpref = cgp->cg_rotor;
650 		goto norot;
651 	}
652 	bpref = blknum(fs, bpref);
653 	bpref = dtogd(fs, bpref);
654 	/*
655 	 * if the requested block is available, use it
656 	 */
657 	if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
658 		bno = bpref;
659 		goto gotit;
660 	}
661 	/*
662 	 * check for a block available on the same cylinder
663 	 */
664 	cylno = cbtocylno(fs, bpref);
665 	if (cg_blktot(cgp)[cylno] == 0)
666 		goto norot;
667 	if (fs->fs_cpc == 0) {
668 		/*
669 		 * block layout info is not available, so just have
670 		 * to take any block in this cylinder.
671 		 */
672 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
673 		goto norot;
674 	}
675 	/*
676 	 * check the summary information to see if a block is
677 	 * available in the requested cylinder starting at the
678 	 * requested rotational position and proceeding around.
679 	 */
680 	cylbp = cg_blks(fs, cgp, cylno);
681 	pos = cbtorpos(fs, bpref);
682 	for (i = pos; i < fs->fs_nrpos; i++)
683 		if (cylbp[i] > 0)
684 			break;
685 	if (i == fs->fs_nrpos)
686 		for (i = 0; i < pos; i++)
687 			if (cylbp[i] > 0)
688 				break;
689 	if (cylbp[i] > 0) {
690 		/*
691 		 * found a rotational position, now find the actual
692 		 * block. A panic if none is actually there.
693 		 */
694 		pos = cylno % fs->fs_cpc;
695 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
696 		if (fs_postbl(fs, pos)[i] == -1) {
697 			printf("pos = %d, i = %d, fs = %s\n",
698 			    pos, i, fs->fs_fsmnt);
699 			panic("alloccgblk: cyl groups corrupted");
700 		}
701 		for (i = fs_postbl(fs, pos)[i];; ) {
702 			if (isblock(fs, cg_blksfree(cgp), bno + i)) {
703 				bno = blkstofrags(fs, (bno + i));
704 				goto gotit;
705 			}
706 			delta = fs_rotbl(fs)[i];
707 			if (delta <= 0 ||
708 			    delta + i > fragstoblks(fs, fs->fs_fpg))
709 				break;
710 			i += delta;
711 		}
712 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
713 		panic("alloccgblk: can't find blk in cyl");
714 	}
715 norot:
716 	/*
717 	 * no blocks in the requested cylinder, so take next
718 	 * available one in this cylinder group.
719 	 */
720 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
721 	if (bno < 0)
722 		return (NULL);
723 	cgp->cg_rotor = bno;
724 gotit:
725 	clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
726 	cgp->cg_cs.cs_nbfree--;
727 	fs->fs_cstotal.cs_nbfree--;
728 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
729 	cylno = cbtocylno(fs, bno);
730 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
731 	cg_blktot(cgp)[cylno]--;
732 	fs->fs_fmod++;
733 	return (cgp->cg_cgx * fs->fs_fpg + bno);
734 }
735 
736 /*
737  * Determine whether an inode can be allocated.
738  *
739  * Check to see if an inode is available, and if it is,
740  * allocate it using the following policy:
741  *   1) allocate the requested inode.
742  *   2) allocate the next available inode after the requested
743  *      inode in the specified cylinder group.
744  */
745 ino_t
746 ialloccg(ip, cg, ipref, mode)
747 	struct inode *ip;
748 	int cg;
749 	daddr_t ipref;
750 	int mode;
751 {
752 	register struct fs *fs;
753 	register struct cg *cgp;
754 	struct buf *bp;
755 	int start, len, loc, map, i;
756 
757 	fs = ip->i_fs;
758 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
759 		return (NULL);
760 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
761 	cgp = bp->b_un.b_cg;
762 	if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) ||
763 	    cgp->cg_cs.cs_nifree == 0) {
764 		brelse(bp);
765 		return (NULL);
766 	}
767 	cgp->cg_time = time.tv_sec;
768 	if (ipref) {
769 		ipref %= fs->fs_ipg;
770 		if (isclr(cg_inosused(cgp), ipref))
771 			goto gotit;
772 	}
773 	start = cgp->cg_irotor / NBBY;
774 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
775 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
776 	if (loc == 0) {
777 		len = start + 1;
778 		start = 0;
779 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
780 		if (loc == 0) {
781 			printf("cg = %s, irotor = %d, fs = %s\n",
782 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
783 			panic("ialloccg: map corrupted");
784 			/* NOTREACHED */
785 		}
786 	}
787 	i = start + len - loc;
788 	map = cg_inosused(cgp)[i];
789 	ipref = i * NBBY;
790 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
791 		if ((map & i) == 0) {
792 			cgp->cg_irotor = ipref;
793 			goto gotit;
794 		}
795 	}
796 	printf("fs = %s\n", fs->fs_fsmnt);
797 	panic("ialloccg: block not in map");
798 	/* NOTREACHED */
799 gotit:
800 	setbit(cg_inosused(cgp), ipref);
801 	cgp->cg_cs.cs_nifree--;
802 	fs->fs_cstotal.cs_nifree--;
803 	fs->fs_cs(fs, cg).cs_nifree--;
804 	fs->fs_fmod++;
805 	if ((mode & IFMT) == IFDIR) {
806 		cgp->cg_cs.cs_ndir++;
807 		fs->fs_cstotal.cs_ndir++;
808 		fs->fs_cs(fs, cg).cs_ndir++;
809 	}
810 	bdwrite(bp);
811 	return (cg * fs->fs_ipg + ipref);
812 }
813 
814 /*
815  * Free a block or fragment.
816  *
817  * The specified block or fragment is placed back in the
818  * free map. If a fragment is deallocated, a possible
819  * block reassembly is checked.
820  */
821 blkfree(ip, bno, size)
822 	register struct inode *ip;
823 	daddr_t bno;
824 	off_t size;
825 {
826 	register struct fs *fs;
827 	register struct cg *cgp;
828 	register struct buf *bp;
829 	int cg, blk, frags, bbase;
830 	register int i;
831 
832 	fs = ip->i_fs;
833 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
834 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
835 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
836 		panic("blkfree: bad size");
837 	}
838 	cg = dtog(fs, bno);
839 	if (badblock(fs, bno)) {
840 		printf("bad block %d, ino %d\n", bno, ip->i_number);
841 		return;
842 	}
843 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
844 	cgp = bp->b_un.b_cg;
845 	if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) {
846 		brelse(bp);
847 		return;
848 	}
849 	cgp->cg_time = time.tv_sec;
850 	bno = dtogd(fs, bno);
851 	if (size == fs->fs_bsize) {
852 		if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
853 			printf("dev = 0x%x, block = %d, fs = %s\n",
854 			    ip->i_dev, bno, fs->fs_fsmnt);
855 			panic("blkfree: freeing free block");
856 		}
857 		setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
858 		cgp->cg_cs.cs_nbfree++;
859 		fs->fs_cstotal.cs_nbfree++;
860 		fs->fs_cs(fs, cg).cs_nbfree++;
861 		i = cbtocylno(fs, bno);
862 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
863 		cg_blktot(cgp)[i]++;
864 	} else {
865 		bbase = bno - fragnum(fs, bno);
866 		/*
867 		 * decrement the counts associated with the old frags
868 		 */
869 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
870 		fragacct(fs, blk, cgp->cg_frsum, -1);
871 		/*
872 		 * deallocate the fragment
873 		 */
874 		frags = numfrags(fs, size);
875 		for (i = 0; i < frags; i++) {
876 			if (isset(cg_blksfree(cgp), bno + i)) {
877 				printf("dev = 0x%x, block = %d, fs = %s\n",
878 				    ip->i_dev, bno + i, fs->fs_fsmnt);
879 				panic("blkfree: freeing free frag");
880 			}
881 			setbit(cg_blksfree(cgp), bno + i);
882 		}
883 		cgp->cg_cs.cs_nffree += i;
884 		fs->fs_cstotal.cs_nffree += i;
885 		fs->fs_cs(fs, cg).cs_nffree += i;
886 		/*
887 		 * add back in counts associated with the new frags
888 		 */
889 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
890 		fragacct(fs, blk, cgp->cg_frsum, 1);
891 		/*
892 		 * if a complete block has been reassembled, account for it
893 		 */
894 		if (isblock(fs, cg_blksfree(cgp),
895 		    (daddr_t)fragstoblks(fs, bbase))) {
896 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
897 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
898 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
899 			cgp->cg_cs.cs_nbfree++;
900 			fs->fs_cstotal.cs_nbfree++;
901 			fs->fs_cs(fs, cg).cs_nbfree++;
902 			i = cbtocylno(fs, bbase);
903 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
904 			cg_blktot(cgp)[i]++;
905 		}
906 	}
907 	fs->fs_fmod++;
908 	bdwrite(bp);
909 }
910 
911 /*
912  * Free an inode.
913  *
914  * The specified inode is placed back in the free map.
915  */
916 ifree(ip, ino, mode)
917 	struct inode *ip;
918 	ino_t ino;
919 	int mode;
920 {
921 	register struct fs *fs;
922 	register struct cg *cgp;
923 	register struct buf *bp;
924 	int cg;
925 
926 	fs = ip->i_fs;
927 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
928 		printf("dev = 0x%x, ino = %d, fs = %s\n",
929 		    ip->i_dev, ino, fs->fs_fsmnt);
930 		panic("ifree: range");
931 	}
932 	cg = itog(fs, ino);
933 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
934 	cgp = bp->b_un.b_cg;
935 	if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) {
936 		brelse(bp);
937 		return;
938 	}
939 	cgp->cg_time = time.tv_sec;
940 	ino %= fs->fs_ipg;
941 	if (isclr(cg_inosused(cgp), ino)) {
942 		printf("dev = 0x%x, ino = %d, fs = %s\n",
943 		    ip->i_dev, ino, fs->fs_fsmnt);
944 		panic("ifree: freeing free inode");
945 	}
946 	clrbit(cg_inosused(cgp), ino);
947 	if (ino < cgp->cg_irotor)
948 		cgp->cg_irotor = ino;
949 	cgp->cg_cs.cs_nifree++;
950 	fs->fs_cstotal.cs_nifree++;
951 	fs->fs_cs(fs, cg).cs_nifree++;
952 	if ((mode & IFMT) == IFDIR) {
953 		cgp->cg_cs.cs_ndir--;
954 		fs->fs_cstotal.cs_ndir--;
955 		fs->fs_cs(fs, cg).cs_ndir--;
956 	}
957 	fs->fs_fmod++;
958 	bdwrite(bp);
959 }
960 
961 /*
962  * Find a block of the specified size in the specified cylinder group.
963  *
964  * It is a panic if a request is made to find a block if none are
965  * available.
966  */
967 daddr_t
968 mapsearch(fs, cgp, bpref, allocsiz)
969 	register struct fs *fs;
970 	register struct cg *cgp;
971 	daddr_t bpref;
972 	int allocsiz;
973 {
974 	daddr_t bno;
975 	int start, len, loc, i;
976 	int blk, field, subfield, pos;
977 
978 	/*
979 	 * find the fragment by searching through the free block
980 	 * map for an appropriate bit pattern
981 	 */
982 	if (bpref)
983 		start = dtogd(fs, bpref) / NBBY;
984 	else
985 		start = cgp->cg_frotor / NBBY;
986 	len = howmany(fs->fs_fpg, NBBY) - start;
987 	loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
988 		(u_char *)fragtbl[fs->fs_frag],
989 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
990 	if (loc == 0) {
991 		len = start + 1;
992 		start = 0;
993 		loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
994 			(u_char *)fragtbl[fs->fs_frag],
995 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
996 		if (loc == 0) {
997 			printf("start = %d, len = %d, fs = %s\n",
998 			    start, len, fs->fs_fsmnt);
999 			panic("alloccg: map corrupted");
1000 			/* NOTREACHED */
1001 		}
1002 	}
1003 	bno = (start + len - loc) * NBBY;
1004 	cgp->cg_frotor = bno;
1005 	/*
1006 	 * found the byte in the map
1007 	 * sift through the bits to find the selected frag
1008 	 */
1009 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1010 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1011 		blk <<= 1;
1012 		field = around[allocsiz];
1013 		subfield = inside[allocsiz];
1014 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1015 			if ((blk & field) == subfield)
1016 				return (bno + pos);
1017 			field <<= 1;
1018 			subfield <<= 1;
1019 		}
1020 	}
1021 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1022 	panic("alloccg: block not in map");
1023 	return (-1);
1024 }
1025 
1026 /*
1027  * Fserr prints the name of a file system with an error diagnostic.
1028  *
1029  * The form of the error message is:
1030  *	fs: error message
1031  */
1032 fserr(fs, cp)
1033 	struct fs *fs;
1034 	char *cp;
1035 {
1036 
1037 	log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
1038 }
1039