xref: /original-bsd/sys/ufs/lfs/lfs_segment.c (revision 3705696b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)lfs_segment.c	8.1 (Berkeley) 06/11/93
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/namei.h>
13 #include <sys/kernel.h>
14 #include <sys/resourcevar.h>
15 #include <sys/file.h>
16 #include <sys/stat.h>
17 #include <sys/buf.h>
18 #include <sys/proc.h>
19 #include <sys/conf.h>
20 #include <sys/vnode.h>
21 #include <sys/malloc.h>
22 #include <sys/mount.h>
23 
24 #include <miscfs/specfs/specdev.h>
25 #include <miscfs/fifofs/fifo.h>
26 
27 #include <ufs/ufs/quota.h>
28 #include <ufs/ufs/inode.h>
29 #include <ufs/ufs/dir.h>
30 #include <ufs/ufs/ufsmount.h>
31 #include <ufs/ufs/ufs_extern.h>
32 
33 #include <ufs/lfs/lfs.h>
34 #include <ufs/lfs/lfs_extern.h>
35 
36 extern int count_lock_queue __P((void));
37 
38 #define MAX_ACTIVE	10
39 /*
40  * Determine if it's OK to start a partial in this segment, or if we need
41  * to go on to a new segment.
42  */
43 #define	LFS_PARTIAL_FITS(fs) \
44 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
45 	1 << (fs)->lfs_fsbtodb)
46 
47 void	 lfs_callback __P((struct buf *));
48 void	 lfs_gather __P((struct lfs *, struct segment *,
49 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
50 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
51 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
52 int	 lfs_match_data __P((struct lfs *, struct buf *));
53 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
54 int	 lfs_match_indir __P((struct lfs *, struct buf *));
55 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
56 void	 lfs_newseg __P((struct lfs *));
57 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
58 void	 lfs_supercallback __P((struct buf *));
59 void	 lfs_updatemeta __P((struct segment *));
60 int	 lfs_vref __P((struct vnode *));
61 void	 lfs_vunref __P((struct vnode *));
62 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
63 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
64 int	 lfs_writeseg __P((struct lfs *, struct segment *));
65 void	 lfs_writesuper __P((struct lfs *));
66 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
67 	    struct segment *sp, int dirops));
68 
69 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
70 
71 /* Statistics Counters */
72 #define DOSTATS
73 struct lfs_stats lfs_stats;
74 
75 /* op values to lfs_writevnodes */
76 #define	VN_REG	0
77 #define	VN_DIROP	1
78 #define	VN_EMPTY	2
79 
80 /*
81  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
82  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
83  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
84  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
85  */
86 
87 int
88 lfs_vflush(vp)
89 	struct vnode *vp;
90 {
91 	struct inode *ip;
92 	struct lfs *fs;
93 	struct segment *sp;
94 	int error, s;
95 
96 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
97 	if (fs->lfs_nactive > MAX_ACTIVE)
98 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
99 	lfs_seglock(fs, SEGM_SYNC);
100 	sp = fs->lfs_sp;
101 
102 
103 	ip = VTOI(vp);
104 	if (vp->v_dirtyblkhd.le_next == NULL)
105 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
106 
107 	do {
108 		do {
109 			if (vp->v_dirtyblkhd.le_next != NULL)
110 				lfs_writefile(fs, sp, vp);
111 		} while (lfs_writeinode(fs, sp, ip));
112 
113 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
114 
115 #ifdef DOSTATS
116 	++lfs_stats.nwrites;
117 	if (sp->seg_flags & SEGM_SYNC)
118 		++lfs_stats.nsync_writes;
119 	if (sp->seg_flags & SEGM_CKP)
120 		++lfs_stats.ncheckpoints;
121 #endif
122 	lfs_segunlock(fs);
123 	return (0);
124 }
125 
126 void
127 lfs_writevnodes(fs, mp, sp, op)
128 	struct lfs *fs;
129 	struct mount *mp;
130 	struct segment *sp;
131 	int op;
132 {
133 	struct inode *ip;
134 	struct vnode *vp;
135 	int error, s, active;
136 
137 loop:	for (vp = mp->mnt_mounth; vp; vp = vp->v_mountf) {
138 		/*
139 		 * If the vnode that we are about to sync is no longer
140 		 * associated with this mount point, start over.
141 		 */
142 		if (vp->v_mount != mp)
143 			goto loop;
144 
145 		/* XXX ignore dirops for now
146 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
147 		    op != VN_DIROP && (vp->v_flag & VDIROP))
148 			continue;
149 		*/
150 
151 		if (op == VN_EMPTY && vp->v_dirtyblkhd.le_next)
152 			continue;
153 
154 		if (vp->v_type == VNON)
155 			continue;
156 
157 		if (lfs_vref(vp))
158 			continue;
159 
160 		/*
161 		 * Write the inode/file if dirty and it's not the
162 		 * the IFILE.
163 		 */
164 		ip = VTOI(vp);
165 		if ((ip->i_flag & (IMOD | IACC | IUPD | ICHG) ||
166 		    vp->v_dirtyblkhd.le_next != NULL) &&
167 		    ip->i_number != LFS_IFILE_INUM) {
168 			if (vp->v_dirtyblkhd.le_next != NULL)
169 				lfs_writefile(fs, sp, vp);
170 			(void) lfs_writeinode(fs, sp, ip);
171 		}
172 		vp->v_flag &= ~VDIROP;
173 		lfs_vunref(vp);
174 	}
175 }
176 
177 int
178 lfs_segwrite(mp, flags)
179 	struct mount *mp;
180 	int flags;			/* Do a checkpoint. */
181 {
182 	struct buf *bp;
183 	struct inode *ip;
184 	struct lfs *fs;
185 	struct segment *sp;
186 	struct vnode *vp;
187 	SEGUSE *segusep;
188 	daddr_t ibno;
189 	CLEANERINFO *cip;
190 	int clean, error, i, s;
191 	int do_ckp;
192 
193 	fs = VFSTOUFS(mp)->um_lfs;
194 
195  	/*
196  	 * If we have fewer than 2 clean segments, wait until cleaner
197 	 * writes.
198  	 */
199 	do {
200 		LFS_CLEANERINFO(cip, fs, bp);
201 		clean = cip->clean;
202 		brelse(bp);
203 		if (clean <= 2) {
204 			printf ("segs clean: %d\n", clean);
205 			wakeup(&lfs_allclean_wakeup);
206 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
207 			    "lfs writer", 0))
208 				return (error);
209 		}
210 	} while (clean <= 2 );
211 
212 	/*
213 	 * Allocate a segment structure and enough space to hold pointers to
214 	 * the maximum possible number of buffers which can be described in a
215 	 * single summary block.
216 	 */
217 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
218 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
219 	sp = fs->lfs_sp;
220 
221 	lfs_writevnodes(fs, mp, sp, VN_REG);
222 
223 	/* XXX ignore ordering of dirops for now */
224 	/* XXX
225 	fs->lfs_writer = 1;
226 	if (fs->lfs_dirops && (error =
227 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
228 		free(sp->bpp, M_SEGMENT);
229 		free(sp, M_SEGMENT);
230 		fs->lfs_writer = 0;
231 		return (error);
232 	}
233 
234 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
235 	*/
236 
237 	/*
238 	 * If we are doing a checkpoint, mark everything since the
239 	 * last checkpoint as no longer ACTIVE.
240 	 */
241 	if (do_ckp)
242 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
243 		     --ibno >= fs->lfs_cleansz; ) {
244 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
245 			    NOCRED, &bp))
246 
247 				panic("lfs: ifile read");
248 			segusep = (SEGUSE *)bp->b_un.b_addr;
249 			for (i = fs->lfs_sepb; i--; segusep++)
250 				segusep->su_flags &= ~SEGUSE_ACTIVE;
251 
252 			error = VOP_BWRITE(bp);
253 		}
254 
255 	if (do_ckp || fs->lfs_doifile) {
256 redo:
257 		vp = fs->lfs_ivnode;
258 		while (vget(vp));
259 		ip = VTOI(vp);
260 		if (vp->v_dirtyblkhd.le_next != NULL)
261 			lfs_writefile(fs, sp, vp);
262 		(void)lfs_writeinode(fs, sp, ip);
263 		vput(vp);
264 		if (lfs_writeseg(fs, sp) && do_ckp)
265 			goto redo;
266 	} else
267 		(void) lfs_writeseg(fs, sp);
268 
269 	/*
270 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
271 	 * moment, the user's process hangs around so we can sleep.
272 	 */
273 	/* XXX ignore dirops for now
274 	fs->lfs_writer = 0;
275 	fs->lfs_doifile = 0;
276 	wakeup(&fs->lfs_dirops);
277 	*/
278 
279 #ifdef DOSTATS
280 	++lfs_stats.nwrites;
281 	if (sp->seg_flags & SEGM_SYNC)
282 		++lfs_stats.nsync_writes;
283 	if (sp->seg_flags & SEGM_CKP)
284 		++lfs_stats.ncheckpoints;
285 #endif
286 	lfs_segunlock(fs);
287 	return (0);
288 }
289 
290 /*
291  * Write the dirty blocks associated with a vnode.
292  */
293 void
294 lfs_writefile(fs, sp, vp)
295 	struct lfs *fs;
296 	struct segment *sp;
297 	struct vnode *vp;
298 {
299 	struct buf *bp;
300 	struct finfo *fip;
301 	IFILE *ifp;
302 
303 	if (sp->seg_bytes_left < fs->lfs_bsize ||
304 	    sp->sum_bytes_left < sizeof(struct finfo))
305 		(void) lfs_writeseg(fs, sp);
306 
307 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
308 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
309 
310 	fip = sp->fip;
311 	fip->fi_nblocks = 0;
312 	fip->fi_ino = VTOI(vp)->i_number;
313 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
314 	fip->fi_version = ifp->if_version;
315 	brelse(bp);
316 
317 	/*
318 	 * It may not be necessary to write the meta-data blocks at this point,
319 	 * as the roll-forward recovery code should be able to reconstruct the
320 	 * list.
321 	 */
322 	lfs_gather(fs, sp, vp, lfs_match_data);
323 	lfs_gather(fs, sp, vp, lfs_match_indir);
324 	lfs_gather(fs, sp, vp, lfs_match_dindir);
325 #ifdef TRIPLE
326 	lfs_gather(fs, sp, vp, lfs_match_tindir);
327 #endif
328 
329 	fip = sp->fip;
330 	if (fip->fi_nblocks != 0) {
331 		sp->fip =
332 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
333 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
334 		sp->start_lbp = &sp->fip->fi_blocks[0];
335 	} else {
336 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
337 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
338 	}
339 }
340 
341 int
342 lfs_writeinode(fs, sp, ip)
343 	struct lfs *fs;
344 	struct segment *sp;
345 	struct inode *ip;
346 {
347 	struct buf *bp, *ibp;
348 	IFILE *ifp;
349 	SEGUSE *sup;
350 	daddr_t daddr;
351 	ino_t ino;
352 	int error, i, ndx;
353 	int redo_ifile = 0;
354 
355 	if (!(ip->i_flag & (IMOD | IACC | IUPD | ICHG)))
356 		return(0);
357 
358 	/* Allocate a new inode block if necessary. */
359 	if (sp->ibp == NULL) {
360 		/* Allocate a new segment if necessary. */
361 		if (sp->seg_bytes_left < fs->lfs_bsize ||
362 		    sp->sum_bytes_left < sizeof(daddr_t))
363 			(void) lfs_writeseg(fs, sp);
364 
365 		/* Get next inode block. */
366 		daddr = fs->lfs_offset;
367 		fs->lfs_offset += fsbtodb(fs, 1);
368 		sp->ibp = *sp->cbpp++ =
369 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
370 		    fs->lfs_bsize);
371 		/* Zero out inode numbers */
372 		for (i = 0; i < INOPB(fs); ++i)
373 			sp->ibp->b_un.b_dino[i].di_inumber = 0;
374 		++sp->start_bpp;
375 		fs->lfs_avail -= fsbtodb(fs, 1);
376 		/* Set remaining space counters. */
377 		sp->seg_bytes_left -= fs->lfs_bsize;
378 		sp->sum_bytes_left -= sizeof(daddr_t);
379 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
380 		    sp->ninodes / INOPB(fs) - 1;
381 		((daddr_t *)(sp->segsum))[ndx] = daddr;
382 	}
383 
384 	/* Update the inode times and copy the inode onto the inode page. */
385 	if (ip->i_flag & IMOD)
386 		--fs->lfs_uinodes;
387 	ITIMES(ip, &time, &time);
388 	ip->i_flag &= ~(IMOD | IACC | IUPD | ICHG);
389 	bp = sp->ibp;
390 	bp->b_un.b_dino[sp->ninodes % INOPB(fs)] = ip->i_din;
391 	/* Increment inode count in segment summary block. */
392 	++((SEGSUM *)(sp->segsum))->ss_ninos;
393 
394 	/* If this page is full, set flag to allocate a new page. */
395 	if (++sp->ninodes % INOPB(fs) == 0)
396 		sp->ibp = NULL;
397 
398 	/*
399 	 * If updating the ifile, update the super-block.  Update the disk
400 	 * address and access times for this inode in the ifile.
401 	 */
402 	ino = ip->i_number;
403 	if (ino == LFS_IFILE_INUM) {
404 		daddr = fs->lfs_idaddr;
405 		fs->lfs_idaddr = bp->b_blkno;
406 	} else {
407 		LFS_IENTRY(ifp, fs, ino, ibp);
408 		daddr = ifp->if_daddr;
409 		ifp->if_daddr = bp->b_blkno;
410 		error = VOP_BWRITE(ibp);
411 	}
412 
413 	/*
414 	 * No need to update segment usage if there was no former inode address
415 	 * or if the last inode address is in the current partial segment.
416 	 */
417 	if (daddr != LFS_UNUSED_DADDR &&
418 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
419 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
420 #ifdef DIAGNOSTIC
421 		if (sup->su_nbytes < sizeof(struct dinode)) {
422 			/* XXX -- Change to a panic. */
423 			printf("lfs: negative bytes (segment %d)\n",
424 			    datosn(fs, daddr));
425 			panic("negative bytes");
426 		}
427 #endif
428 		sup->su_nbytes -= sizeof(struct dinode);
429 		redo_ifile =
430 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
431 		error = VOP_BWRITE(bp);
432 	}
433 	return (redo_ifile);
434 }
435 
436 int
437 lfs_gatherblock(sp, bp, sptr)
438 	struct segment *sp;
439 	struct buf *bp;
440 	int *sptr;
441 {
442 	struct lfs *fs;
443 	int version;
444 
445 	/*
446 	 * If full, finish this segment.  We may be doing I/O, so
447 	 * release and reacquire the splbio().
448 	 */
449 #ifdef DIAGNOSTIC
450 	if (sp->vp == NULL)
451 		panic ("lfs_gatherblock: Null vp in segment");
452 #endif
453 	fs = sp->fs;
454 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
455 	    sp->seg_bytes_left < fs->lfs_bsize) {
456 		if (sptr)
457 			splx(*sptr);
458 		lfs_updatemeta(sp);
459 
460 		version = sp->fip->fi_version;
461 		(void) lfs_writeseg(fs, sp);
462 
463 		sp->fip->fi_version = version;
464 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
465 		/* Add the current file to the segment summary. */
466 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
467 		sp->sum_bytes_left -=
468 		    sizeof(struct finfo) - sizeof(daddr_t);
469 
470 		if (sptr)
471 			*sptr = splbio();
472 		return(1);
473 	}
474 
475 	/* Insert into the buffer list, update the FINFO block. */
476 	bp->b_flags |= B_GATHERED;
477 	*sp->cbpp++ = bp;
478 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
479 
480 	sp->sum_bytes_left -= sizeof(daddr_t);
481 	sp->seg_bytes_left -= fs->lfs_bsize;
482 	return(0);
483 }
484 
485 void
486 lfs_gather(fs, sp, vp, match)
487 	struct lfs *fs;
488 	struct segment *sp;
489 	struct vnode *vp;
490 	int (*match) __P((struct lfs *, struct buf *));
491 {
492 	struct buf *bp;
493 	int s;
494 
495 	sp->vp = vp;
496 	s = splbio();
497 loop:	for (bp = vp->v_dirtyblkhd.le_next; bp; bp = bp->b_vnbufs.qe_next) {
498 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
499 		    bp->b_flags & B_GATHERED)
500 			continue;
501 #ifdef DIAGNOSTIC
502 		if (!(bp->b_flags & B_DELWRI))
503 			panic("lfs_gather: bp not B_DELWRI");
504 		if (!(bp->b_flags & B_LOCKED))
505 			panic("lfs_gather: bp not B_LOCKED");
506 #endif
507 		if (lfs_gatherblock(sp, bp, &s))
508 			goto loop;
509 	}
510 	splx(s);
511 	lfs_updatemeta(sp);
512 	sp->vp = NULL;
513 }
514 
515 
516 /*
517  * Update the metadata that points to the blocks listed in the FINFO
518  * array.
519  */
520 void
521 lfs_updatemeta(sp)
522 	struct segment *sp;
523 {
524 	SEGUSE *sup;
525 	struct buf *bp;
526 	struct lfs *fs;
527 	struct vnode *vp;
528 	struct indir a[NIADDR + 2], *ap;
529 	struct inode *ip;
530 	daddr_t daddr, lbn, off;
531 	int db_per_fsb, error, i, nblocks, num;
532 
533 	vp = sp->vp;
534 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
535 	if (vp == NULL || nblocks == 0)
536 		return;
537 
538 	/* Sort the blocks. */
539 	if (!(sp->seg_flags & SEGM_CLEAN))
540 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
541 
542 	/*
543 	 * Assign disk addresses, and update references to the logical
544 	 * block and the segment usage information.
545 	 */
546 	fs = sp->fs;
547 	db_per_fsb = fsbtodb(fs, 1);
548 	for (i = nblocks; i--; ++sp->start_bpp) {
549 		lbn = *sp->start_lbp++;
550 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
551 		fs->lfs_offset += db_per_fsb;
552 
553 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
554 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
555 		ip = VTOI(vp);
556 		switch (num) {
557 		case 0:
558 			ip->i_db[lbn] = off;
559 			break;
560 		case 1:
561 			ip->i_ib[a[0].in_off] = off;
562 			break;
563 		default:
564 			ap = &a[num - 1];
565 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
566 				panic("lfs_updatemeta: bread bno %d",
567 				    ap->in_lbn);
568 			/*
569 			 * Bread may create a new indirect block which needs
570 			 * to get counted for the inode.
571 			 */
572 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
573 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
574 				ip->i_blocks += btodb(fs->lfs_bsize);
575 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
576 			}
577 			bp->b_un.b_daddr[ap->in_off] = off;
578 			VOP_BWRITE(bp);
579 		}
580 
581 		/* Update segment usage information. */
582 		if (daddr != UNASSIGNED &&
583 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
584 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
585 #ifdef DIAGNOSTIC
586 			if (sup->su_nbytes < fs->lfs_bsize) {
587 				/* XXX -- Change to a panic. */
588 				printf("lfs: negative bytes (segment %d)\n",
589 				    datosn(fs, daddr));
590 				panic ("Negative Bytes");
591 			}
592 #endif
593 			sup->su_nbytes -= fs->lfs_bsize;
594 			error = VOP_BWRITE(bp);
595 		}
596 	}
597 }
598 
599 /*
600  * Start a new segment.
601  */
602 int
603 lfs_initseg(fs)
604 	struct lfs *fs;
605 {
606 	struct segment *sp;
607 	SEGUSE *sup;
608 	SEGSUM *ssp;
609 	struct buf *bp;
610 	daddr_t lbn, *lbnp;
611 	int repeat;
612 
613 	sp = fs->lfs_sp;
614 
615 	repeat = 0;
616 	/* Advance to the next segment. */
617 	if (!LFS_PARTIAL_FITS(fs)) {
618 		/* Wake up any cleaning procs waiting on this file system. */
619 		wakeup(&lfs_allclean_wakeup);
620 
621 		lfs_newseg(fs);
622 		repeat = 1;
623 		fs->lfs_offset = fs->lfs_curseg;
624 		sp->seg_number = datosn(fs, fs->lfs_curseg);
625 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
626 
627 		/*
628 		 * If the segment contains a superblock, update the offset
629 		 * and summary address to skip over it.
630 		 */
631 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
632 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
633 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
634 			sp->seg_bytes_left -= LFS_SBPAD;
635 		}
636 		brelse(bp);
637 	} else {
638 		sp->seg_number = datosn(fs, fs->lfs_curseg);
639 		sp->seg_bytes_left = (fs->lfs_dbpseg -
640 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
641 	}
642 	fs->lfs_lastpseg = fs->lfs_offset;
643 
644 	sp->fs = fs;
645 	sp->ibp = NULL;
646 	sp->ninodes = 0;
647 
648 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
649 	sp->cbpp = sp->bpp;
650 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
651 	     LFS_SUMMARY_SIZE);
652 	sp->segsum = (*sp->cbpp)->b_un.b_addr;
653 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
654 	sp->start_bpp = ++sp->cbpp;
655 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
656 
657 	/* Set point to SEGSUM, initialize it. */
658 	ssp = sp->segsum;
659 	ssp->ss_next = fs->lfs_nextseg;
660 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
661 
662 	/* Set pointer to first FINFO, initialize it. */
663 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
664 	sp->fip->fi_nblocks = 0;
665 	sp->start_lbp = &sp->fip->fi_blocks[0];
666 
667 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
668 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
669 
670 	return(repeat);
671 }
672 
673 /*
674  * Return the next segment to write.
675  */
676 void
677 lfs_newseg(fs)
678 	struct lfs *fs;
679 {
680 	CLEANERINFO *cip;
681 	SEGUSE *sup;
682 	struct buf *bp;
683 	int curseg, error, isdirty, sn;
684 
685         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
686         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
687 	sup->su_nbytes = 0;
688 	sup->su_nsums = 0;
689 	sup->su_ninos = 0;
690         (void) VOP_BWRITE(bp);
691 
692 	LFS_CLEANERINFO(cip, fs, bp);
693 	--cip->clean;
694 	++cip->dirty;
695 	(void) VOP_BWRITE(bp);
696 
697 	fs->lfs_lastseg = fs->lfs_curseg;
698 	fs->lfs_curseg = fs->lfs_nextseg;
699 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
700 		sn = (sn + 1) % fs->lfs_nseg;
701 		if (sn == curseg)
702 			panic("lfs_nextseg: no clean segments");
703 		LFS_SEGENTRY(sup, fs, sn, bp);
704 		isdirty = sup->su_flags & SEGUSE_DIRTY;
705 		brelse(bp);
706 		if (!isdirty)
707 			break;
708 	}
709 
710 	++fs->lfs_nactive;
711 	fs->lfs_nextseg = sntoda(fs, sn);
712 #ifdef DOSTATS
713 	++lfs_stats.segsused;
714 #endif
715 }
716 
717 int
718 lfs_writeseg(fs, sp)
719 	struct lfs *fs;
720 	struct segment *sp;
721 {
722 	extern int locked_queue_count;
723 	struct buf **bpp, *bp, *cbp;
724 	SEGUSE *sup;
725 	SEGSUM *ssp;
726 	dev_t i_dev;
727 	size_t size;
728 	u_long *datap, *dp;
729 	int ch_per_blk, do_again, error, i, nblocks, num, s;
730 	int (*strategy)__P((struct vop_strategy_args *));
731 	struct vop_strategy_args vop_strategy_a;
732 	u_short ninos;
733 	char *p;
734 
735 	/*
736 	 * If there are no buffers other than the segment summary to write
737 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
738 	 * even if there aren't any buffers, you need to write the superblock.
739 	 */
740 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
741 		return (0);
742 
743 	ssp = (SEGSUM *)sp->segsum;
744 
745 	/* Update the segment usage information. */
746 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
747 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
748 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
749 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
750 	sup->su_nbytes += LFS_SUMMARY_SIZE;
751 	sup->su_lastmod = time.tv_sec;
752 	sup->su_ninos += ninos;
753 	++sup->su_nsums;
754 	do_again = !(bp->b_flags & B_GATHERED);
755 	(void)VOP_BWRITE(bp);
756 	/*
757 	 * Compute checksum across data and then across summary; the first
758 	 * block (the summary block) is skipped.  Set the create time here
759 	 * so that it's guaranteed to be later than the inode mod times.
760 	 *
761 	 * XXX
762 	 * Fix this to do it inline, instead of malloc/copy.
763 	 */
764 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
765 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
766 		if ((*++bpp)->b_flags & B_INVAL) {
767 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
768 				panic("lfs_writeseg: copyin failed");
769 		} else
770 			*dp++ = (*bpp)->b_un.b_words[0];
771 	}
772 	ssp->ss_create = time.tv_sec;
773 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
774 	ssp->ss_sumsum =
775 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
776 	free(datap, M_SEGMENT);
777 #ifdef DIAGNOSTIC
778 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
779 		panic("lfs_writeseg: No diskspace for summary");
780 #endif
781 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
782 
783 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
784 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
785 
786 	/*
787 	 * When we simply write the blocks we lose a rotation for every block
788 	 * written.  To avoid this problem, we allocate memory in chunks, copy
789 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
790 	 * largest size I/O devices can handle.
791 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
792 	 * and brelse the buffer (which will move them to the LRU list).  Add
793 	 * the B_CALL flag to the buffer header so we can count I/O's for the
794 	 * checkpoints and so we can release the allocated memory.
795 	 *
796 	 * XXX
797 	 * This should be removed if the new virtual memory system allows us to
798 	 * easily make the buffers contiguous in kernel memory and if that's
799 	 * fast enough.
800 	 */
801 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
802 	for (bpp = sp->bpp, i = nblocks; i;) {
803 		num = ch_per_blk;
804 		if (num > i)
805 			num = i;
806 		i -= num;
807 		size = num * fs->lfs_bsize;
808 
809 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
810 		    (*bpp)->b_blkno, size);
811 		cbp->b_dev = i_dev;
812 		cbp->b_flags |= B_ASYNC | B_BUSY;
813 
814 		s = splbio();
815 		++fs->lfs_iocount;
816 		for (p = cbp->b_un.b_addr; num--;) {
817 			bp = *bpp++;
818 			/*
819 			 * Fake buffers from the cleaner are marked as B_INVAL.
820 			 * We need to copy the data from user space rather than
821 			 * from the buffer indicated.
822 			 * XXX == what do I do on an error?
823 			 */
824 			if (bp->b_flags & B_INVAL) {
825 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
826 					panic("lfs_writeseg: copyin failed");
827 			} else
828 				bcopy(bp->b_un.b_addr, p, bp->b_bcount);
829 			p += bp->b_bcount;
830 			if (bp->b_flags & B_LOCKED)
831 				--locked_queue_count;
832 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
833 			     B_LOCKED | B_GATHERED);
834 			if (bp->b_flags & B_CALL) {
835 				/* if B_CALL, it was created with newbuf */
836 				brelvp(bp);
837 				if (!(bp->b_flags & B_INVAL))
838 					free(bp->b_un.b_addr, M_SEGMENT);
839 				free(bp, M_SEGMENT);
840 			} else {
841 				bremfree(bp);
842 				bp->b_flags |= B_DONE;
843 				reassignbuf(bp, bp->b_vp);
844 				brelse(bp);
845 			}
846 		}
847 		++cbp->b_vp->v_numoutput;
848 		splx(s);
849 		cbp->b_bcount = p - cbp->b_un.b_addr;
850 		/*
851 		 * XXXX This is a gross and disgusting hack.  Since these
852 		 * buffers are physically addressed, they hang off the
853 		 * device vnode (devvp).  As a result, they have no way
854 		 * of getting to the LFS superblock or lfs structure to
855 		 * keep track of the number of I/O's pending.  So, I am
856 		 * going to stuff the fs into the saveaddr field of
857 		 * the buffer (yuk).
858 		 */
859 		cbp->b_saveaddr = (caddr_t)fs;
860 		vop_strategy_a.a_desc = VDESC(vop_strategy);
861 		vop_strategy_a.a_bp = cbp;
862 		(strategy)(&vop_strategy_a);
863 	}
864 	/*
865 	 * XXX
866 	 * Vinvalbuf can move locked buffers off the locked queue
867 	 * and we have no way of knowing about this.  So, after
868 	 * doing a big write, we recalculate how many bufers are
869 	 * really still left on the locked queue.
870 	 */
871 	locked_queue_count = count_lock_queue();
872 	wakeup(&locked_queue_count);
873 #ifdef DOSTATS
874 	++lfs_stats.psegwrites;
875 	lfs_stats.blocktot += nblocks - 1;
876 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
877 		++lfs_stats.psyncwrites;
878 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
879 		++lfs_stats.pcleanwrites;
880 		lfs_stats.cleanblocks += nblocks - 1;
881 	}
882 #endif
883 	return (lfs_initseg(fs) || do_again);
884 }
885 
886 void
887 lfs_writesuper(fs)
888 	struct lfs *fs;
889 {
890 	struct buf *bp;
891 	dev_t i_dev;
892 	int (*strategy) __P((struct vop_strategy_args *));
893 	int s;
894 	struct vop_strategy_args vop_strategy_a;
895 
896 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
897 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
898 
899 	/* Checksum the superblock and copy it into a buffer. */
900 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
901 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
902 	    LFS_SBPAD);
903 	*bp->b_un.b_lfs = *fs;
904 
905 	/* XXX Toggle between first two superblocks; for now just write first */
906 	bp->b_dev = i_dev;
907 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
908 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
909 	bp->b_iodone = lfs_supercallback;
910 	vop_strategy_a.a_desc = VDESC(vop_strategy);
911 	vop_strategy_a.a_bp = bp;
912 	s = splbio();
913 	++bp->b_vp->v_numoutput;
914 	splx(s);
915 	(strategy)(&vop_strategy_a);
916 }
917 
918 /*
919  * Logical block number match routines used when traversing the dirty block
920  * chain.
921  */
922 int
923 lfs_match_data(fs, bp)
924 	struct lfs *fs;
925 	struct buf *bp;
926 {
927 	return (bp->b_lblkno >= 0);
928 }
929 
930 int
931 lfs_match_indir(fs, bp)
932 	struct lfs *fs;
933 	struct buf *bp;
934 {
935 	int lbn;
936 
937 	lbn = bp->b_lblkno;
938 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
939 }
940 
941 int
942 lfs_match_dindir(fs, bp)
943 	struct lfs *fs;
944 	struct buf *bp;
945 {
946 	int lbn;
947 
948 	lbn = bp->b_lblkno;
949 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
950 }
951 
952 int
953 lfs_match_tindir(fs, bp)
954 	struct lfs *fs;
955 	struct buf *bp;
956 {
957 	int lbn;
958 
959 	lbn = bp->b_lblkno;
960 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
961 }
962 
963 /*
964  * Allocate a new buffer header.
965  */
966 struct buf *
967 lfs_newbuf(vp, daddr, size)
968 	struct vnode *vp;
969 	daddr_t daddr;
970 	size_t size;
971 {
972 	struct buf *bp;
973 	size_t nbytes;
974 
975 	nbytes = roundup(size, DEV_BSIZE);
976 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
977 	bzero(bp, sizeof(struct buf));
978 	if (nbytes)
979 		bp->b_un.b_addr =
980 		    malloc(nbytes, M_SEGMENT, M_WAITOK);
981 	bgetvp(vp, bp);
982 	bp->b_bufsize = size;
983 	bp->b_bcount = size;
984 	bp->b_lblkno = daddr;
985 	bp->b_blkno = daddr;
986 	bp->b_error = 0;
987 	bp->b_resid = 0;
988 	bp->b_iodone = lfs_callback;
989 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
990 	return (bp);
991 }
992 
993 void
994 lfs_callback(bp)
995 	struct buf *bp;
996 {
997 	struct lfs *fs;
998 
999 	fs = (struct lfs *)bp->b_saveaddr;
1000 #ifdef DIAGNOSTIC
1001 	if (fs->lfs_iocount == 0)
1002 		panic("lfs_callback: zero iocount\n");
1003 #endif
1004 	if (--fs->lfs_iocount == 0)
1005 		wakeup(&fs->lfs_iocount);
1006 
1007 	brelvp(bp);
1008 	free(bp->b_un.b_addr, M_SEGMENT);
1009 	free(bp, M_SEGMENT);
1010 }
1011 
1012 void
1013 lfs_supercallback(bp)
1014 	struct buf *bp;
1015 {
1016 	brelvp(bp);
1017 	free(bp->b_un.b_addr, M_SEGMENT);
1018 	free(bp, M_SEGMENT);
1019 }
1020 
1021 /*
1022  * Shellsort (diminishing increment sort) from Data Structures and
1023  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1024  * see also Knuth Vol. 3, page 84.  The increments are selected from
1025  * formula (8), page 95.  Roughly O(N^3/2).
1026  */
1027 /*
1028  * This is our own private copy of shellsort because we want to sort
1029  * two parallel arrays (the array of buffer pointers and the array of
1030  * logical block numbers) simultaneously.  Note that we cast the array
1031  * of logical block numbers to a unsigned in this routine so that the
1032  * negative block numbers (meta data blocks) sort AFTER the data blocks.
1033  */
1034 void
1035 lfs_shellsort(bp_array, lb_array, nmemb)
1036 	struct buf **bp_array;
1037 	daddr_t *lb_array;
1038 	register int nmemb;
1039 {
1040 	static int __rsshell_increments[] = { 4, 1, 0 };
1041 	register int incr, *incrp, t1, t2;
1042 	struct buf *bp_temp;
1043 	u_long lb_temp;
1044 
1045 	for (incrp = __rsshell_increments; incr = *incrp++;)
1046 		for (t1 = incr; t1 < nmemb; ++t1)
1047 			for (t2 = t1 - incr; t2 >= 0;)
1048 				if (lb_array[t2] > lb_array[t2 + incr]) {
1049 					lb_temp = lb_array[t2];
1050 					lb_array[t2] = lb_array[t2 + incr];
1051 					lb_array[t2 + incr] = lb_temp;
1052 					bp_temp = bp_array[t2];
1053 					bp_array[t2] = bp_array[t2 + incr];
1054 					bp_array[t2 + incr] = bp_temp;
1055 					t2 -= incr;
1056 				} else
1057 					break;
1058 }
1059 
1060 /*
1061  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, bump the
1062  * ref count, removing the vnode from the free list if it is on it.
1063  */
1064 lfs_vref(vp)
1065 	register struct vnode *vp;
1066 {
1067 	register struct vnode *vq;
1068 	extern struct vnode *vfreeh;
1069 	extern struct vnode **vfreet;
1070 
1071 	if (vp->v_flag & VXLOCK)
1072 		return(1);
1073 
1074 	if (vp->v_usecount == 0) {
1075 		if (vq = vp->v_freef)
1076 			vq->v_freeb = vp->v_freeb;
1077 		else
1078 			vfreet = vp->v_freeb;
1079 		*vp->v_freeb = vq;
1080 		vp->v_freef = NULL;
1081 		vp->v_freeb = NULL;
1082 	}
1083 	VREF(vp);
1084 	return (0);
1085 }
1086 
1087 void
1088 lfs_vunref(vp)
1089 	register struct vnode *vp;
1090 {
1091 	extern struct vnode *vfreeh;
1092 	extern struct vnode **vfreet;
1093 
1094 	--vp->v_usecount;
1095 
1096 	/*
1097 	 * return to free list
1098 	 */
1099 	if (vp->v_usecount == 0) {
1100 		*vfreet = vp;
1101 		vp->v_freeb = vfreet;
1102 		vp->v_freef = NULL;
1103 		vfreet = &vp->v_freef;
1104 	}
1105 	return;
1106 }
1107