xref: /original-bsd/sys/ufs/ffs/ufs_bmap.c (revision 7709318a)
1 /*
2  * Copyright (c) 1989, 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)ufs_bmap.c	7.1 (Berkeley) 10/22/92
8  */
9 
10 #include <sys/param.h>
11 #include <sys/buf.h>
12 #include <sys/proc.h>
13 #include <sys/vnode.h>
14 #include <sys/mount.h>
15 #include <sys/resourcevar.h>
16 #include <sys/trace.h>
17 
18 #include <miscfs/specfs/specdev.h>
19 
20 #include <ufs/ufs/quota.h>
21 #include <ufs/ufs/inode.h>
22 #include <ufs/ufs/ufsmount.h>
23 #include <ufs/ufs/ufs_extern.h>
24 
25 /*
26  * Bmap converts a the logical block number of a file to its physical block
27  * number on the disk. The conversion is done by using the logical block
28  * number to index into the array of block pointers described by the dinode.
29  */
30 int
31 ufs_bmap(ap)
32 	struct vop_bmap_args /* {
33 		struct vnode *a_vp;
34 		daddr_t  a_bn;
35 		struct vnode **a_vpp;
36 		daddr_t *a_bnp;
37 		int *a_runp;
38 	} */ *ap;
39 {
40 	/*
41 	 * Check for underlying vnode requests and ensure that logical
42 	 * to physical mapping is requested.
43 	 */
44 	if (ap->a_vpp != NULL)
45 		*ap->a_vpp = VTOI(ap->a_vp)->i_devvp;
46 	if (ap->a_bnp == NULL)
47 		return (0);
48 
49 	return (ufs_bmaparray(ap->a_vp, ap->a_bn, ap->a_bnp, NULL, NULL,
50 	    ap->a_runp));
51 }
52 
53 /*
54  * Indirect blocks are now on the vnode for the file.  They are given negative
55  * logical block numbers.  Indirect blocks are addressed by the negative
56  * address of the first data block to which they point.  Double indirect blocks
57  * are addressed by one less than the address of the first indirect block to
58  * which they point.  Triple indirect blocks are addressed by one less than
59  * the address of the first double indirect block to which they point.
60  *
61  * ufs_bmaparray does the bmap conversion, and if requested returns the
62  * array of logical blocks which must be traversed to get to a block.
63  * Each entry contains the offset into that block that gets you to the
64  * next block and the disk address of the block (if it is assigned).
65  */
66 
67 int
68 ufs_bmaparray(vp, bn, bnp, ap, nump, runp)
69 	struct vnode *vp;
70 	register daddr_t bn;
71 	daddr_t *bnp;
72 	struct indir *ap;
73 	int *nump;
74 	int *runp;
75 {
76 	register struct inode *ip;
77 	struct buf *bp;
78 	struct ufsmount *ump;
79 	struct mount *mp;
80 	struct vnode *devvp;
81 	struct indir a[NIADDR], *xap;
82 	daddr_t *bap, daddr;
83 	long metalbn;
84 	int bb, error, maxrun, num, off;
85 	struct vop_strategy_args vop_strategy_a;
86 
87 	ip = VTOI(vp);
88 	mp = vp->v_mount;
89 	ump = VFSTOUFS(mp);
90 #ifdef DIAGNOSTIC
91 	if (ap != NULL && nump == NULL || ap == NULL && nump != NULL)
92 		panic("ufs_bmaparray: invalid arguments");
93 #endif
94 
95 	if (runp) {
96 		/*
97 		 * XXX If MAXBSIZE is the largest transfer the disks can
98 		 * handle, we probably want maxrun to be 1 block less so
99 		 * that we don't create a block larger than the device
100 		 * can handle.
101 		 */
102 		*runp = 0;
103 		maxrun = MAXBSIZE / mp->mnt_stat.f_iosize -
104 		    (MAXBSIZE < 64 * 1024 ? 1 : 2);
105 	}
106 
107 	xap = ap == NULL ? a : ap;
108 	if (!nump)
109 		nump = &num;
110 	if (error = ufs_getlbns(vp, bn, xap, nump))
111 		return (error);
112 
113 	num = *nump;
114 	if (num == 0) {
115 		*bnp = blkptrtodb(ump, ip->i_db[bn]);
116 		if (*bnp == 0)
117 			*bnp = -1;
118 		else if (runp) {
119 			for (++bn; bn < NDADDR && *runp < maxrun &&
120 			    is_sequential(ump, ip->i_db[bn - 1], ip->i_db[bn]);
121 			    ++bn, ++*runp);
122 			printf ("ufs_bmaparray: runlength = %d\n", *runp);
123 		}
124 		return (0);
125 	}
126 
127 
128 	/* Get disk address out of indirect block array */
129 	daddr = ip->i_ib[xap->in_off];
130 
131 	/* Fetch through the indirect blocks. */
132 	devvp = VFSTOUFS(vp->v_mount)->um_devvp;
133 
134 	for (bp = NULL, ++xap; --num; ++xap) {
135 		/*
136 		 * Exit the loop if there is no disk address assigned yet and
137 		 * the indirect block isn't in the cache, or if we were
138 		 * looking for an indirect block and we've found it.
139 		 */
140 
141 		metalbn = xap->in_lbn;
142 		if (daddr == 0 && !incore(vp, metalbn) || metalbn == bn)
143 			break;
144 		/*
145 		 * If we get here, we've either got the block in the cache
146 		 * or we have a disk address for it, go fetch it.
147 		 */
148 		if (bp)
149 			brelse(bp);
150 
151 		xap->in_exists = 1;
152 		bp = getblk(vp, metalbn, mp->mnt_stat.f_iosize);
153 		if (bp->b_flags & (B_DONE | B_DELWRI)) {
154 			trace(TR_BREADHIT, pack(vp, size), metalbn);
155 		}
156 #ifdef DIAGNOSTIC
157 		else if (!daddr)
158 			panic("ufs_bmaparry: indirect block not in cache");
159 #endif
160 		else {
161 			trace(TR_BREADMISS, pack(vp, size), metalbn);
162 			bp->b_blkno = blkptrtodb(ump, daddr);
163 			bp->b_flags |= B_READ;
164 			VOP_STRATEGY(bp);
165 			curproc->p_stats->p_ru.ru_inblock++;	/* XXX */
166 			if (error = biowait(bp)) {
167 				brelse(bp);
168 				return (error);
169 			}
170 		}
171 
172 		daddr = bp->b_un.b_daddr[xap->in_off];
173 		if (num == 1 && daddr && runp) {
174 			for (bn = xap->in_off + 1;
175 			    bn < MNINDIR(ump) && *runp < maxrun &&
176 			    is_sequential(ump, bp->b_un.b_daddr[bn - 1],
177 			    bp->b_un.b_daddr[bn]);
178 			    ++bn, ++*runp);
179 			printf ("ufs_bmaparray: runlength = %d\n", *runp);
180 		}
181 	}
182 	if (bp)
183 		brelse(bp);
184 
185 	daddr = blkptrtodb(ump, daddr);
186 	*bnp = daddr == 0 ? -1 : daddr;
187 	return (0);
188 }
189 
190 /*
191  * Create an array of logical block number/offset pairs which represent the
192  * path of indirect blocks required to access a data block.  The first "pair"
193  * contains the logical block number of the appropriate single, double or
194  * triple indirect block and the offset into the inode indirect block array.
195  * Note, the logical block number of the inode single/double/triple indirect
196  * block appears twice in the array, once with the offset into the i_ib and
197  * once with the offset into the page itself.
198  */
199 int
200 ufs_getlbns(vp, bn, ap, nump)
201 	struct vnode *vp;
202 	register daddr_t bn;
203 	struct indir *ap;
204 	int *nump;
205 {
206 	long metalbn, realbn;
207 	struct ufsmount *ump;
208 	int j, numlevels, off, sh;
209 
210 	ump = VFSTOUFS(vp->v_mount);
211 	if (nump)
212 		*nump = 0;
213 	numlevels = 0;
214 	realbn = bn;
215 	if ((long)bn < 0)
216 		bn = -(long)bn;
217 
218 	/* The first NDADDR blocks are direct blocks. */
219 	if (bn < NDADDR)
220 		return (0);
221 
222 	/*
223 	 * Determine the number of levels of indirection.  After this loop
224 	 * is done, sh indicates the number of data blocks possible at the
225 	 * given level of indirection, and NIADDR - j is the number of levels
226 	 * of indirection needed to locate the requested block.
227 	 */
228 	bn -= NDADDR;
229 	sh = 1;
230 	for (j = NIADDR; j > 0; j--) {
231 		sh *= MNINDIR(ump);
232 		if (bn < sh)
233 			break;
234 		bn -= sh;
235 	}
236 	if (j == 0)
237 		return (EFBIG);
238 
239 	/* Calculate the address of the first meta-block. */
240 	if (realbn >= 0)
241 		metalbn = -(realbn - bn + NIADDR - j);
242 	else
243 		metalbn = -(-realbn - bn + NIADDR - j);
244 
245 	/*
246 	 * At each iteration, off is the offset into the bap array which is
247 	 * an array of disk addresses at the current level of indirection.
248 	 * The logical block number and the offset in that block are stored
249 	 * into the argument array.
250 	 */
251 	++numlevels;
252 	ap->in_lbn = metalbn;
253 	ap->in_off = off = NIADDR - j;
254 	ap->in_exists = 0;
255 	ap++;
256 	for (; j <= NIADDR; j++) {
257 		/* If searching for a meta-data block, quit when found. */
258 		if (metalbn == realbn)
259 			break;
260 
261 		sh /= MNINDIR(ump);
262 		off = (bn / sh) % MNINDIR(ump);
263 
264 		++numlevels;
265 		ap->in_lbn = metalbn;
266 		ap->in_off = off;
267 		ap->in_exists = 0;
268 		++ap;
269 
270 		metalbn -= -1 + off * sh;
271 	}
272 	if (nump)
273 		*nump = numlevels;
274 	return (0);
275 }
276