xref: /original-bsd/sys/ufs/lfs/lfs_alloc.c (revision cc54e209)
1 /*
2  * Copyright (c) 1982, 1986 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  *
6  *	@(#)lfs_alloc.c	7.4 (Berkeley) 11/23/87
7  */
8 
9 #include "param.h"
10 #include "systm.h"
11 #include "mount.h"
12 #include "fs.h"
13 #include "buf.h"
14 #include "inode.h"
15 #include "dir.h"
16 #include "user.h"
17 #include "quota.h"
18 #include "kernel.h"
19 #include "syslog.h"
20 #include "cmap.h"
21 
22 extern u_long		hashalloc();
23 extern ino_t		ialloccg();
24 extern daddr_t		alloccg();
25 extern daddr_t		alloccgblk();
26 extern daddr_t		fragextend();
27 extern daddr_t		blkpref();
28 extern daddr_t		mapsearch();
29 extern int		inside[], around[];
30 extern unsigned char	*fragtbl[];
31 
32 /*
33  * Allocate a block in the file system.
34  *
35  * The size of the requested block is given, which must be some
36  * multiple of fs_fsize and <= fs_bsize.
37  * A preference may be optionally specified. If a preference is given
38  * the following hierarchy is used to allocate a block:
39  *   1) allocate the requested block.
40  *   2) allocate a rotationally optimal block in the same cylinder.
41  *   3) allocate a block in the same cylinder group.
42  *   4) quadradically rehash into other cylinder groups, until an
43  *      available block is located.
44  * If no block preference is given the following heirarchy is used
45  * to allocate a block:
46  *   1) allocate a block in the cylinder group that contains the
47  *      inode for the file.
48  *   2) quadradically rehash into other cylinder groups, until an
49  *      available block is located.
50  */
51 struct buf *
52 alloc(ip, bpref, size)
53 	register struct inode *ip;
54 	daddr_t bpref;
55 	int size;
56 {
57 	daddr_t bno;
58 	register struct fs *fs;
59 	register struct buf *bp;
60 	int cg;
61 
62 	fs = ip->i_fs;
63 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
64 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
65 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
66 		panic("alloc: bad size");
67 	}
68 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
69 		goto nospace;
70 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
71 		goto nospace;
72 #ifdef QUOTA
73 	u.u_error = chkdq(ip, (long)btodb(size), 0);
74 	if (u.u_error)
75 		return (NULL);
76 #endif
77 	if (bpref >= fs->fs_size)
78 		bpref = 0;
79 	if (bpref == 0)
80 		cg = itog(fs, ip->i_number);
81 	else
82 		cg = dtog(fs, bpref);
83 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size,
84 		(u_long (*)())alloccg);
85 	if (bno <= 0)
86 		goto nospace;
87 	ip->i_blocks += btodb(size);
88 	ip->i_flag |= IUPD|ICHG;
89 	bp = getblk(ip->i_dev, fsbtodb(fs, bno), size);
90 	clrbuf(bp);
91 	return (bp);
92 nospace:
93 	fserr(fs, "file system full");
94 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
95 	u.u_error = ENOSPC;
96 	return (NULL);
97 }
98 
99 /*
100  * Reallocate a fragment to a bigger size
101  *
102  * The number and size of the old block is given, and a preference
103  * and new size is also specified. The allocator attempts to extend
104  * the original block. Failing that, the regular block allocator is
105  * invoked to get an appropriate block.
106  */
107 struct buf *
108 realloccg(ip, bprev, bpref, osize, nsize)
109 	register struct inode *ip;
110 	daddr_t bprev, bpref;
111 	int osize, nsize;
112 {
113 	register struct fs *fs;
114 	register struct buf *bp, *obp;
115 	int cg, request;
116 	daddr_t bno, bn;
117 	int i, count;
118 
119 	fs = ip->i_fs;
120 	if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
121 	    (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
122 		printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
123 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
124 		panic("realloccg: bad size");
125 	}
126 	if (u.u_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
127 		goto nospace;
128 	if (bprev == 0) {
129 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
130 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
131 		panic("realloccg: bad bprev");
132 	}
133 #ifdef QUOTA
134 	u.u_error = chkdq(ip, (long)btodb(nsize - osize), 0);
135 	if (u.u_error)
136 		return (NULL);
137 #endif
138 	cg = dtog(fs, bprev);
139 	bno = fragextend(ip, cg, (long)bprev, osize, nsize);
140 	if (bno != 0) {
141 		do {
142 			bp = bread(ip->i_dev, fsbtodb(fs, bno), osize);
143 			if (bp->b_flags & B_ERROR) {
144 				brelse(bp);
145 				return (NULL);
146 			}
147 		} while (brealloc(bp, nsize) == 0);
148 		bp->b_flags |= B_DONE;
149 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
150 		ip->i_blocks += btodb(nsize - osize);
151 		ip->i_flag |= IUPD|ICHG;
152 		return (bp);
153 	}
154 	if (bpref >= fs->fs_size)
155 		bpref = 0;
156 	switch ((int)fs->fs_optim) {
157 	case FS_OPTSPACE:
158 		/*
159 		 * Allocate an exact sized fragment. Although this makes
160 		 * best use of space, we will waste time relocating it if
161 		 * the file continues to grow. If the fragmentation is
162 		 * less than half of the minimum free reserve, we choose
163 		 * to begin optimizing for time.
164 		 */
165 		request = nsize;
166 		if (fs->fs_minfree < 5 ||
167 		    fs->fs_cstotal.cs_nffree >
168 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
169 			break;
170 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
171 			fs->fs_fsmnt);
172 		fs->fs_optim = FS_OPTTIME;
173 		break;
174 	case FS_OPTTIME:
175 		/*
176 		 * At this point we have discovered a file that is trying
177 		 * to grow a small fragment to a larger fragment. To save
178 		 * time, we allocate a full sized block, then free the
179 		 * unused portion. If the file continues to grow, the
180 		 * `fragextend' call above will be able to grow it in place
181 		 * without further copying. If aberrant programs cause
182 		 * disk fragmentation to grow within 2% of the free reserve,
183 		 * we choose to begin optimizing for space.
184 		 */
185 		request = fs->fs_bsize;
186 		if (fs->fs_cstotal.cs_nffree <
187 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
188 			break;
189 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
190 			fs->fs_fsmnt);
191 		fs->fs_optim = FS_OPTSPACE;
192 		break;
193 	default:
194 		printf("dev = 0x%x, optim = %d, fs = %s\n",
195 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
196 		panic("realloccg: bad optim");
197 		/* NOTREACHED */
198 	}
199 	bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request,
200 		(u_long (*)())alloccg);
201 	if (bno > 0) {
202 		obp = bread(ip->i_dev, fsbtodb(fs, bprev), osize);
203 		if (obp->b_flags & B_ERROR) {
204 			brelse(obp);
205 			return (NULL);
206 		}
207 		bn = fsbtodb(fs, bno);
208 		bp = getblk(ip->i_dev, bn, nsize);
209 		bcopy(obp->b_un.b_addr, bp->b_un.b_addr, (u_int)osize);
210 		count = howmany(osize, CLBYTES);
211 		for (i = 0; i < count; i++)
212 			munhash(ip->i_dev, bn + i * CLBYTES / DEV_BSIZE);
213 		bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize);
214 		if (obp->b_flags & B_DELWRI) {
215 			obp->b_flags &= ~B_DELWRI;
216 			u.u_ru.ru_oublock--;		/* delete charge */
217 		}
218 		brelse(obp);
219 		blkfree(ip, bprev, (off_t)osize);
220 		if (nsize < request)
221 			blkfree(ip, bno + numfrags(fs, nsize),
222 				(off_t)(request - nsize));
223 		ip->i_blocks += btodb(nsize - osize);
224 		ip->i_flag |= IUPD|ICHG;
225 		return (bp);
226 	}
227 nospace:
228 	/*
229 	 * no space available
230 	 */
231 	fserr(fs, "file system full");
232 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
233 	u.u_error = ENOSPC;
234 	return (NULL);
235 }
236 
237 /*
238  * Allocate an inode in the file system.
239  *
240  * A preference may be optionally specified. If a preference is given
241  * the following hierarchy is used to allocate an inode:
242  *   1) allocate the requested inode.
243  *   2) allocate an inode in the same cylinder group.
244  *   3) quadradically rehash into other cylinder groups, until an
245  *      available inode is located.
246  * If no inode preference is given the following heirarchy is used
247  * to allocate an inode:
248  *   1) allocate an inode in cylinder group 0.
249  *   2) quadradically rehash into other cylinder groups, until an
250  *      available inode is located.
251  */
252 struct inode *
253 ialloc(pip, ipref, mode)
254 	register struct inode *pip;
255 	ino_t ipref;
256 	int mode;
257 {
258 	ino_t ino;
259 	register struct fs *fs;
260 	register struct inode *ip;
261 	int cg;
262 
263 	fs = pip->i_fs;
264 	if (fs->fs_cstotal.cs_nifree == 0)
265 		goto noinodes;
266 #ifdef QUOTA
267 	u.u_error = chkiq(pip->i_dev, (struct inode *)NULL, u.u_uid, 0);
268 	if (u.u_error)
269 		return (NULL);
270 #endif
271 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
272 		ipref = 0;
273 	cg = itog(fs, ipref);
274 	ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg);
275 	if (ino == 0)
276 		goto noinodes;
277 	ip = iget(pip->i_dev, pip->i_fs, ino);
278 	if (ip == NULL) {
279 		ifree(pip, ino, 0);
280 		return (NULL);
281 	}
282 	if (ip->i_mode) {
283 		printf("mode = 0%o, inum = %d, fs = %s\n",
284 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
285 		panic("ialloc: dup alloc");
286 	}
287 	if (ip->i_blocks) {				/* XXX */
288 		printf("free inode %s/%d had %d blocks\n",
289 		    fs->fs_fsmnt, ino, ip->i_blocks);
290 		ip->i_blocks = 0;
291 	}
292 	return (ip);
293 noinodes:
294 	fserr(fs, "out of inodes");
295 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
296 	u.u_error = ENOSPC;
297 	return (NULL);
298 }
299 
300 /*
301  * Find a cylinder to place a directory.
302  *
303  * The policy implemented by this algorithm is to select from
304  * among those cylinder groups with above the average number of
305  * free inodes, the one with the smallest number of directories.
306  */
307 ino_t
308 dirpref(fs)
309 	register struct fs *fs;
310 {
311 	int cg, minndir, mincg, avgifree;
312 
313 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
314 	minndir = fs->fs_ipg;
315 	mincg = 0;
316 	for (cg = 0; cg < fs->fs_ncg; cg++)
317 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
318 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
319 			mincg = cg;
320 			minndir = fs->fs_cs(fs, cg).cs_ndir;
321 		}
322 	return ((ino_t)(fs->fs_ipg * mincg));
323 }
324 
325 /*
326  * Select the desired position for the next block in a file.  The file is
327  * logically divided into sections. The first section is composed of the
328  * direct blocks. Each additional section contains fs_maxbpg blocks.
329  *
330  * If no blocks have been allocated in the first section, the policy is to
331  * request a block in the same cylinder group as the inode that describes
332  * the file. If no blocks have been allocated in any other section, the
333  * policy is to place the section in a cylinder group with a greater than
334  * average number of free blocks.  An appropriate cylinder group is found
335  * by using a rotor that sweeps the cylinder groups. When a new group of
336  * blocks is needed, the sweep begins in the cylinder group following the
337  * cylinder group from which the previous allocation was made. The sweep
338  * continues until a cylinder group with greater than the average number
339  * of free blocks is found. If the allocation is for the first block in an
340  * indirect block, the information on the previous allocation is unavailable;
341  * here a best guess is made based upon the logical block number being
342  * allocated.
343  *
344  * If a section is already partially allocated, the policy is to
345  * contiguously allocate fs_maxcontig blocks.  The end of one of these
346  * contiguous blocks and the beginning of the next is physically separated
347  * so that the disk head will be in transit between them for at least
348  * fs_rotdelay milliseconds.  This is to allow time for the processor to
349  * schedule another I/O transfer.
350  */
351 daddr_t
352 blkpref(ip, lbn, indx, bap)
353 	struct inode *ip;
354 	daddr_t lbn;
355 	int indx;
356 	daddr_t *bap;
357 {
358 	register struct fs *fs;
359 	register int cg;
360 	int avgbfree, startcg;
361 	daddr_t nextblk;
362 
363 	fs = ip->i_fs;
364 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
365 		if (lbn < NDADDR) {
366 			cg = itog(fs, ip->i_number);
367 			return (fs->fs_fpg * cg + fs->fs_frag);
368 		}
369 		/*
370 		 * Find a cylinder with greater than average number of
371 		 * unused data blocks.
372 		 */
373 		if (indx == 0 || bap[indx - 1] == 0)
374 			startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg;
375 		else
376 			startcg = dtog(fs, bap[indx - 1]) + 1;
377 		startcg %= fs->fs_ncg;
378 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
379 		for (cg = startcg; cg < fs->fs_ncg; cg++)
380 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
381 				fs->fs_cgrotor = cg;
382 				return (fs->fs_fpg * cg + fs->fs_frag);
383 			}
384 		for (cg = 0; cg <= startcg; cg++)
385 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
386 				fs->fs_cgrotor = cg;
387 				return (fs->fs_fpg * cg + fs->fs_frag);
388 			}
389 		return (NULL);
390 	}
391 	/*
392 	 * One or more previous blocks have been laid out. If less
393 	 * than fs_maxcontig previous blocks are contiguous, the
394 	 * next block is requested contiguously, otherwise it is
395 	 * requested rotationally delayed by fs_rotdelay milliseconds.
396 	 */
397 	nextblk = bap[indx - 1] + fs->fs_frag;
398 	if (indx > fs->fs_maxcontig &&
399 	    bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig)
400 	    != nextblk)
401 		return (nextblk);
402 	if (fs->fs_rotdelay != 0)
403 		/*
404 		 * Here we convert ms of delay to frags as:
405 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
406 		 *	((sect/frag) * (ms/sec))
407 		 * then round up to the next block.
408 		 */
409 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
410 		    (NSPF(fs) * 1000), fs->fs_frag);
411 	return (nextblk);
412 }
413 
414 /*
415  * Implement the cylinder overflow algorithm.
416  *
417  * The policy implemented by this algorithm is:
418  *   1) allocate the block in its requested cylinder group.
419  *   2) quadradically rehash on the cylinder group number.
420  *   3) brute force search for a free block.
421  */
422 /*VARARGS5*/
423 u_long
424 hashalloc(ip, cg, pref, size, allocator)
425 	struct inode *ip;
426 	int cg;
427 	long pref;
428 	int size;	/* size for data blocks, mode for inodes */
429 	u_long (*allocator)();
430 {
431 	register struct fs *fs;
432 	long result;
433 	int i, icg = cg;
434 
435 	fs = ip->i_fs;
436 	/*
437 	 * 1: preferred cylinder group
438 	 */
439 	result = (*allocator)(ip, cg, pref, size);
440 	if (result)
441 		return (result);
442 	/*
443 	 * 2: quadratic rehash
444 	 */
445 	for (i = 1; i < fs->fs_ncg; i *= 2) {
446 		cg += i;
447 		if (cg >= fs->fs_ncg)
448 			cg -= fs->fs_ncg;
449 		result = (*allocator)(ip, cg, 0, size);
450 		if (result)
451 			return (result);
452 	}
453 	/*
454 	 * 3: brute force search
455 	 * Note that we start at i == 2, since 0 was checked initially,
456 	 * and 1 is always checked in the quadratic rehash.
457 	 */
458 	cg = (icg + 2) % fs->fs_ncg;
459 	for (i = 2; i < fs->fs_ncg; i++) {
460 		result = (*allocator)(ip, cg, 0, size);
461 		if (result)
462 			return (result);
463 		cg++;
464 		if (cg == fs->fs_ncg)
465 			cg = 0;
466 	}
467 	return (NULL);
468 }
469 
470 /*
471  * Determine whether a fragment can be extended.
472  *
473  * Check to see if the necessary fragments are available, and
474  * if they are, allocate them.
475  */
476 daddr_t
477 fragextend(ip, cg, bprev, osize, nsize)
478 	struct inode *ip;
479 	int cg;
480 	long bprev;
481 	int osize, nsize;
482 {
483 	register struct fs *fs;
484 	register struct buf *bp;
485 	register struct cg *cgp;
486 	long bno;
487 	int frags, bbase;
488 	int i;
489 
490 	fs = ip->i_fs;
491 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
492 		return (NULL);
493 	frags = numfrags(fs, nsize);
494 	bbase = fragnum(fs, bprev);
495 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
496 		/* cannot extend across a block boundary */
497 		return (NULL);
498 	}
499 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
500 	cgp = bp->b_un.b_cg;
501 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
502 		brelse(bp);
503 		return (NULL);
504 	}
505 	cgp->cg_time = time.tv_sec;
506 	bno = dtogd(fs, bprev);
507 	for (i = numfrags(fs, osize); i < frags; i++)
508 		if (isclr(cgp->cg_free, bno + i)) {
509 			brelse(bp);
510 			return (NULL);
511 		}
512 	/*
513 	 * the current fragment can be extended
514 	 * deduct the count on fragment being extended into
515 	 * increase the count on the remaining fragment (if any)
516 	 * allocate the extended piece
517 	 */
518 	for (i = frags; i < fs->fs_frag - bbase; i++)
519 		if (isclr(cgp->cg_free, bno + i))
520 			break;
521 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
522 	if (i != frags)
523 		cgp->cg_frsum[i - frags]++;
524 	for (i = numfrags(fs, osize); i < frags; i++) {
525 		clrbit(cgp->cg_free, bno + i);
526 		cgp->cg_cs.cs_nffree--;
527 		fs->fs_cstotal.cs_nffree--;
528 		fs->fs_cs(fs, cg).cs_nffree--;
529 	}
530 	fs->fs_fmod++;
531 	bdwrite(bp);
532 	return (bprev);
533 }
534 
535 /*
536  * Determine whether a block can be allocated.
537  *
538  * Check to see if a block of the apprpriate size is available,
539  * and if it is, allocate it.
540  */
541 daddr_t
542 alloccg(ip, cg, bpref, size)
543 	struct inode *ip;
544 	int cg;
545 	daddr_t bpref;
546 	int size;
547 {
548 	register struct fs *fs;
549 	register struct buf *bp;
550 	register struct cg *cgp;
551 	int bno, frags;
552 	int allocsiz;
553 	register int i;
554 
555 	fs = ip->i_fs;
556 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
557 		return (NULL);
558 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
559 	cgp = bp->b_un.b_cg;
560 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
561 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
562 		brelse(bp);
563 		return (NULL);
564 	}
565 	cgp->cg_time = time.tv_sec;
566 	if (size == fs->fs_bsize) {
567 		bno = alloccgblk(fs, cgp, bpref);
568 		bdwrite(bp);
569 		return (bno);
570 	}
571 	/*
572 	 * check to see if any fragments are already available
573 	 * allocsiz is the size which will be allocated, hacking
574 	 * it down to a smaller size if necessary
575 	 */
576 	frags = numfrags(fs, size);
577 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
578 		if (cgp->cg_frsum[allocsiz] != 0)
579 			break;
580 	if (allocsiz == fs->fs_frag) {
581 		/*
582 		 * no fragments were available, so a block will be
583 		 * allocated, and hacked up
584 		 */
585 		if (cgp->cg_cs.cs_nbfree == 0) {
586 			brelse(bp);
587 			return (NULL);
588 		}
589 		bno = alloccgblk(fs, cgp, bpref);
590 		bpref = dtogd(fs, bno);
591 		for (i = frags; i < fs->fs_frag; i++)
592 			setbit(cgp->cg_free, bpref + i);
593 		i = fs->fs_frag - frags;
594 		cgp->cg_cs.cs_nffree += i;
595 		fs->fs_cstotal.cs_nffree += i;
596 		fs->fs_cs(fs, cg).cs_nffree += i;
597 		fs->fs_fmod++;
598 		cgp->cg_frsum[i]++;
599 		bdwrite(bp);
600 		return (bno);
601 	}
602 	bno = mapsearch(fs, cgp, bpref, allocsiz);
603 	if (bno < 0) {
604 		brelse(bp);
605 		return (NULL);
606 	}
607 	for (i = 0; i < frags; i++)
608 		clrbit(cgp->cg_free, bno + i);
609 	cgp->cg_cs.cs_nffree -= frags;
610 	fs->fs_cstotal.cs_nffree -= frags;
611 	fs->fs_cs(fs, cg).cs_nffree -= frags;
612 	fs->fs_fmod++;
613 	cgp->cg_frsum[allocsiz]--;
614 	if (frags != allocsiz)
615 		cgp->cg_frsum[allocsiz - frags]++;
616 	bdwrite(bp);
617 	return (cg * fs->fs_fpg + bno);
618 }
619 
620 /*
621  * Allocate a block in a cylinder group.
622  *
623  * This algorithm implements the following policy:
624  *   1) allocate the requested block.
625  *   2) allocate a rotationally optimal block in the same cylinder.
626  *   3) allocate the next available block on the block rotor for the
627  *      specified cylinder group.
628  * Note that this routine only allocates fs_bsize blocks; these
629  * blocks may be fragmented by the routine that allocates them.
630  */
631 daddr_t
632 alloccgblk(fs, cgp, bpref)
633 	register struct fs *fs;
634 	register struct cg *cgp;
635 	daddr_t bpref;
636 {
637 	daddr_t bno;
638 	int cylno, pos, delta;
639 	short *cylbp;
640 	register int i;
641 
642 	if (bpref == 0) {
643 		bpref = cgp->cg_rotor;
644 		goto norot;
645 	}
646 	bpref = blknum(fs, bpref);
647 	bpref = dtogd(fs, bpref);
648 	/*
649 	 * if the requested block is available, use it
650 	 */
651 	if (isblock(fs, cgp->cg_free, fragstoblks(fs, bpref))) {
652 		bno = bpref;
653 		goto gotit;
654 	}
655 	/*
656 	 * check for a block available on the same cylinder
657 	 */
658 	cylno = cbtocylno(fs, bpref);
659 	if (cgp->cg_btot[cylno] == 0)
660 		goto norot;
661 	if (fs->fs_cpc == 0) {
662 		/*
663 		 * block layout info is not available, so just have
664 		 * to take any block in this cylinder.
665 		 */
666 		bpref = howmany(fs->fs_spc * cylno, NSPF(fs));
667 		goto norot;
668 	}
669 	/*
670 	 * check the summary information to see if a block is
671 	 * available in the requested cylinder starting at the
672 	 * requested rotational position and proceeding around.
673 	 */
674 	cylbp = cgp->cg_b[cylno];
675 	pos = cbtorpos(fs, bpref);
676 	for (i = pos; i < NRPOS; i++)
677 		if (cylbp[i] > 0)
678 			break;
679 	if (i == NRPOS)
680 		for (i = 0; i < pos; i++)
681 			if (cylbp[i] > 0)
682 				break;
683 	if (cylbp[i] > 0) {
684 		/*
685 		 * found a rotational position, now find the actual
686 		 * block. A panic if none is actually there.
687 		 */
688 		pos = cylno % fs->fs_cpc;
689 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
690 		if (fs->fs_postbl[pos][i] == -1) {
691 			printf("pos = %d, i = %d, fs = %s\n",
692 			    pos, i, fs->fs_fsmnt);
693 			panic("alloccgblk: cyl groups corrupted");
694 		}
695 		for (i = fs->fs_postbl[pos][i];; ) {
696 			if (isblock(fs, cgp->cg_free, bno + i)) {
697 				bno = blkstofrags(fs, (bno + i));
698 				goto gotit;
699 			}
700 			delta = fs->fs_rotbl[i];
701 			if (delta <= 0 || delta > MAXBPC - i)
702 				break;
703 			i += delta;
704 		}
705 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
706 		panic("alloccgblk: can't find blk in cyl");
707 	}
708 norot:
709 	/*
710 	 * no blocks in the requested cylinder, so take next
711 	 * available one in this cylinder group.
712 	 */
713 	bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
714 	if (bno < 0)
715 		return (NULL);
716 	cgp->cg_rotor = bno;
717 gotit:
718 	clrblock(fs, cgp->cg_free, (long)fragstoblks(fs, bno));
719 	cgp->cg_cs.cs_nbfree--;
720 	fs->fs_cstotal.cs_nbfree--;
721 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
722 	cylno = cbtocylno(fs, bno);
723 	cgp->cg_b[cylno][cbtorpos(fs, bno)]--;
724 	cgp->cg_btot[cylno]--;
725 	fs->fs_fmod++;
726 	return (cgp->cg_cgx * fs->fs_fpg + bno);
727 }
728 
729 /*
730  * Determine whether an inode can be allocated.
731  *
732  * Check to see if an inode is available, and if it is,
733  * allocate it using the following policy:
734  *   1) allocate the requested inode.
735  *   2) allocate the next available inode after the requested
736  *      inode in the specified cylinder group.
737  */
738 ino_t
739 ialloccg(ip, cg, ipref, mode)
740 	struct inode *ip;
741 	int cg;
742 	daddr_t ipref;
743 	int mode;
744 {
745 	register struct fs *fs;
746 	register struct cg *cgp;
747 	struct buf *bp;
748 	int start, len, loc, map, i;
749 
750 	fs = ip->i_fs;
751 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
752 		return (NULL);
753 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
754 	cgp = bp->b_un.b_cg;
755 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC ||
756 	    cgp->cg_cs.cs_nifree == 0) {
757 		brelse(bp);
758 		return (NULL);
759 	}
760 	cgp->cg_time = time.tv_sec;
761 	if (ipref) {
762 		ipref %= fs->fs_ipg;
763 		if (isclr(cgp->cg_iused, ipref))
764 			goto gotit;
765 	}
766 	start = cgp->cg_irotor / NBBY;
767 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
768 	loc = skpc(0xff, len, &cgp->cg_iused[start]);
769 	if (loc == 0) {
770 		len = start + 1;
771 		start = 0;
772 		loc = skpc(0xff, len, &cgp->cg_iused[0]);
773 		if (loc == 0) {
774 			printf("cg = %s, irotor = %d, fs = %s\n",
775 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
776 			panic("ialloccg: map corrupted");
777 			/* NOTREACHED */
778 		}
779 	}
780 	i = start + len - loc;
781 	map = cgp->cg_iused[i];
782 	ipref = i * NBBY;
783 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
784 		if ((map & i) == 0) {
785 			cgp->cg_irotor = ipref;
786 			goto gotit;
787 		}
788 	}
789 	printf("fs = %s\n", fs->fs_fsmnt);
790 	panic("ialloccg: block not in map");
791 	/* NOTREACHED */
792 gotit:
793 	setbit(cgp->cg_iused, ipref);
794 	cgp->cg_cs.cs_nifree--;
795 	fs->fs_cstotal.cs_nifree--;
796 	fs->fs_cs(fs, cg).cs_nifree--;
797 	fs->fs_fmod++;
798 	if ((mode & IFMT) == IFDIR) {
799 		cgp->cg_cs.cs_ndir++;
800 		fs->fs_cstotal.cs_ndir++;
801 		fs->fs_cs(fs, cg).cs_ndir++;
802 	}
803 	bdwrite(bp);
804 	return (cg * fs->fs_ipg + ipref);
805 }
806 
807 /*
808  * Free a block or fragment.
809  *
810  * The specified block or fragment is placed back in the
811  * free map. If a fragment is deallocated, a possible
812  * block reassembly is checked.
813  */
814 blkfree(ip, bno, size)
815 	register struct inode *ip;
816 	daddr_t bno;
817 	off_t size;
818 {
819 	register struct fs *fs;
820 	register struct cg *cgp;
821 	register struct buf *bp;
822 	int cg, blk, frags, bbase;
823 	register int i;
824 
825 	fs = ip->i_fs;
826 	if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) {
827 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
828 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
829 		panic("blkfree: bad size");
830 	}
831 	cg = dtog(fs, bno);
832 	if (badblock(fs, bno)) {
833 		printf("bad block %d, ino %d\n", bno, ip->i_number);
834 		return;
835 	}
836 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
837 	cgp = bp->b_un.b_cg;
838 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
839 		brelse(bp);
840 		return;
841 	}
842 	cgp->cg_time = time.tv_sec;
843 	bno = dtogd(fs, bno);
844 	if (size == fs->fs_bsize) {
845 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bno))) {
846 			printf("dev = 0x%x, block = %d, fs = %s\n",
847 			    ip->i_dev, bno, fs->fs_fsmnt);
848 			panic("blkfree: freeing free block");
849 		}
850 		setblock(fs, cgp->cg_free, fragstoblks(fs, bno));
851 		cgp->cg_cs.cs_nbfree++;
852 		fs->fs_cstotal.cs_nbfree++;
853 		fs->fs_cs(fs, cg).cs_nbfree++;
854 		i = cbtocylno(fs, bno);
855 		cgp->cg_b[i][cbtorpos(fs, bno)]++;
856 		cgp->cg_btot[i]++;
857 	} else {
858 		bbase = bno - fragnum(fs, bno);
859 		/*
860 		 * decrement the counts associated with the old frags
861 		 */
862 		blk = blkmap(fs, cgp->cg_free, bbase);
863 		fragacct(fs, blk, cgp->cg_frsum, -1);
864 		/*
865 		 * deallocate the fragment
866 		 */
867 		frags = numfrags(fs, size);
868 		for (i = 0; i < frags; i++) {
869 			if (isset(cgp->cg_free, bno + i)) {
870 				printf("dev = 0x%x, block = %d, fs = %s\n",
871 				    ip->i_dev, bno + i, fs->fs_fsmnt);
872 				panic("blkfree: freeing free frag");
873 			}
874 			setbit(cgp->cg_free, bno + i);
875 		}
876 		cgp->cg_cs.cs_nffree += i;
877 		fs->fs_cstotal.cs_nffree += i;
878 		fs->fs_cs(fs, cg).cs_nffree += i;
879 		/*
880 		 * add back in counts associated with the new frags
881 		 */
882 		blk = blkmap(fs, cgp->cg_free, bbase);
883 		fragacct(fs, blk, cgp->cg_frsum, 1);
884 		/*
885 		 * if a complete block has been reassembled, account for it
886 		 */
887 		if (isblock(fs, cgp->cg_free, fragstoblks(fs, bbase))) {
888 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
889 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
890 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
891 			cgp->cg_cs.cs_nbfree++;
892 			fs->fs_cstotal.cs_nbfree++;
893 			fs->fs_cs(fs, cg).cs_nbfree++;
894 			i = cbtocylno(fs, bbase);
895 			cgp->cg_b[i][cbtorpos(fs, bbase)]++;
896 			cgp->cg_btot[i]++;
897 		}
898 	}
899 	fs->fs_fmod++;
900 	bdwrite(bp);
901 }
902 
903 /*
904  * Free an inode.
905  *
906  * The specified inode is placed back in the free map.
907  */
908 ifree(ip, ino, mode)
909 	struct inode *ip;
910 	ino_t ino;
911 	int mode;
912 {
913 	register struct fs *fs;
914 	register struct cg *cgp;
915 	register struct buf *bp;
916 	int cg;
917 
918 	fs = ip->i_fs;
919 	if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) {
920 		printf("dev = 0x%x, ino = %d, fs = %s\n",
921 		    ip->i_dev, ino, fs->fs_fsmnt);
922 		panic("ifree: range");
923 	}
924 	cg = itog(fs, ino);
925 	bp = bread(ip->i_dev, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize);
926 	cgp = bp->b_un.b_cg;
927 	if (bp->b_flags & B_ERROR || cgp->cg_magic != CG_MAGIC) {
928 		brelse(bp);
929 		return;
930 	}
931 	cgp->cg_time = time.tv_sec;
932 	ino %= fs->fs_ipg;
933 	if (isclr(cgp->cg_iused, ino)) {
934 		printf("dev = 0x%x, ino = %d, fs = %s\n",
935 		    ip->i_dev, ino, fs->fs_fsmnt);
936 		panic("ifree: freeing free inode");
937 	}
938 	clrbit(cgp->cg_iused, ino);
939 	if (ino < cgp->cg_irotor)
940 		cgp->cg_irotor = ino;
941 	cgp->cg_cs.cs_nifree++;
942 	fs->fs_cstotal.cs_nifree++;
943 	fs->fs_cs(fs, cg).cs_nifree++;
944 	if ((mode & IFMT) == IFDIR) {
945 		cgp->cg_cs.cs_ndir--;
946 		fs->fs_cstotal.cs_ndir--;
947 		fs->fs_cs(fs, cg).cs_ndir--;
948 	}
949 	fs->fs_fmod++;
950 	bdwrite(bp);
951 }
952 
953 /*
954  * Find a block of the specified size in the specified cylinder group.
955  *
956  * It is a panic if a request is made to find a block if none are
957  * available.
958  */
959 daddr_t
960 mapsearch(fs, cgp, bpref, allocsiz)
961 	register struct fs *fs;
962 	register struct cg *cgp;
963 	daddr_t bpref;
964 	int allocsiz;
965 {
966 	daddr_t bno;
967 	int start, len, loc, i;
968 	int blk, field, subfield, pos;
969 
970 	/*
971 	 * find the fragment by searching through the free block
972 	 * map for an appropriate bit pattern
973 	 */
974 	if (bpref)
975 		start = dtogd(fs, bpref) / NBBY;
976 	else
977 		start = cgp->cg_frotor / NBBY;
978 	len = howmany(fs->fs_fpg, NBBY) - start;
979 	loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[start],
980 		(caddr_t)fragtbl[fs->fs_frag],
981 		(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
982 	if (loc == 0) {
983 		len = start + 1;
984 		start = 0;
985 		loc = scanc((unsigned)len, (caddr_t)&cgp->cg_free[0],
986 			(caddr_t)fragtbl[fs->fs_frag],
987 			(int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
988 		if (loc == 0) {
989 			printf("start = %d, len = %d, fs = %s\n",
990 			    start, len, fs->fs_fsmnt);
991 			panic("alloccg: map corrupted");
992 			/* NOTREACHED */
993 		}
994 	}
995 	bno = (start + len - loc) * NBBY;
996 	cgp->cg_frotor = bno;
997 	/*
998 	 * found the byte in the map
999 	 * sift through the bits to find the selected frag
1000 	 */
1001 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1002 		blk = blkmap(fs, cgp->cg_free, bno);
1003 		blk <<= 1;
1004 		field = around[allocsiz];
1005 		subfield = inside[allocsiz];
1006 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1007 			if ((blk & field) == subfield)
1008 				return (bno + pos);
1009 			field <<= 1;
1010 			subfield <<= 1;
1011 		}
1012 	}
1013 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1014 	panic("alloccg: block not in map");
1015 	return (-1);
1016 }
1017 
1018 /*
1019  * Fserr prints the name of a file system with an error diagnostic.
1020  *
1021  * The form of the error message is:
1022  *	fs: error message
1023  */
1024 fserr(fs, cp)
1025 	struct fs *fs;
1026 	char *cp;
1027 {
1028 
1029 	log(LOG_ERR, "%s: %s\n", fs->fs_fsmnt, cp);
1030 }
1031