xref: /original-bsd/sys/ufs/ffs/fs.h (revision f0fd5f8a)
1 /*	fs.h	4.5	82/11/13	*/
2 
3 /*
4  * Each disk drive contains some number of file systems.
5  * A file system consists of a number of cylinder groups.
6  * Each cylinder group has inodes and data.
7  *
8  * A file system is described by its super-block, which in turn
9  * describes the cylinder groups.  The super-block is critical
10  * data and is replicated in each cylinder group to protect against
11  * catastrophic loss.  This is done at mkfs time and the critical
12  * super-block data does not change, so the copies need not be
13  * referenced further unless disaster strikes.
14  *
15  * For file system fs, the offsets of the various blocks of interest
16  * are given in the super block as:
17  *	[fs->fs_sblkno]		Super-block
18  *	[fs->fs_cblkno]		Cylinder group block
19  *	[fs->fs_iblkno]		Inode blocks
20  *	[fs->fs_dblkno]		Data blocks
21  * The beginning of cylinder group cg in fs, is given by
22  * the ``cgbase(fs, cg)'' macro.
23  *
24  * The first boot and super blocks are given in absolute disk addresses.
25  */
26 #define BBSIZE		8192
27 #define SBSIZE		8192
28 #define	BBLOCK		((daddr_t)(0))
29 #define	SBLOCK		((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE))
30 
31 /*
32  * Addresses stored in inodes are capable of addressing fragments
33  * of `blocks'. File system blocks of at most size MAXBSIZE can
34  * be optionally broken into 2, 4, or 8 pieces, each of which is
35  * addressible; these pieces may be DEV_BSIZE, or some multiple of
36  * a DEV_BSIZE unit.
37  *
38  * Large files consist of exclusively large data blocks.  To avoid
39  * undue wasted disk space, the last data block of a small file may be
40  * allocated as only as many fragments of a large block as are
41  * necessary.  The file system format retains only a single pointer
42  * to such a fragment, which is a piece of a single large block that
43  * has been divided.  The size of such a fragment is determinable from
44  * information in the inode, using the ``blksize(fs, ip, lbn)'' macro.
45  *
46  * The file system records space availability at the fragment level;
47  * to determine block availability, aligned fragments are examined.
48  *
49  * The root inode is the root of the file system.
50  * Inode 0 can't be used for normal purposes and
51  * historically bad blocks were linked to inode 1,
52  * thus the root inode is 2. (inode 1 is no longer used for
53  * this purpose, however numerous dump tapes make this
54  * assumption, so we are stuck with it)
55  * The lost+found directory is given the next available
56  * inode when it is created by ``mkfs''.
57  */
58 #define	ROOTINO		((ino_t)2)	/* i number of all roots */
59 #define LOSTFOUNDINO	(ROOTINO + 1)
60 
61 /*
62  * MINFREE gives the minimum acceptable percentage of file system
63  * blocks which may be free. If the freelist drops below this level
64  * only the superuser may continue to allocate blocks. This may
65  * be set to 0 if no reserve of free blocks is deemed necessary,
66  * however severe performance degredations will be observed if the
67  * file system is run at greater than 90% full; thus the default
68  * value of fs_minfree is 10%.
69  *
70  * Empirically the best trade-off between block fragmentation and
71  * overall disk utilization at a loading of 90% comes with a
72  * fragmentation of 4, thus the default fragment size is a fourth
73  * of the block size.
74  */
75 #define MINFREE		10
76 #define DESFRAG		4
77 
78 /*
79  * Under current technology, most 300MB disks have 32 sectors and
80  * 16 tracks, thus these are the defaults used for fs_nsect and
81  * fs_ntrak respectively.
82  */
83 #define DFLNSECT	32
84 #define DFLNTRAK	16
85 
86 /*
87  * Cylinder group related limits.
88  *
89  * For each cylinder we keep track of the availability of blocks at different
90  * rotational positions, so that we can lay out the data to be picked
91  * up with minimum rotational latency.  NRPOS is the number of rotational
92  * positions which we distinguish.  With NRPOS 8 the resolution of our
93  * summary information is 2ms for a typical 3600 rpm drive.
94  *
95  * ROTDELAY gives the minimum number of milliseconds to initiate
96  * another disk transfer on the same cylinder. It is used in
97  * determining the rotationally optimal layout for disk blocks
98  * within a file; the default of fs_rotdelay is 2ms.
99  */
100 #define	NRPOS		8	/* number distinct rotational positions */
101 #define ROTDELAY	2
102 
103 /*
104  * Each file system has a number of inodes statically allocated.
105  * We allocate one inode slot per NBPI bytes, expecting this
106  * to be far more than we will ever need.
107  *
108  * MAXIPG bounds the number of inodes per cylinder group, and
109  * is needed only to keep the structure simpler by having the
110  * only a single variable size element (the free bit map).
111  *
112  * N.B.: MAXIPG must be a multiple of INOPB(fs).
113  */
114 #define	NBPI		2048
115 #define	MAXIPG		2048	/* max number inodes/cyl group */
116 
117 /*
118  * MINBSIZE is the smallest allowable block size.
119  * In order to insure that it is possible to create files of size
120  * 2^32 with only two levels of indirection, MINBSIZE is set to 4096.
121  * MINBSIZE must be big enough to hold a cylinder group block,
122  * thus changes to (struct cg) must keep its size within MINBSIZE.
123  * MAXCPG is limited only to dimension an array in (struct cg);
124  * it can be made larger as long as that structures size remains
125  * within the bounds dictated by MINBSIZE.
126  * Note that super blocks are always of size MAXBSIZE,
127  * and that MAXBSIZE must be >= MINBSIZE.
128  */
129 #define MINBSIZE	4096
130 #define	DESCPG		16	/* desired fs_cpg */
131 #define	MAXCPG		32	/* maximum fs_cpg */
132 
133 /*
134  * The path name on which the file system is mounted is maintained
135  * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in
136  * the super block for this name.
137  * The limit on the amount of summary information per file system
138  * is defined by MAXCSBUFS. It is currently parameterized for a
139  * maximum of two million cylinders.
140  */
141 #define MAXMNTLEN 512
142 #define MAXCSBUFS 32
143 
144 /*
145  * Per cylinder group information; summarized in blocks allocated
146  * from first cylinder group data blocks.  These blocks have to be
147  * read in from fs_csaddr (size fs_cssize) in addition to the
148  * super block.
149  *
150  * N.B. sizeof(struct csum) must be a power of two in order for
151  * the ``fs_cs'' macro to work (see below).
152  */
153 struct csum {
154 	long	cs_ndir;	/* number of directories */
155 	long	cs_nbfree;	/* number of free blocks */
156 	long	cs_nifree;	/* number of free inodes */
157 	long	cs_nffree;	/* number of free frags */
158 };
159 
160 /*
161  * Super block for a file system.
162  */
163 #define	FS_MAGIC	0x011954
164 struct	fs
165 {
166 	struct	fs *fs_link;		/* linked list of file systems */
167 	struct	fs *fs_rlink;		/*     used for incore super blocks */
168 	daddr_t	fs_sblkno;		/* addr of super-block in filesys */
169 	daddr_t	fs_cblkno;		/* offset of cyl-block in filesys */
170 	daddr_t	fs_iblkno;		/* offset of inode-blocks in filesys */
171 	daddr_t	fs_dblkno;		/* offset of first data after cg */
172 	long	fs_cgoffset;		/* cylinder group offset in cylinder */
173 	long	fs_cgmask;		/* used to calc mod fs_ntrak */
174 	time_t 	fs_time;    		/* last time written */
175 	long	fs_size;		/* number of blocks in fs */
176 	long	fs_dsize;		/* number of data blocks in fs */
177 	long	fs_ncg;			/* number of cylinder groups */
178 	long	fs_bsize;		/* size of basic blocks in fs */
179 	long	fs_fsize;		/* size of frag blocks in fs */
180 	long	fs_frag;		/* number of frags in a block in fs */
181 	long	fs_minfree;		/* minimum percentage of free blocks */
182 	long	fs_rotdelay;		/* num of ms for optimal next block */
183 	long	fs_rps;			/* disk revolutions per second */
184 	long	fs_bmask;		/* ``blkoff'' calc of blk offsets */
185 	long	fs_fmask;		/* ``fragoff'' calc of frag offsets */
186 	long	fs_bshift;		/* ``lblkno'' calc of logical blkno */
187 	long	fs_fshift;		/* ``numfrags'' calc number of frags */
188 	long	fs_maxcontig;		/* max number of contiguous blks */
189 	long	fs_maxbpg;		/* max number of blks per cyl group */
190 	long	fs_sparecon[14];	/* reserved for future constants */
191 /* sizes determined by number of cylinder groups and their sizes */
192 	daddr_t fs_csaddr;		/* blk addr of cyl grp summary area */
193 	long	fs_cssize;		/* size of cyl grp summary area */
194 	long	fs_cgsize;		/* cylinder group size */
195 /* these fields should be derived from the hardware */
196 	long	fs_ntrak;		/* tracks per cylinder */
197 	long	fs_nsect;		/* sectors per track */
198 	long  	fs_spc;   		/* sectors per cylinder */
199 /* this comes from the disk driver partitioning */
200 	long	fs_ncyl;   		/* cylinders in file system */
201 /* these fields can be computed from the others */
202 	long	fs_cpg;			/* cylinders per group */
203 	long	fs_ipg;			/* inodes per group */
204 	long	fs_fpg;			/* blocks per group * fs_frag */
205 /* this data must be re-computed after crashes */
206 	struct	csum fs_cstotal;	/* cylinder summary information */
207 /* these fields are cleared at mount time */
208 	char   	fs_fmod;    		/* super block modified flag */
209 	char   	fs_clean;    		/* file system is clean flag */
210 	char   	fs_ronly;   		/* mounted read-only flag */
211 	char   	fs_flags;   		/* currently unused flag */
212 	char	fs_fsmnt[MAXMNTLEN];	/* name mounted on */
213 /* these fields retain the current block allocation info */
214 	long	fs_cgrotor;		/* last cg searched */
215 	struct	csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
216 	long	fs_cpc;			/* cyl per cycle in postbl */
217 	short	fs_postbl[MAXCPG][NRPOS];/* head of blocks for each rotation */
218 	long	fs_magic;		/* magic number */
219 	u_char	fs_rotbl[1];		/* list of blocks for each rotation */
220 /* actually longer */
221 };
222 
223 /*
224  * Convert cylinder group to base address of its global summary info.
225  *
226  * N.B. This macro assumes that sizeof(struct csum) is a power of two.
227  */
228 #define fs_cs(fs, indx) \
229 	fs_csp[(indx) / ((fs)->fs_bsize / sizeof(struct csum))] \
230 	[(indx) % ((fs)->fs_bsize / sizeof(struct csum))]
231 
232 /*
233  * MAXBPC bounds the size of the rotational layout tables and
234  * is limited by the fact that the super block is of size SBSIZE.
235  * The size of these tables is INVERSELY proportional to the block
236  * size of the file system. It is aggravated by sector sizes that
237  * are not powers of two, as this increases the number of cylinders
238  * included before the rotational pattern repeats (fs_cpc).
239  * Its size is derived from the number of bytes remaining in (struct fs)
240  */
241 #define	MAXBPC	(SBSIZE - sizeof (struct fs))
242 
243 /*
244  * Cylinder group block for a file system.
245  */
246 #define	CG_MAGIC	0x090255
247 struct	cg {
248 	struct	cg *cg_link;		/* linked list of cyl groups */
249 	struct	cg *cg_rlink;		/*     used for incore cyl groups */
250 	time_t	cg_time;		/* time last written */
251 	long	cg_cgx;			/* we are the cgx'th cylinder group */
252 	short	cg_ncyl;		/* number of cyl's this cg */
253 	short	cg_niblk;		/* number of inode blocks this cg */
254 	long	cg_ndblk;		/* number of data blocks this cg */
255 	struct	csum cg_cs;		/* cylinder summary information */
256 	long	cg_rotor;		/* position of last used block */
257 	long	cg_frotor;		/* position of last used frag */
258 	long	cg_irotor;		/* position of last used inode */
259 	long	cg_frsum[MAXFRAG];	/* counts of available frags */
260 	long	cg_btot[MAXCPG];	/* block totals per cylinder */
261 	short	cg_b[MAXCPG][NRPOS];	/* positions of free blocks */
262 	char	cg_iused[MAXIPG/NBBY];	/* used inode map */
263 	long	cg_magic;		/* magic number */
264 	u_char	cg_free[1];		/* free block map */
265 /* actually longer */
266 };
267 
268 /*
269  * MAXBPG bounds the number of blocks of data per cylinder group,
270  * and is limited by the fact that cylinder groups are at most one block.
271  * Its size is derived from the size of blocks and the (struct cg) size,
272  * by the number of remaining bits.
273  */
274 #define	MAXBPG(fs) \
275 	(NBBY * ((fs)->fs_bsize - (sizeof (struct cg))) / (fs)->fs_frag)
276 
277 /*
278  * Turn file system block numbers into disk block addresses.
279  * This maps file system blocks to device size blocks.
280  */
281 #define fsbtodb(fs, b)	((b) * ((fs)->fs_fsize / DEV_BSIZE))
282 #define	dbtofsb(fs, b)	((b) / ((fs)->fs_fsize / DEV_BSIZE))
283 
284 /*
285  * Cylinder group macros to locate things in cylinder groups.
286  * They calc file system addresses of cylinder group data structures.
287  */
288 #define	cgbase(fs, c)	((daddr_t)((fs)->fs_fpg * (c)))
289 #define cgstart(fs, c) \
290 	(cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask)))
291 #define	cgsblock(fs, c)	(cgstart(fs, c) + (fs)->fs_sblkno)	/* super blk */
292 #define	cgtod(fs, c)	(cgstart(fs, c) + (fs)->fs_cblkno)	/* cg block */
293 #define	cgimin(fs, c)	(cgstart(fs, c) + (fs)->fs_iblkno)	/* inode blk */
294 #define	cgdmin(fs, c)	(cgstart(fs, c) + (fs)->fs_dblkno)	/* 1st data */
295 
296 /*
297  * Macros for handling inode numbers:
298  *     inode number to file system block offset.
299  *     inode number to cylinder group number.
300  *     inode number to file system block address.
301  */
302 #define	itoo(fs, x)	((x) % INOPB(fs))
303 #define	itog(fs, x)	((x) / (fs)->fs_ipg)
304 #define	itod(fs, x) \
305 	((daddr_t)(cgimin(fs, itog(fs, x)) + \
306 	(x) % (fs)->fs_ipg / INOPB(fs) * (fs)->fs_frag))
307 
308 /*
309  * Give cylinder group number for a file system block.
310  * Give cylinder group block number for a file system block.
311  */
312 #define	dtog(fs, d)	((d) / (fs)->fs_fpg)
313 #define	dtogd(fs, d)	((d) % (fs)->fs_fpg)
314 
315 /*
316  * Extract the bits for a block from a map.
317  * Compute the cylinder and rotational position of a cyl block addr.
318  */
319 #define blkmap(fs, map, loc) \
320     (((map)[loc / NBBY] >> (loc % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag)))
321 #define cbtocylno(fs, bno) \
322 	((bno) * NSPF(fs) / (fs)->fs_spc)
323 #define cbtorpos(fs, bno) \
324 	((bno) * NSPF(fs) % (fs)->fs_nsect * NRPOS / (fs)->fs_nsect)
325 
326 /*
327  * The following macros optimize certain frequently calculated
328  * quantities by using shifts and masks in place of divisions
329  * modulos and multiplications.
330  */
331 #define blkoff(fs, loc)		/* calculates (loc % fs->fs_bsize) */ \
332 	((loc) & ~(fs)->fs_bmask)
333 #define fragoff(fs, loc)	/* calculates (loc % fs->fs_fsize) */ \
334 	((loc) & ~(fs)->fs_fmask)
335 #define lblkno(fs, loc)		/* calculates (loc / fs->fs_bsize) */ \
336 	((loc) >> (fs)->fs_bshift)
337 #define numfrags(fs, loc)	/* calculates (loc / fs->fs_fsize) */ \
338 	((loc) >> (fs)->fs_fshift)
339 #define blkroundup(fs, size)	/* calculates roundup(size, fs->fs_bsize) */ \
340 	(((size) + (fs)->fs_bsize - 1) & (fs)->fs_bmask)
341 #define fragroundup(fs, size)	/* calculates roundup(size, fs->fs_fsize) */ \
342 	(((size) + (fs)->fs_fsize - 1) & (fs)->fs_fmask)
343 
344 /*
345  * Determining the size of a file block in the file system.
346  */
347 #define blksize(fs, ip, lbn) \
348 	(((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) * (fs)->fs_bsize) \
349 	    ? (fs)->fs_bsize \
350 	    : (fragroundup(fs, blkoff(fs, (ip)->i_size))))
351 #define dblksize(fs, dip, lbn) \
352 	(((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) * (fs)->fs_bsize) \
353 	    ? (fs)->fs_bsize \
354 	    : (fragroundup(fs, blkoff(fs, (dip)->di_size))))
355 
356 /*
357  * Number of disk sectors per block; assumes DEV_BSIZE byte sector size.
358  */
359 #define	NSPB(fs)	((fs)->fs_bsize / DEV_BSIZE)
360 #define	NSPF(fs)	((fs)->fs_fsize / DEV_BSIZE)
361 
362 /*
363  * INOPB is the number of inodes in a secondary storage block.
364  */
365 #define	INOPB(fs)	((fs)->fs_bsize / sizeof (struct dinode))
366 #define	INOPF(fs)	((fs)->fs_fsize / sizeof (struct dinode))
367 
368 /*
369  * NINDIR is the number of indirects in a file system block.
370  */
371 #define	NINDIR(fs)	((fs)->fs_bsize / sizeof (daddr_t))
372 
373 #ifdef KERNEL
374 struct	fs *getfs();
375 struct	fs *mountfs();
376 #endif
377