xref: /original-bsd/sys/ufs/lfs/lfs_alloc.c (revision 2a4161ef)
1 /*
2  * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  *	@(#)lfs_alloc.c	7.16 (Berkeley) 01/05/90
18  */
19 
20 #include "param.h"
21 #include "systm.h"
22 #include "mount.h"
23 #include "buf.h"
24 #include "user.h"
25 #include "vnode.h"
26 #include "kernel.h"
27 #include "syslog.h"
28 #include "cmap.h"
29 #include "../ufs/quota.h"
30 #include "../ufs/inode.h"
31 #include "../ufs/fs.h"
32 
33 extern u_long		hashalloc();
34 extern ino_t		ialloccg();
35 extern daddr_t		alloccg();
36 extern daddr_t		alloccgblk();
37 extern daddr_t		fragextend();
38 extern daddr_t		blkpref();
39 extern daddr_t		mapsearch();
40 extern int		inside[], around[];
41 extern unsigned char	*fragtbl[];
42 
43 /*
44  * Allocate a block in the file system.
45  *
46  * The size of the requested block is given, which must be some
47  * multiple of fs_fsize and <= fs_bsize.
48  * A preference may be optionally specified. If a preference is given
49  * the following hierarchy is used to allocate a block:
50  *   1) allocate the requested block.
51  *   2) allocate a rotationally optimal block in the same cylinder.
52  *   3) allocate a block in the same cylinder group.
53  *   4) quadradically rehash into other cylinder groups, until an
54  *      available block is located.
55  * If no block preference is given the following heirarchy is used
56  * to allocate a block:
57  *   1) allocate a block in the cylinder group that contains the
58  *      inode for the file.
59  *   2) quadradically rehash into other cylinder groups, until an
60  *      available block is located.
61  */
62 alloc(ip, lbn, bpref, size, bnp)
63 	register struct inode *ip;
64 	daddr_t lbn, bpref;
65 	int size;
66 	daddr_t *bnp;
67 {
68 	daddr_t bno;
69 	register struct fs *fs;
70 	register struct buf *bp;
71 	int cg, error;
72 
73 	*bnp = 0;
74 	fs = ip->i_fs;
75 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
76 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
77 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
78 		panic("alloc: bad size");
79 	}
80 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
81 		goto nospace;
82 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
83 		goto nospace;
84 #ifdef QUOTA
85 	if (error = chkdq(ip, (long)btodb(size), 0))
86 		return (error);
87 #endif
88 	if (bpref >= fs->fs_size)
89 		bpref = 0;
90 	if (bpref == 0)
91 		cg = itog(fs, ip->i_number);
92 	else
93 		cg = dtog(fs, bpref);
94 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
95 		(u_long (*)())alloccg);
96 	if (bno > 0) {
97 		ip->i_blocks += btodb(size);
98 		ip->i_flag |= IUPD|ICHG;
99 		*bnp = bno;
100 		return (0);
101 	}
102 nospace:
103 	fserr(fs, "file system full");
104 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
105 	return (ENOSPC);
106 }
107 
108 /*
109  * Reallocate a fragment to a bigger size
110  *
111  * The number and size of the old block is given, and a preference
112  * and new size is also specified. The allocator attempts to extend
113  * the original block. Failing that, the regular block allocator is
114  * invoked to get an appropriate block.
115  */
116 realloccg(ip, lbprev, bpref, osize, nsize, bpp)
117 	register struct inode *ip;
118 	off_t lbprev;
119 	daddr_t bpref;
120 	int osize, nsize;
121 	struct buf **bpp;
122 {
123 	register struct fs *fs;
124 	struct buf *bp, *obp;
125 	int cg, request;
126 	daddr_t bprev, bno, bn;
127 	int i, error, count;
128 
129 	*bpp = 0;
130 	fs = ip->i_fs;
131 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
132 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
133 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
134 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
135 		panic("realloccg: bad size");
136 	}
137 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
138 		goto nospace;
139 	if ((bprev = ip->i_db[lbprev]) == 0) {
140 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
141 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
142 		panic("realloccg: bad bprev");
143 	}
144 #ifdef QUOTA
145 	if (error = chkdq(ip, (long)btodb(nsize - osize), 0))
146 		return (error);
147 #endif
148 	/*
149 	 * Allocate the extra space in the buffer.
150 	 */
151 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
152 		brelse(bp);
153 		return (error);
154 	}
155 	brealloc(bp, nsize);
156 	bp->b_flags |= B_DONE;
157 	bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
158 	/*
159 	 * Check for extension in the existing location.
160 	 */
161 	cg = dtog(fs, bprev);
162 	if (bno = fragextend(ip, cg, (long)bprev, osize, nsize)) {
163 		if (bp->b_blkno != fsbtodb(fs, bno))
164 			panic("bad blockno");
165 		ip->i_blocks += btodb(nsize - osize);
166 		ip->i_flag |= IUPD|ICHG;
167 		*bpp = bp;
168 		return (0);
169 	}
170 	/*
171 	 * Allocate a new disk location.
172 	 */
173 	if (bpref >= fs->fs_size)
174 		bpref = 0;
175 	switch ((int)fs->fs_optim) {
176 	case FS_OPTSPACE:
177 		/*
178 		 * Allocate an exact sized fragment. Although this makes
179 		 * best use of space, we will waste time relocating it if
180 		 * the file continues to grow. If the fragmentation is
181 		 * less than half of the minimum free reserve, we choose
182 		 * to begin optimizing for time.
183 		 */
184 		request = nsize;
185 		if (fs->fs_minfree < 5 ||
186 		    fs->fs_cstotal.cs_nffree >
187 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
188 			break;
189 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
190 			fs->fs_fsmnt);
191 		fs->fs_optim = FS_OPTTIME;
192 		break;
193 	case FS_OPTTIME:
194 		/*
195 		 * At this point we have discovered a file that is trying
196 		 * to grow a small fragment to a larger fragment. To save
197 		 * time, we allocate a full sized block, then free the
198 		 * unused portion. If the file continues to grow, the
199 		 * `fragextend' call above will be able to grow it in place
200 		 * without further copying. If aberrant programs cause
201 		 * disk fragmentation to grow within 2% of the free reserve,
202 		 * we choose to begin optimizing for space.
203 		 */
204 		request = fs->fs_bsize;
205 		if (fs->fs_cstotal.cs_nffree <
206 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
207 			break;
208 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
209 			fs->fs_fsmnt);
210 		fs->fs_optim = FS_OPTSPACE;
211 		break;
212 	default:
213 		printf("dev = 0x%x, optim = %d, fs = %s\n",
214 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
215 		panic("realloccg: bad optim");
216 		/* NOTREACHED */
217 	}
218 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
219 		(u_long (*)())alloccg);
220 	if (bno > 0) {
221 		bp->b_blkno = bn = fsbtodb(fs, bno);
222 		count = howmany(osize, CLBYTES);
223 		for (i = 0; i < count; i++)
224 			munhash(ip->i_devvp, bn + i * CLBYTES / DEV_BSIZE);
225 		blkfree(ip, bprev, (off_t)osize);
226 		if (nsize < request)
227 			blkfree(ip, bno + numfrags(fs, nsize),
228 				(off_t)(request - nsize));
229 		ip->i_blocks += btodb(nsize - osize);
230 		ip->i_flag |= IUPD|ICHG;
231 		*bpp = bp;
232 		return (0);
233 	}
234 	brelse(bp);
235 nospace:
236 	/*
237 	 * no space available
238 	 */
239 	fserr(fs, "file system full");
240 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
241 	return (ENOSPC);
242 }
243 
244 /*
245  * Allocate an inode in the file system.
246  *
247  * A preference may be optionally specified. If a preference is given
248  * the following hierarchy is used to allocate an inode:
249  *   1) allocate the requested inode.
250  *   2) allocate an inode in the same cylinder group.
251  *   3) quadradically rehash into other cylinder groups, until an
252  *      available inode is located.
253  * If no inode preference is given the following heirarchy is used
254  * to allocate an inode:
255  *   1) allocate an inode in cylinder group 0.
256  *   2) quadradically rehash into other cylinder groups, until an
257  *      available inode is located.
258  */
259 ialloc(pip, ipref, mode, ipp)
260 	register struct inode *pip;
261 	ino_t ipref;
262 	int mode;
263 	struct inode **ipp;
264 {
265 	ino_t ino;
266 	register struct fs *fs;
267 	register struct inode *ip;
268 	int cg, error;
269 
270 	*ipp = 0;
271 	fs = pip->i_fs;
272 	if (fs->fs_cstotal.cs_nifree == 0)
273 		goto noinodes;
274 #ifdef QUOTA
275 	if (error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0))
276 		return (error);
277 #endif
278 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
279 		ipref = 0;
280 	cg = itog(fs, ipref);
281 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
282 	if (ino == 0)
283 		goto noinodes;
284 	error = iget(pip, ino, ipp);
285 	if (error) {
286 		ifree(pip, ino, 0);
287 		return (error);
288 	}
289 	ip = *ipp;
290 	if (ip->i_mode) {
291 		printf("mode = 0%o, inum = %d, fs = %s\n",
292 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
293 		panic("ialloc: dup alloc");
294 	}
295 	if (ip->i_blocks) {				/* XXX */
296 		printf("free inode %s/%d had %d blocks\n",
297 		    fs->fs_fsmnt, ino, ip->i_blocks);
298 		ip->i_blocks = 0;
299 	}
300 	ip->i_flags = 0;
301 	/*
302 	 * Set up a new generation number for this inode.
303 	 */
304 	if (++nextgennumber < (u_long)time.tv_sec)
305 		nextgennumber = time.tv_sec;
306 	ip->i_gen = nextgennumber;
307 	return (0);
308 noinodes:
309 	fserr(fs, "out of inodes");
310 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
311 	return (ENOSPC);
312 }
313 
314 /*
315  * Find a cylinder to place a directory.
316  *
317  * The policy implemented by this algorithm is to select from
318  * among those cylinder groups with above the average number of
319  * free inodes, the one with the smallest number of directories.
320  */
321 ino_t
322 dirpref(fs)
323 	register struct fs *fs;
324 {
325 	int cg, minndir, mincg, avgifree;
326 
327 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
328 	minndir = fs->fs_ipg;
329 	mincg = 0;
330 	for (cg = 0; cg < fs->fs_ncg; cg++)
331 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
332 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
333 			mincg = cg;
334 			minndir = fs->fs_cs(fs, cg).cs_ndir;
335 		}
336 	return ((ino_t)(fs->fs_ipg * mincg));
337 }
338 
339 /*
340  * Select the desired position for the next block in a file.  The file is
341  * logically divided into sections. The first section is composed of the
342  * direct blocks. Each additional section contains fs_maxbpg blocks.
343  *
344  * If no blocks have been allocated in the first section, the policy is to
345  * request a block in the same cylinder group as the inode that describes
346  * the file. If no blocks have been allocated in any other section, the
347  * policy is to place the section in a cylinder group with a greater than
348  * average number of free blocks.  An appropriate cylinder group is found
349  * by using a rotor that sweeps the cylinder groups. When a new group of
350  * blocks is needed, the sweep begins in the cylinder group following the
351  * cylinder group from which the previous allocation was made. The sweep
352  * continues until a cylinder group with greater than the average number
353  * of free blocks is found. If the allocation is for the first block in an
354  * indirect block, the information on the previous allocation is unavailable;
355  * here a best guess is made based upon the logical block number being
356  * allocated.
357  *
358  * If a section is already partially allocated, the policy is to
359  * contiguously allocate fs_maxcontig blocks.  The end of one of these
360  * contiguous blocks and the beginning of the next is physically separated
361  * so that the disk head will be in transit between them for at least
362  * fs_rotdelay milliseconds.  This is to allow time for the processor to
363  * schedule another I/O transfer.
364  */
365 daddr_t
366 blkpref(ip, lbn, indx, bap)
367 	struct inode *ip;
368 	daddr_t lbn;
369 	int indx;
370 	daddr_t *bap;
371 {
372 	register struct fs *fs;
373 	register int cg;
374 	int avgbfree, startcg;
375 	daddr_t nextblk;
376 
377 	fs = ip->i_fs;
378 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
379 		if (lbn < NDADDR) {
380 			cg = itog(fs, ip->i_number);
381 			return (fs->fs_fpg * cg + fs->fs_frag);
382 		}
383 		/*
384 		 * Find a cylinder with greater than average number of
385 		 * unused data blocks.
386 		 */
387 		if (indx == 0 || bap[indx - 1] == 0)
388 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
389 		else
390 			startcg = dtog(fs, bap[indx - 1]) + 1;
391 		startcg %= fs->fs_ncg;
392 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
393 		for (cg = startcg; cg < fs->fs_ncg; cg++)
394 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
395 				fs->fs_cgrotor = cg;
396 				return (fs->fs_fpg * cg + fs->fs_frag);
397 			}
398 		for (cg = 0; cg <= startcg; cg++)
399 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
400 				fs->fs_cgrotor = cg;
401 				return (fs->fs_fpg * cg + fs->fs_frag);
402 			}
403 		return (NULL);
404 	}
405 	/*
406 	 * One or more previous blocks have been laid out. If less
407 	 * than fs_maxcontig previous blocks are contiguous, the
408 	 * next block is requested contiguously, otherwise it is
409 	 * requested rotationally delayed by fs_rotdelay milliseconds.
410 	 */
411 	nextblk = bap[indx - 1] + fs->fs_frag;
412 	if (indx > fs->fs_maxcontig &&
413 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
414 	    != nextblk)
415 		return (nextblk);
416 	if (fs->fs_rotdelay != 0)
417 		/*
418 		 * Here we convert ms of delay to frags as:
419 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
420 		 *	((sect/frag) * (ms/sec))
421 		 * then round up to the next block.
422 		 */
423 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
424 		    (NSPF(fs) * 1000), fs->fs_frag);
425 	return (nextblk);
426 }
427 
428 /*
429  * Implement the cylinder overflow algorithm.
430  *
431  * The policy implemented by this algorithm is:
432  *   1) allocate the block in its requested cylinder group.
433  *   2) quadradically rehash on the cylinder group number.
434  *   3) brute force search for a free block.
435  */
436 /*VARARGS5*/
437 u_long
438 hashalloc(ip, cg, pref, size, allocator)
439 	struct inode *ip;
440 	int cg;
441 	long pref;
442 	int size;	/* size for data blocks, mode for inodes */
443 	u_long (*allocator)();
444 {
445 	register struct fs *fs;
446 	long result;
447 	int i, icg = cg;
448 
449 	fs = ip->i_fs;
450 	/*
451 	 * 1: preferred cylinder group
452 	 */
453 	result = (*allocator)(ip, cg, pref, size);
454 	if (result)
455 		return (result);
456 	/*
457 	 * 2: quadratic rehash
458 	 */
459 	for (i = 1; i < fs->fs_ncg; i *= 2) {
460 		cg += i;
461 		if (cg >= fs->fs_ncg)
462 			cg -= fs->fs_ncg;
463 		result = (*allocator)(ip, cg, 0, size);
464 		if (result)
465 			return (result);
466 	}
467 	/*
468 	 * 3: brute force search
469 	 * Note that we start at i == 2, since 0 was checked initially,
470 	 * and 1 is always checked in the quadratic rehash.
471 	 */
472 	cg = (icg + 2) % fs->fs_ncg;
473 	for (i = 2; i < fs->fs_ncg; i++) {
474 		result = (*allocator)(ip, cg, 0, size);
475 		if (result)
476 			return (result);
477 		cg++;
478 		if (cg == fs->fs_ncg)
479 			cg = 0;
480 	}
481 	return (NULL);
482 }
483 
484 /*
485  * Determine whether a fragment can be extended.
486  *
487  * Check to see if the necessary fragments are available, and
488  * if they are, allocate them.
489  */
490 daddr_t
491 fragextend(ip, cg, bprev, osize, nsize)
492 	struct inode *ip;
493 	int cg;
494 	long bprev;
495 	int osize, nsize;
496 {
497 	register struct fs *fs;
498 	register struct cg *cgp;
499 	struct buf *bp;
500 	long bno;
501 	int frags, bbase;
502 	int i, error;
503 
504 	fs = ip->i_fs;
505 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
506 		return (NULL);
507 	frags = numfrags(fs, nsize);
508 	bbase = fragnum(fs, bprev);
509 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
510 		/* cannot extend across a block boundary */
511 		return (NULL);
512 	}
513 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
514 		(int)fs->fs_cgsize, NOCRED, &bp);
515 	if (error) {
516 		brelse(bp);
517 		return (NULL);
518 	}
519 	cgp = bp->b_un.b_cg;
520 	if (!cg_chkmagic(cgp)) {
521 		brelse(bp);
522 		return (NULL);
523 	}
524 	cgp->cg_time = time.tv_sec;
525 	bno = dtogd(fs, bprev);
526 	for (i = numfrags(fs, osize); i < frags; i++)
527 		if (isclr(cg_blksfree(cgp), bno + i)) {
528 			brelse(bp);
529 			return (NULL);
530 		}
531 	/*
532 	 * the current fragment can be extended
533 	 * deduct the count on fragment being extended into
534 	 * increase the count on the remaining fragment (if any)
535 	 * allocate the extended piece
536 	 */
537 	for (i = frags; i < fs->fs_frag - bbase; i++)
538 		if (isclr(cg_blksfree(cgp), bno + i))
539 			break;
540 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
541 	if (i != frags)
542 		cgp->cg_frsum[i - frags]++;
543 	for (i = numfrags(fs, osize); i < frags; i++) {
544 		clrbit(cg_blksfree(cgp), bno + i);
545 		cgp->cg_cs.cs_nffree--;
546 		fs->fs_cstotal.cs_nffree--;
547 		fs->fs_cs(fs, cg).cs_nffree--;
548 	}
549 	fs->fs_fmod++;
550 	bdwrite(bp);
551 	return (bprev);
552 }
553 
554 /*
555  * Determine whether a block can be allocated.
556  *
557  * Check to see if a block of the apprpriate size is available,
558  * and if it is, allocate it.
559  */
560 daddr_t
561 alloccg(ip, cg, bpref, size)
562 	struct inode *ip;
563 	int cg;
564 	daddr_t bpref;
565 	int size;
566 {
567 	register struct fs *fs;
568 	register struct cg *cgp;
569 	struct buf *bp;
570 	register int i;
571 	int error, bno, frags, allocsiz;
572 
573 	fs = ip->i_fs;
574 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
575 		return (NULL);
576 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
577 		(int)fs->fs_cgsize, NOCRED, &bp);
578 	if (error) {
579 		brelse(bp);
580 		return (NULL);
581 	}
582 	cgp = bp->b_un.b_cg;
583 	if (!cg_chkmagic(cgp) ||
584 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
585 		brelse(bp);
586 		return (NULL);
587 	}
588 	cgp->cg_time = time.tv_sec;
589 	if (size == fs->fs_bsize) {
590 		bno = alloccgblk(fs, cgp, bpref);
591 		bdwrite(bp);
592 		return (bno);
593 	}
594 	/*
595 	 * check to see if any fragments are already available
596 	 * allocsiz is the size which will be allocated, hacking
597 	 * it down to a smaller size if necessary
598 	 */
599 	frags = numfrags(fs, size);
600 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
601 		if (cgp->cg_frsum[allocsiz] != 0)
602 			break;
603 	if (allocsiz == fs->fs_frag) {
604 		/*
605 		 * no fragments were available, so a block will be
606 		 * allocated, and hacked up
607 		 */
608 		if (cgp->cg_cs.cs_nbfree == 0) {
609 			brelse(bp);
610 			return (NULL);
611 		}
612 		bno = alloccgblk(fs, cgp, bpref);
613 		bpref = dtogd(fs, bno);
614 		for (i = frags; i < fs->fs_frag; i++)
615 			setbit(cg_blksfree(cgp), bpref + i);
616 		i = fs->fs_frag - frags;
617 		cgp->cg_cs.cs_nffree += i;
618 		fs->fs_cstotal.cs_nffree += i;
619 		fs->fs_cs(fs, cg).cs_nffree += i;
620 		fs->fs_fmod++;
621 		cgp->cg_frsum[i]++;
622 		bdwrite(bp);
623 		return (bno);
624 	}
625 	bno = mapsearch(fs, cgp, bpref, allocsiz);
626 	if (bno < 0) {
627 		brelse(bp);
628 		return (NULL);
629 	}
630 	for (i = 0; i < frags; i++)
631 		clrbit(cg_blksfree(cgp), bno + i);
632 	cgp->cg_cs.cs_nffree -= frags;
633 	fs->fs_cstotal.cs_nffree -= frags;
634 	fs->fs_cs(fs, cg).cs_nffree -= frags;
635 	fs->fs_fmod++;
636 	cgp->cg_frsum[allocsiz]--;
637 	if (frags != allocsiz)
638 		cgp->cg_frsum[allocsiz - frags]++;
639 	bdwrite(bp);
640 	return (cg * fs->fs_fpg + bno);
641 }
642 
643 /*
644  * Allocate a block in a cylinder group.
645  *
646  * This algorithm implements the following policy:
647  *   1) allocate the requested block.
648  *   2) allocate a rotationally optimal block in the same cylinder.
649  *   3) allocate the next available block on the block rotor for the
650  *      specified cylinder group.
651  * Note that this routine only allocates fs_bsize blocks; these
652  * blocks may be fragmented by the routine that allocates them.
653  */
654 daddr_t
655 alloccgblk(fs, cgp, bpref)
656 	register struct fs *fs;
657 	register struct cg *cgp;
658 	daddr_t bpref;
659 {
660 	daddr_t bno;
661 	int cylno, pos, delta;
662 	short *cylbp;
663 	register int i;
664 
665 	if (bpref == 0) {
666 		bpref = cgp->cg_rotor;
667 		goto norot;
668 	}
669 	bpref = blknum(fs, bpref);
670 	bpref = dtogd(fs, bpref);
671 	/*
672 	 * if the requested block is available, use it
673 	 */
674 	if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
675 		bno = bpref;
676 		goto gotit;
677 	}
678 	/*
679 	 * check for a block available on the same cylinder
680 	 */
681 	cylno = cbtocylno(fs, bpref);
682 	if (cg_blktot(cgp)[cylno] == 0)
683 		goto norot;
684 	if (fs->fs_cpc == 0) {
685 		/*
686 		 * block layout info is not available, so just have
687 		 * to take any block in this cylinder.
688 		 */
689 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
690 		goto norot;
691 	}
692 	/*
693 	 * check the summary information to see if a block is
694 	 * available in the requested cylinder starting at the
695 	 * requested rotational position and proceeding around.
696 	 */
697 	cylbp = cg_blks(fs, cgp, cylno);
698 	pos = cbtorpos(fs, bpref);
699 	for (i = pos; i < fs->fs_nrpos; i++)
700 		if (cylbp[i] > 0)
701 			break;
702 	if (i == fs->fs_nrpos)
703 		for (i = 0; i < pos; i++)
704 			if (cylbp[i] > 0)
705 				break;
706 	if (cylbp[i] > 0) {
707 		/*
708 		 * found a rotational position, now find the actual
709 		 * block. A panic if none is actually there.
710 		 */
711 		pos = cylno % fs->fs_cpc;
712 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
713 		if (fs_postbl(fs, pos)[i] == -1) {
714 			printf("pos = %d, i = %d, fs = %s\n",
715 			    pos, i, fs->fs_fsmnt);
716 			panic("alloccgblk: cyl groups corrupted");
717 		}
718 		for (i = fs_postbl(fs, pos)[i];; ) {
719 			if (isblock(fs, cg_blksfree(cgp), bno + i)) {
720 				bno = blkstofrags(fs, (bno + i));
721 				goto gotit;
722 			}
723 			delta = fs_rotbl(fs)[i];
724 			if (delta <= 0 ||
725 			    delta + i > fragstoblks(fs, fs->fs_fpg))
726 				break;
727 			i += delta;
728 		}
729 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
730 		panic("alloccgblk: can't find blk in cyl");
731 	}
732 norot:
733 	/*
734 	 * no blocks in the requested cylinder, so take next
735 	 * available one in this cylinder group.
736 	 */
737 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
738 	if (bno < 0)
739 		return (NULL);
740 	cgp->cg_rotor = bno;
741 gotit:
742 	clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno));
743 	cgp->cg_cs.cs_nbfree--;
744 	fs->fs_cstotal.cs_nbfree--;
745 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
746 	cylno = cbtocylno(fs, bno);
747 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
748 	cg_blktot(cgp)[cylno]--;
749 	fs->fs_fmod++;
750 	return (cgp->cg_cgx * fs->fs_fpg + bno);
751 }
752 
753 /*
754  * Determine whether an inode can be allocated.
755  *
756  * Check to see if an inode is available, and if it is,
757  * allocate it using the following policy:
758  *   1) allocate the requested inode.
759  *   2) allocate the next available inode after the requested
760  *      inode in the specified cylinder group.
761  */
762 ino_t
763 ialloccg(ip, cg, ipref, mode)
764 	struct inode *ip;
765 	int cg;
766 	daddr_t ipref;
767 	int mode;
768 {
769 	register struct fs *fs;
770 	register struct cg *cgp;
771 	struct buf *bp;
772 	int error, start, len, loc, map, i;
773 
774 	fs = ip->i_fs;
775 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
776 		return (NULL);
777 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
778 		(int)fs->fs_cgsize, NOCRED, &bp);
779 	if (error) {
780 		brelse(bp);
781 		return (NULL);
782 	}
783 	cgp = bp->b_un.b_cg;
784 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
785 		brelse(bp);
786 		return (NULL);
787 	}
788 	cgp->cg_time = time.tv_sec;
789 	if (ipref) {
790 		ipref %= fs->fs_ipg;
791 		if (isclr(cg_inosused(cgp), ipref))
792 			goto gotit;
793 	}
794 	start = cgp->cg_irotor / NBBY;
795 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
796 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
797 	if (loc == 0) {
798 		len = start + 1;
799 		start = 0;
800 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
801 		if (loc == 0) {
802 			printf("cg = %s, irotor = %d, fs = %s\n",
803 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
804 			panic("ialloccg: map corrupted");
805 			/* NOTREACHED */
806 		}
807 	}
808 	i = start + len - loc;
809 	map = cg_inosused(cgp)[i];
810 	ipref = i * NBBY;
811 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
812 		if ((map & i) == 0) {
813 			cgp->cg_irotor = ipref;
814 			goto gotit;
815 		}
816 	}
817 	printf("fs = %s\n", fs->fs_fsmnt);
818 	panic("ialloccg: block not in map");
819 	/* NOTREACHED */
820 gotit:
821 	setbit(cg_inosused(cgp), ipref);
822 	cgp->cg_cs.cs_nifree--;
823 	fs->fs_cstotal.cs_nifree--;
824 	fs->fs_cs(fs, cg).cs_nifree--;
825 	fs->fs_fmod++;
826 	if ((mode & IFMT) == IFDIR) {
827 		cgp->cg_cs.cs_ndir++;
828 		fs->fs_cstotal.cs_ndir++;
829 		fs->fs_cs(fs, cg).cs_ndir++;
830 	}
831 	bdwrite(bp);
832 	return (cg * fs->fs_ipg + ipref);
833 }
834 
835 /*
836  * Free a block or fragment.
837  *
838  * The specified block or fragment is placed back in the
839  * free map. If a fragment is deallocated, a possible
840  * block reassembly is checked.
841  */
842 blkfree(ip, bno, size)
843 	register struct inode *ip;
844 	daddr_t bno;
845 	off_t size;
846 {
847 	register struct fs *fs;
848 	register struct cg *cgp;
849 	struct buf *bp;
850 	int error, cg, blk, frags, bbase;
851 	register int i;
852 
853 	fs = ip->i_fs;
854 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
855 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
856 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
857 		panic("blkfree: bad size");
858 	}
859 	cg = dtog(fs, bno);
860 	if (badblock(fs, bno)) {
861 		printf("bad block %d, ino %d\n", bno, ip->i_number);
862 		return;
863 	}
864 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
865 		(int)fs->fs_cgsize, NOCRED, &bp);
866 	if (error) {
867 		brelse(bp);
868 		return;
869 	}
870 	cgp = bp->b_un.b_cg;
871 	if (!cg_chkmagic(cgp)) {
872 		brelse(bp);
873 		return;
874 	}
875 	cgp->cg_time = time.tv_sec;
876 	bno = dtogd(fs, bno);
877 	if (size == fs->fs_bsize) {
878 		if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) {
879 			printf("dev = 0x%x, block = %d, fs = %s\n",
880 			    ip->i_dev, bno, fs->fs_fsmnt);
881 			panic("blkfree: freeing free block");
882 		}
883 		setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
884 		cgp->cg_cs.cs_nbfree++;
885 		fs->fs_cstotal.cs_nbfree++;
886 		fs->fs_cs(fs, cg).cs_nbfree++;
887 		i = cbtocylno(fs, bno);
888 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
889 		cg_blktot(cgp)[i]++;
890 	} else {
891 		bbase = bno - fragnum(fs, bno);
892 		/*
893 		 * decrement the counts associated with the old frags
894 		 */
895 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
896 		fragacct(fs, blk, cgp->cg_frsum, -1);
897 		/*
898 		 * deallocate the fragment
899 		 */
900 		frags = numfrags(fs, size);
901 		for (i = 0; i < frags; i++) {
902 			if (isset(cg_blksfree(cgp), bno + i)) {
903 				printf("dev = 0x%x, block = %d, fs = %s\n",
904 				    ip->i_dev, bno + i, fs->fs_fsmnt);
905 				panic("blkfree: freeing free frag");
906 			}
907 			setbit(cg_blksfree(cgp), bno + i);
908 		}
909 		cgp->cg_cs.cs_nffree += i;
910 		fs->fs_cstotal.cs_nffree += i;
911 		fs->fs_cs(fs, cg).cs_nffree += i;
912 		/*
913 		 * add back in counts associated with the new frags
914 		 */
915 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
916 		fragacct(fs, blk, cgp->cg_frsum, 1);
917 		/*
918 		 * if a complete block has been reassembled, account for it
919 		 */
920 		if (isblock(fs, cg_blksfree(cgp),
921 		    (daddr_t)fragstoblks(fs, bbase))) {
922 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
923 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
924 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
925 			cgp->cg_cs.cs_nbfree++;
926 			fs->fs_cstotal.cs_nbfree++;
927 			fs->fs_cs(fs, cg).cs_nbfree++;
928 			i = cbtocylno(fs, bbase);
929 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
930 			cg_blktot(cgp)[i]++;
931 		}
932 	}
933 	fs->fs_fmod++;
934 	bdwrite(bp);
935 }
936 
937 /*
938  * Free an inode.
939  *
940  * The specified inode is placed back in the free map.
941  */
942 ifree(ip, ino, mode)
943 	struct inode *ip;
944 	ino_t ino;
945 	int mode;
946 {
947 	register struct fs *fs;
948 	register struct cg *cgp;
949 	struct buf *bp;
950 	int error, cg;
951 
952 	fs = ip->i_fs;
953 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
954 		printf("dev = 0x%x, ino = %d, fs = %s\n",
955 		    ip->i_dev, ino, fs->fs_fsmnt);
956 		panic("ifree: range");
957 	}
958 	cg = itog(fs, ino);
959 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
960 		(int)fs->fs_cgsize, NOCRED, &bp);
961 	if (error) {
962 		brelse(bp);
963 		return;
964 	}
965 	cgp = bp->b_un.b_cg;
966 	if (!cg_chkmagic(cgp)) {
967 		brelse(bp);
968 		return;
969 	}
970 	cgp->cg_time = time.tv_sec;
971 	ino %= fs->fs_ipg;
972 	if (isclr(cg_inosused(cgp), ino)) {
973 		printf("dev = 0x%x, ino = %d, fs = %s\n",
974 		    ip->i_dev, ino, fs->fs_fsmnt);
975 		panic("ifree: freeing free inode");
976 	}
977 	clrbit(cg_inosused(cgp), ino);
978 	if (ino < cgp->cg_irotor)
979 		cgp->cg_irotor = ino;
980 	cgp->cg_cs.cs_nifree++;
981 	fs->fs_cstotal.cs_nifree++;
982 	fs->fs_cs(fs, cg).cs_nifree++;
983 	if ((mode & IFMT) == IFDIR) {
984 		cgp->cg_cs.cs_ndir--;
985 		fs->fs_cstotal.cs_ndir--;
986 		fs->fs_cs(fs, cg).cs_ndir--;
987 	}
988 	fs->fs_fmod++;
989 	bdwrite(bp);
990 }
991 
992 /*
993  * Find a block of the specified size in the specified cylinder group.
994  *
995  * It is a panic if a request is made to find a block if none are
996  * available.
997  */
998 daddr_t
999 mapsearch(fs, cgp, bpref, allocsiz)
1000 	register struct fs *fs;
1001 	register struct cg *cgp;
1002 	daddr_t bpref;
1003 	int allocsiz;
1004 {
1005 	daddr_t bno;
1006 	int start, len, loc, i;
1007 	int blk, field, subfield, pos;
1008 
1009 	/*
1010 	 * find the fragment by searching through the free block
1011 	 * map for an appropriate bit pattern
1012 	 */
1013 	if (bpref)
1014 		start = dtogd(fs, bpref) / NBBY;
1015 	else
1016 		start = cgp->cg_frotor / NBBY;
1017 	len = howmany(fs->fs_fpg, NBBY) - start;
1018 	loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
1019 		(u_char *)fragtbl[fs->fs_frag],
1020 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1021 	if (loc == 0) {
1022 		len = start + 1;
1023 		start = 0;
1024 		loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
1025 			(u_char *)fragtbl[fs->fs_frag],
1026 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1027 		if (loc == 0) {
1028 			printf("start = %d, len = %d, fs = %s\n",
1029 			    start, len, fs->fs_fsmnt);
1030 			panic("alloccg: map corrupted");
1031 			/* NOTREACHED */
1032 		}
1033 	}
1034 	bno = (start + len - loc) * NBBY;
1035 	cgp->cg_frotor = bno;
1036 	/*
1037 	 * found the byte in the map
1038 	 * sift through the bits to find the selected frag
1039 	 */
1040 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1041 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1042 		blk <<= 1;
1043 		field = around[allocsiz];
1044 		subfield = inside[allocsiz];
1045 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1046 			if ((blk & field) == subfield)
1047 				return (bno + pos);
1048 			field <<= 1;
1049 			subfield <<= 1;
1050 		}
1051 	}
1052 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1053 	panic("alloccg: block not in map");
1054 	return (-1);
1055 }
1056 
1057 /*
1058  * Check that a specified block number is in range.
1059  */
1060 badblock(fs, bn)
1061 	register struct fs *fs;
1062 	daddr_t bn;
1063 {
1064 
1065 	if ((unsigned)bn >= fs->fs_size) {
1066 		printf("bad block %d, ", bn);
1067 		fserr(fs, "bad block");
1068 		return (1);
1069 	}
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Fserr prints the name of a file system with an error diagnostic.
1075  *
1076  * The form of the error message is:
1077  *	fs: error message
1078  */
1079 fserr(fs, cp)
1080 	struct fs *fs;
1081 	char *cp;
1082 {
1083 
1084 	log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
1085 }
1086