xref: /original-bsd/sys/ufs/lfs/lfs_segment.c (revision 3b3772fe)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)lfs_segment.c	7.37 (Berkeley) 10/24/92
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/namei.h>
13 #include <sys/kernel.h>
14 #include <sys/resourcevar.h>
15 #include <sys/file.h>
16 #include <sys/stat.h>
17 #include <sys/buf.h>
18 #include <sys/proc.h>
19 #include <sys/conf.h>
20 #include <sys/vnode.h>
21 #include <sys/malloc.h>
22 #include <sys/mount.h>
23 
24 #include <miscfs/specfs/specdev.h>
25 #include <miscfs/fifofs/fifo.h>
26 
27 #include <ufs/ufs/quota.h>
28 #include <ufs/ufs/inode.h>
29 #include <ufs/ufs/dir.h>
30 #include <ufs/ufs/ufsmount.h>
31 #include <ufs/ufs/ufs_extern.h>
32 
33 #include <ufs/lfs/lfs.h>
34 #include <ufs/lfs/lfs_extern.h>
35 
36 #define MAX_ACTIVE	10
37 /*
38  * Determine if it's OK to start a partial in this segment, or if we need
39  * to go on to a new segment.
40  */
41 #define	LFS_PARTIAL_FITS(fs) \
42 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
43 	1 << (fs)->lfs_fsbtodb)
44 
45 void	 lfs_callback __P((struct buf *));
46 void	 lfs_gather __P((struct lfs *, struct segment *,
47 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
48 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
49 void	 lfs_initseg __P((struct lfs *, struct segment *));
50 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
51 int	 lfs_match_data __P((struct lfs *, struct buf *));
52 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
53 int	 lfs_match_indir __P((struct lfs *, struct buf *));
54 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
55 void	 lfs_newseg __P((struct lfs *));
56 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
57 void	 lfs_supercallback __P((struct buf *));
58 void	 lfs_updatemeta __P((struct segment *));
59 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
60 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
61 int	 lfs_writeseg __P((struct lfs *, struct segment *));
62 void	 lfs_writesuper __P((struct lfs *, struct segment *));
63 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
64 	    struct segment *sp, int dirops));
65 
66 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
67 
68 /*
69  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
70  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
71  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
72  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
73  */
74 
75 int
76 lfs_vflush(vp)
77 	struct vnode *vp;
78 {
79 	struct inode *ip;
80 	struct lfs *fs;
81 	struct segment *sp;
82 	int error, s;
83 
84 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
85 	if (fs->lfs_nactive > MAX_ACTIVE)
86 		return(lfs_segwrite(vp->v_mount, 1));
87 
88 	lfs_seglock(fs);
89 
90 	/*
91 	 * Allocate a segment structure and enough space to hold pointers to
92 	 * the maximum possible number of buffers which can be described in a
93 	 * single summary block.
94 	 */
95 	sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
96 	sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
97 	    sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
98 	sp->seg_flags = SEGM_CKP;
99 	sp->vp = NULL;
100 
101 	/*
102 	 * Keep a cumulative count of the outstanding I/O operations.  If the
103 	 * disk drive catches up with us it could go to zero before we finish,
104 	 * so we artificially increment it by one until we've scheduled all of
105 	 * the writes we intend to do.
106 	 */
107 	s = splbio();
108 	++fs->lfs_iocount;
109 	splx(s);
110 
111 	ip = VTOI(vp);
112 	do {
113 		lfs_initseg(fs, sp);
114 		do {
115 			if (vp->v_dirtyblkhd.le_next != NULL)
116 				lfs_writefile(fs, sp, vp);
117 		} while (lfs_writeinode(fs, sp, ip));
118 
119 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
120 
121 	/*
122 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
123 	 * moment, the user's process hangs around so we can sleep.
124 	 */
125 	s = splbio();
126 	if (--fs->lfs_iocount && (error =
127 	    tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs vflush", 0))) {
128 		free(sp->bpp, M_SEGMENT);
129 		free(sp, M_SEGMENT);
130 		return (error);
131 	}
132 	splx(s);
133 	lfs_segunlock(fs);
134 
135 	/*
136 	 * XXX
137 	 * Should be writing a checkpoint?
138 	 */
139 	free(sp->bpp, M_SEGMENT);
140 	free(sp, M_SEGMENT);
141 
142 	return (0);
143 }
144 
145 void
146 lfs_writevnodes(fs, mp, sp, dirops)
147 	struct lfs *fs;
148 	struct mount *mp;
149 	struct segment *sp;
150 	int dirops;
151 {
152 	struct inode *ip;
153 	struct vnode *vp;
154 	int error, s;
155 
156 loop:	for (vp = mp->mnt_mounth; vp; vp = vp->v_mountf) {
157 		/*
158 		 * If the vnode that we are about to sync is no longer
159 		 * associated with this mount point, start over.
160 		 */
161 		if (vp->v_mount != mp)
162 			goto loop;
163 
164 		if (dirops && !(vp->v_flag & VDIROP) ||
165 		    !dirops && (vp->v_flag & VDIROP))
166 			continue;
167 		/*
168 		 * XXX
169 		 * Up the ref count so we don't get tossed out of
170 		 * memory.
171 		 */
172 		VREF(vp);
173 
174 		/*
175 		 * Write the inode/file if dirty and it's not the
176 		 * the IFILE.
177 		 */
178 		ip = VTOI(vp);
179 		if ((ip->i_flag & (IMOD | IACC | IUPD | ICHG) ||
180 		    vp->v_dirtyblkhd.le_next != NULL) &&
181 		    ip->i_number != LFS_IFILE_INUM) {
182 			if (vp->v_dirtyblkhd.le_next != NULL)
183 				lfs_writefile(fs, sp, vp);
184 			(void) lfs_writeinode(fs, sp, ip);
185 		}
186 		vp->v_flag &= ~VDIROP;
187 		vrele(vp);
188 	}
189 }
190 
191 int
192 lfs_segwrite(mp, do_ckp)
193 	struct mount *mp;
194 	int do_ckp;			/* Do a checkpoint. */
195 {
196 	struct buf *bp;
197 	struct inode *ip;
198 	struct lfs *fs;
199 	struct segment *sp;
200 	struct vnode *vp;
201 	SEGUSE *segusep;
202 	daddr_t ibno;
203 	CLEANERINFO *cip;
204 	int clean, error, i, s;
205 
206 	fs = VFSTOUFS(mp)->um_lfs;
207 
208  	/*
209  	 * If we have fewer than 2 clean segments, wait until cleaner
210 	 * writes.
211  	 */
212 	do {
213 		LFS_CLEANERINFO(cip, fs, bp);
214 		clean = cip->clean;
215 		brelse(bp);
216 		if (clean <= 2) {
217 			printf ("segs clean: %d\n", clean);
218 			wakeup(&lfs_allclean_wakeup);
219 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
220 			    "lfs writer", 0))
221 				return (error);
222 		}
223 	} while (clean <= 2 );
224 	lfs_seglock(fs);
225 
226 	/*
227 	 * Allocate a segment structure and enough space to hold pointers to
228 	 * the maximum possible number of buffers which can be described in a
229 	 * single summary block.
230 	 */
231 	do_ckp = do_ckp || fs->lfs_nactive > MAX_ACTIVE;
232 	sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
233 	sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
234 	    sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
235 	sp->seg_flags = do_ckp ? SEGM_CKP : 0;
236 	sp->vp = NULL;
237 	lfs_initseg(fs, sp);
238 
239 	/*
240 	 * Keep a cumulative count of the outstanding I/O operations.  If the
241 	 * disk drive catches up with us it could go to zero before we finish,
242 	 * so we artificially increment it by one until we've scheduled all of
243 	 * the writes we intend to do.  If not a checkpoint, we never do the
244 	 * final decrement, avoiding the wakeup in the callback routine.
245 	 */
246 	s = splbio();
247 	++fs->lfs_iocount;
248 	splx(s);
249 
250 	lfs_writevnodes(fs, mp, sp, 0);
251 	fs->lfs_writer = 1;
252 	if (fs->lfs_dirops && (error =
253 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
254 		free(sp->bpp, M_SEGMENT);
255 		free(sp, M_SEGMENT);
256 		fs->lfs_writer = 0;
257 		return (error);
258 	}
259 
260 	lfs_writevnodes(fs, mp, sp, 1);
261 
262 	/*
263 	 * If we are doing a checkpoint, mark everything since the
264 	 * last checkpoint as no longer ACTIVE.
265 	 */
266 	if (do_ckp)
267 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
268 		     --ibno >= fs->lfs_cleansz; ) {
269 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
270 			    NOCRED, &bp))
271 
272 				panic("lfs: ifile read");
273 			segusep = (SEGUSE *)bp->b_un.b_addr;
274 			for (i = fs->lfs_sepb; i--; segusep++)
275 				segusep->su_flags &= ~SEGUSE_ACTIVE;
276 
277 			error = VOP_BWRITE(bp);
278 		}
279 
280 	if (do_ckp || fs->lfs_doifile) {
281 redo:
282 		vp = fs->lfs_ivnode;
283 		while (vget(vp));
284 		ip = VTOI(vp);
285 		if (vp->v_dirtyblkhd.le_next != NULL)
286 			lfs_writefile(fs, sp, vp);
287 		(void)lfs_writeinode(fs, sp, ip);
288 		vput(vp);
289 		if (lfs_writeseg(fs, sp) && do_ckp) {
290 			lfs_initseg(fs, sp);
291 			goto redo;
292 		}
293 	} else
294 		(void) lfs_writeseg(fs, sp);
295 
296 	/*
297 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
298 	 * moment, the user's process hangs around so we can sleep.
299 	 */
300 	fs->lfs_writer = 0;
301 	fs->lfs_doifile = 0;
302 	wakeup(&fs->lfs_dirops);
303 
304 	s = splbio();
305 	--fs->lfs_iocount;
306 	if (do_ckp) {
307 		if (fs->lfs_iocount && (error =
308 		    tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs sync", 0))) {
309 			free(sp->bpp, M_SEGMENT);
310 			free(sp, M_SEGMENT);
311 			return (error);
312 		}
313 		splx(s);
314 		fs->lfs_nactive = 0;
315 		lfs_writesuper(fs, sp);
316 	} else
317 		splx(s);
318 
319 	lfs_segunlock(fs);
320 
321 	free(sp->bpp, M_SEGMENT);
322 	free(sp, M_SEGMENT);
323 
324 	return (0);
325 }
326 
327 /*
328  * Write the dirty blocks associated with a vnode.
329  */
330 void
331 lfs_writefile(fs, sp, vp)
332 	struct lfs *fs;
333 	struct segment *sp;
334 	struct vnode *vp;
335 {
336 	struct buf *bp;
337 	struct finfo *fip;
338 	IFILE *ifp;
339 
340 	if (sp->seg_bytes_left < fs->lfs_bsize ||
341 	    sp->sum_bytes_left < sizeof(struct finfo)) {
342 		(void) lfs_writeseg(fs, sp);
343 		lfs_initseg(fs, sp);
344 	}
345 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
346 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
347 
348 	fip = sp->fip;
349 	fip->fi_nblocks = 0;
350 	fip->fi_ino = VTOI(vp)->i_number;
351 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
352 	fip->fi_version = ifp->if_version;
353 	brelse(bp);
354 
355 	/*
356 	 * It may not be necessary to write the meta-data blocks at this point,
357 	 * as the roll-forward recovery code should be able to reconstruct the
358 	 * list.
359 	 */
360 	lfs_gather(fs, sp, vp, lfs_match_data);
361 	lfs_gather(fs, sp, vp, lfs_match_indir);
362 	lfs_gather(fs, sp, vp, lfs_match_dindir);
363 #ifdef TRIPLE
364 	lfs_gather(fs, sp, vp, lfs_match_tindir);
365 #endif
366 
367 	fip = sp->fip;
368 #ifdef META
369 	printf("lfs_writefile: adding %d blocks\n", fip->fi_nblocks);
370 #endif
371 	if (fip->fi_nblocks != 0) {
372 		sp->fip =
373 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
374 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
375 		sp->start_lbp = &sp->fip->fi_blocks[0];
376 	} else {
377 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
378 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
379 	}
380 }
381 
382 int
383 lfs_writeinode(fs, sp, ip)
384 	struct lfs *fs;
385 	struct segment *sp;
386 	struct inode *ip;
387 {
388 	struct buf *bp, *ibp;
389 	IFILE *ifp;
390 	SEGUSE *sup;
391 	daddr_t daddr;
392 	ino_t ino;
393 	int error, ndx;
394 	int redo_ifile = 0;
395 
396 	if (!(ip->i_flag & (IMOD | IACC | IUPD | ICHG)))
397 		return(0);
398 
399 	/* Allocate a new inode block if necessary. */
400 	if (sp->ibp == NULL) {
401 		/* Allocate a new segment if necessary. */
402 		if (sp->seg_bytes_left < fs->lfs_bsize ||
403 		    sp->sum_bytes_left < sizeof(daddr_t)) {
404 			(void) lfs_writeseg(fs, sp);
405 			lfs_initseg(fs, sp);
406 		}
407 
408 		/* Get next inode block. */
409 		daddr = fs->lfs_offset;
410 		fs->lfs_offset += fsbtodb(fs, 1);
411 		sp->ibp = *sp->cbpp++ =
412 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
413 		    fs->lfs_bsize);
414 		++sp->start_bpp;
415 		fs->lfs_avail -= fsbtodb(fs, 1);
416 		/* Set remaining space counters. */
417 		sp->seg_bytes_left -= fs->lfs_bsize;
418 		sp->sum_bytes_left -= sizeof(daddr_t);
419 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
420 		    sp->ninodes / INOPB(fs) - 1;
421 		((daddr_t *)(sp->segsum))[ndx] = daddr;
422 	}
423 
424 	/* Update the inode times and copy the inode onto the inode page. */
425 	if (ip->i_flag & IMOD)
426 		--fs->lfs_uinodes;
427 	ITIMES(ip, &time, &time);
428 	ip->i_flag &= ~(IMOD | IACC | IUPD | ICHG);
429 	bp = sp->ibp;
430 	bp->b_un.b_dino[sp->ninodes % INOPB(fs)] = ip->i_din;
431 	/* Increment inode count in segment summary block. */
432 	++((SEGSUM *)(sp->segsum))->ss_ninos;
433 
434 	/* If this page is full, set flag to allocate a new page. */
435 	if (++sp->ninodes % INOPB(fs) == 0)
436 		sp->ibp = NULL;
437 
438 	/*
439 	 * If updating the ifile, update the super-block.  Update the disk
440 	 * address and access times for this inode in the ifile.
441 	 */
442 	ino = ip->i_number;
443 	if (ino == LFS_IFILE_INUM) {
444 		daddr = fs->lfs_idaddr;
445 		fs->lfs_idaddr = bp->b_blkno;
446 	} else {
447 		LFS_IENTRY(ifp, fs, ino, ibp);
448 		daddr = ifp->if_daddr;
449 		ifp->if_daddr = bp->b_blkno;
450 		error = VOP_BWRITE(ibp);
451 	}
452 
453 	/*
454 	 * No need to update segment usage if there was no former inode address
455 	 * or if the last inode address is in the current partial segment.
456 	 */
457 	if (daddr != LFS_UNUSED_DADDR &&
458 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
459 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
460 #ifdef DIAGNOSTIC
461 		if (sup->su_nbytes < sizeof(struct dinode)) {
462 			/* XXX -- Change to a panic. */
463 			printf("lfs: negative bytes (segment %d)\n",
464 			    datosn(fs, daddr));
465 			panic("negative bytes");
466 		}
467 #endif
468 		sup->su_nbytes -= sizeof(struct dinode);
469 		redo_ifile =
470 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
471 		error = VOP_BWRITE(bp);
472 	}
473 	return (redo_ifile);
474 }
475 
476 int
477 lfs_gatherblock(sp, bp, sptr)
478 	struct segment *sp;
479 	struct buf *bp;
480 	int *sptr;
481 {
482 	struct lfs *fs;
483 	int version;
484 
485 	/*
486 	 * If full, finish this segment.  We may be doing I/O, so
487 	 * release and reacquire the splbio().
488 	 */
489 #ifdef DIAGNOSTIC
490 	if (sp->vp == NULL)
491 		panic ("lfs_gatherblock: Null vp in segment");
492 #endif
493 	fs = sp->fs;
494 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
495 	    sp->seg_bytes_left < fs->lfs_bsize) {
496 		if (sptr)
497 			splx(*sptr);
498 		lfs_updatemeta(sp);
499 
500 		version = sp->fip->fi_version;
501 		(void) lfs_writeseg(fs, sp);
502 		lfs_initseg(fs, sp);
503 
504 		sp->fip->fi_version = version;
505 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
506 		/* Add the current file to the segment summary. */
507 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
508 		sp->sum_bytes_left -=
509 		    sizeof(struct finfo) - sizeof(daddr_t);
510 
511 		if (sptr)
512 			*sptr = splbio();
513 		return(1);
514 	}
515 
516 	/* Insert into the buffer list, update the FINFO block. */
517 	bp->b_flags |= B_GATHERED;
518 	*sp->cbpp++ = bp;
519 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
520 
521 	sp->sum_bytes_left -= sizeof(daddr_t);
522 	sp->seg_bytes_left -= bp->b_bufsize;
523 	return(0);
524 }
525 
526 void
527 lfs_gather(fs, sp, vp, match)
528 	struct lfs *fs;
529 	struct segment *sp;
530 	struct vnode *vp;
531 	int (*match) __P((struct lfs *, struct buf *));
532 {
533 	struct buf *bp;
534 	int s;
535 
536 	sp->vp = vp;
537 	s = splbio();
538 loop:	for (bp = vp->v_dirtyblkhd.le_next; bp; bp = bp->b_vnbufs.qe_next) {
539 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
540 		    bp->b_flags & B_GATHERED)
541 			continue;
542 #ifdef DIAGNOSTIC
543 		if (!(bp->b_flags & B_DELWRI))
544 			panic("lfs_gather: bp not B_DELWRI");
545 		if (!(bp->b_flags & B_LOCKED))
546 			panic("lfs_gather: bp not B_LOCKED");
547 #endif
548 		if (lfs_gatherblock(sp, bp, &s))
549 			goto loop;
550 	}
551 	splx(s);
552 	lfs_updatemeta(sp);
553 	sp->vp = NULL;
554 }
555 
556 
557 /*
558  * Update the metadata that points to the blocks listed in the FINFO
559  * array.
560  */
561 void
562 lfs_updatemeta(sp)
563 	struct segment *sp;
564 {
565 	SEGUSE *sup;
566 	struct buf *bp;
567 	struct lfs *fs;
568 	struct vnode *vp;
569 	struct indir a[NIADDR + 2], *ap;
570 	struct inode *ip;
571 	daddr_t daddr, lbn, off;
572 	int db_per_fsb, error, i, nblocks, num;
573 
574 	vp = sp->vp;
575 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
576 	if (vp == NULL || nblocks == 0)
577 		return;
578 
579 	/* Sort the blocks. */
580 	if (!(sp->seg_flags & SEGM_CLEAN))
581 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
582 
583 	/*
584 	 * Assign disk addresses, and update references to the logical
585 	 * block and the segment usage information.
586 	 */
587 	fs = sp->fs;
588 	db_per_fsb = fsbtodb(fs, 1);
589 	for (i = nblocks; i--; ++sp->start_bpp) {
590 		lbn = *sp->start_lbp++;
591 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
592 		fs->lfs_offset += db_per_fsb;
593 
594 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
595 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
596 		ip = VTOI(vp);
597 		switch (num) {
598 		case 0:
599 			ip->i_db[lbn] = off;
600 			break;
601 		case 1:
602 			ip->i_ib[a[0].in_off] = off;
603 			break;
604 		default:
605 			ap = &a[num - 1];
606 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
607 				panic("lfs_updatemeta: bread bno %d",
608 				    ap->in_lbn);
609 			/*
610 			 * Bread may create a new indirect block which needs
611 			 * to get counted for the inode.
612 			 */
613 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
614 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
615 				ip->i_blocks += btodb(fs->lfs_bsize);
616 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
617 			}
618 			bp->b_un.b_daddr[ap->in_off] = off;
619 			VOP_BWRITE(bp);
620 		}
621 
622 		/* Update segment usage information. */
623 		if (daddr != UNASSIGNED) {
624 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
625 #ifdef DIAGNOSTIC
626 			if (sup->su_nbytes < fs->lfs_bsize) {
627 				/* XXX -- Change to a panic. */
628 				printf("lfs: negative bytes (segment %d)\n",
629 				    datosn(fs, daddr));
630 				panic ("Negative Bytes");
631 			}
632 #endif
633 			sup->su_nbytes -= fs->lfs_bsize;
634 			error = VOP_BWRITE(bp);
635 		}
636 	}
637 }
638 
639 /*
640  * Start a new segment.
641  */
642 void
643 lfs_initseg(fs, sp)
644 	struct lfs *fs;
645 	struct segment *sp;
646 {
647 	SEGUSE *sup;
648 	SEGSUM *ssp;
649 	struct buf *bp;
650 	daddr_t lbn, *lbnp;
651 
652 	/* Advance to the next segment. */
653 	if (!LFS_PARTIAL_FITS(fs)) {
654 		/* Wake up any cleaning procs waiting on this file system. */
655 		wakeup(&fs->lfs_nextseg);
656 		wakeup(&lfs_allclean_wakeup);
657 
658 		lfs_newseg(fs);
659 		fs->lfs_offset = fs->lfs_curseg;
660 		sp->seg_number = datosn(fs, fs->lfs_curseg);
661 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
662 
663 		/*
664 		 * If the segment contains a superblock, update the offset
665 		 * and summary address to skip over it.
666 		 */
667 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
668 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
669 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
670 			sp->seg_bytes_left -= LFS_SBPAD;
671 		}
672 		brelse(bp);
673 	} else {
674 		sp->seg_number = datosn(fs, fs->lfs_curseg);
675 		sp->seg_bytes_left = (fs->lfs_dbpseg -
676 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
677 	}
678 	fs->lfs_lastpseg = fs->lfs_offset;
679 
680 	sp->fs = fs;
681 	sp->ibp = NULL;
682 	sp->ninodes = 0;
683 
684 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
685 	sp->cbpp = sp->bpp;
686 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
687 	     LFS_SUMMARY_SIZE);
688 	sp->segsum = (*sp->cbpp)->b_un.b_addr;
689 	sp->start_bpp = ++sp->cbpp;
690 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
691 
692 	/* Set point to SEGSUM, initialize it. */
693 	ssp = sp->segsum;
694 	ssp->ss_next = fs->lfs_nextseg;
695 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
696 
697 	/* Set pointer to first FINFO, initialize it. */
698 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
699 	sp->fip->fi_nblocks = 0;
700 	sp->start_lbp = &sp->fip->fi_blocks[0];
701 
702 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
703 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
704 }
705 
706 /*
707  * Return the next segment to write.
708  */
709 void
710 lfs_newseg(fs)
711 	struct lfs *fs;
712 {
713 	CLEANERINFO *cip;
714 	SEGUSE *sup;
715 	struct buf *bp;
716 	int curseg, error, isdirty, sn;
717 
718         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
719         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
720 	sup->su_nbytes = 0;
721 	sup->su_nsums = 0;
722 	sup->su_ninos = 0;
723         (void) VOP_BWRITE(bp);
724 
725 	LFS_CLEANERINFO(cip, fs, bp);
726 	--cip->clean;
727 	++cip->dirty;
728 	(void) VOP_BWRITE(bp);
729 
730 	fs->lfs_lastseg = fs->lfs_curseg;
731 	fs->lfs_curseg = fs->lfs_nextseg;
732 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
733 		sn = (sn + 1) % fs->lfs_nseg;
734 		if (sn == curseg)
735 			panic("lfs_nextseg: no clean segments");
736 		LFS_SEGENTRY(sup, fs, sn, bp);
737 		isdirty = sup->su_flags & SEGUSE_DIRTY;
738 		brelse(bp);
739 		if (!isdirty)
740 			break;
741 	}
742 
743 	++fs->lfs_nactive;
744 	fs->lfs_nextseg = sntoda(fs, sn);
745 }
746 
747 int
748 lfs_writeseg(fs, sp)
749 	struct lfs *fs;
750 	struct segment *sp;
751 {
752 	extern int locked_queue_count;
753 	struct buf **bpp, *bp, *cbp;
754 	SEGUSE *sup;
755 	SEGSUM *ssp;
756 	dev_t i_dev;
757 	size_t size;
758 	u_long *datap, *dp;
759 	int ch_per_blk, do_again, error, i, nblocks, num, s;
760 	int (*strategy)__P((struct vop_strategy_args *));
761 	struct vop_strategy_args vop_strategy_a;
762 	u_short ninos;
763 	char *p;
764 
765 	/*
766 	 * If there are no buffers other than the segment summary to write
767 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
768 	 * even if there aren't any buffers, you need to write the superblock.
769 	 */
770 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
771 		brelvp(*sp->cbpp);
772 		free(*sp->cbpp, M_SEGMENT);
773 		return (0);
774 	}
775 
776 	ssp = (SEGSUM *)sp->segsum;
777 
778 	/* Update the segment usage information. */
779 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
780 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
781 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
782 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
783 	sup->su_nbytes += LFS_SUMMARY_SIZE;
784 	sup->su_lastmod = time.tv_sec;
785 	sup->su_ninos += ninos;
786 	++sup->su_nsums;
787 	do_again = !(bp->b_flags & B_GATHERED);
788 	(void)VOP_BWRITE(bp);
789 	/*
790 	 * Compute checksum across data and then across summary; the first
791 	 * block (the summary block) is skipped.  Set the create time here
792 	 * so that it's guaranteed to be later than the inode mod times.
793 	 *
794 	 * XXX
795 	 * Fix this to do it inline, instead of malloc/copy.
796 	 */
797 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
798 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
799 		if ((*++bpp)->b_flags & B_INVAL) {
800 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
801 				panic("lfs_writeseg: copyin failed");
802 		} else
803 			*dp++ = (*bpp)->b_un.b_words[0];
804 	}
805 	ssp->ss_create = time.tv_sec;
806 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
807 	ssp->ss_sumsum =
808 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
809 	free(datap, M_SEGMENT);
810 #ifdef DIAGNOSTIC
811 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
812 		panic("lfs_writeseg: No diskspace for summary");
813 #endif
814 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
815 
816 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
817 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
818 
819 	/*
820 	 * When we simply write the blocks we lose a rotation for every block
821 	 * written.  To avoid this problem, we allocate memory in chunks, copy
822 	 * the buffers into the chunk and write the chunk.  56K was chosen as
823 	 * some driver/controllers can't handle unsigned 16 bit transfers.
824 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
825 	 * and brelse the buffer (which will move them to the LRU list).  Add
826 	 * the B_CALL flag to the buffer header so we can count I/O's for the
827 	 * checkpoints and so we can release the allocated memory.
828 	 *
829 	 * XXX
830 	 * This should be removed if the new virtual memory system allows us to
831 	 * easily make the buffers contiguous in kernel memory and if that's
832 	 * fast enough.
833 	 */
834 #define	LFS_CHUNKSIZE	(56 * 1024)
835 	ch_per_blk = LFS_CHUNKSIZE / fs->lfs_bsize;
836 	for (bpp = sp->bpp, i = nblocks; i;) {
837 		num = ch_per_blk;
838 		if (num > i)
839 			num = i;
840 		i -= num;
841 		size = num * fs->lfs_bsize;
842 
843 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
844 		    (*bpp)->b_blkno, size);
845 		cbp->b_dev = i_dev;
846 		cbp->b_flags |= B_ASYNC | B_BUSY;
847 
848 		s = splbio();
849 		++fs->lfs_iocount;
850 		for (p = cbp->b_un.b_addr; num--;) {
851 			bp = *bpp++;
852 			/*
853 			 * Fake buffers from the cleaner are marked as B_INVAL.
854 			 * We need to copy the data from user space rather than
855 			 * from the buffer indicated.
856 			 * XXX == what do I do on an error?
857 			 */
858 			if (bp->b_flags & B_INVAL) {
859 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
860 					panic("lfs_writeseg: copyin failed");
861 			} else
862 				bcopy(bp->b_un.b_addr, p, bp->b_bcount);
863 			p += bp->b_bcount;
864 			if (bp->b_flags & B_LOCKED)
865 				--locked_queue_count;
866 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
867 			     B_LOCKED | B_GATHERED);
868 			if (bp->b_flags & B_CALL) {
869 				/* if B_CALL, it was created with newbuf */
870 				brelvp(bp);
871 				free(bp, M_SEGMENT);
872 			} else {
873 				bremfree(bp);
874 				bp->b_flags |= B_DONE;
875 				reassignbuf(bp, bp->b_vp);
876 				brelse(bp);
877 			}
878 		}
879 		++cbp->b_vp->v_numoutput;
880 		splx(s);
881 		cbp->b_bcount = p - cbp->b_un.b_addr;
882 		/*
883 		 * XXXX This is a gross and disgusting hack.  Since these
884 		 * buffers are physically addressed, they hang off the
885 		 * device vnode (devvp).  As a result, they have no way
886 		 * of getting to the LFS superblock or lfs structure to
887 		 * keep track of the number of I/O's pending.  So, I am
888 		 * going to stuff the fs into the saveaddr field of
889 		 * the buffer (yuk).
890 		 */
891 		cbp->b_saveaddr = (caddr_t)fs;
892 		vop_strategy_a.a_desc = VDESC(vop_strategy);
893 		vop_strategy_a.a_bp = cbp;
894 		(strategy)(&vop_strategy_a);
895 	}
896 	return (do_again);
897 }
898 
899 void
900 lfs_writesuper(fs, sp)
901 	struct lfs *fs;
902 	struct segment *sp;
903 {
904 	struct buf *bp;
905 	dev_t i_dev;
906 	int (*strategy) __P((struct vop_strategy_args *));
907 	int s;
908 	struct vop_strategy_args vop_strategy_a;
909 
910 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
911 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
912 
913 	/* Checksum the superblock and copy it into a buffer. */
914 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
915 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
916 	    LFS_SBPAD);
917 	*bp->b_un.b_lfs = *fs;
918 
919 	/* Write the first superblock (wait). */
920 	bp->b_dev = i_dev;
921 	bp->b_flags |= B_BUSY;
922 	bp->b_flags &= ~(B_DONE | B_CALL | B_ERROR | B_READ | B_DELWRI);
923 	vop_strategy_a.a_desc = VDESC(vop_strategy);
924 	vop_strategy_a.a_bp = bp;
925 	s = splbio();
926 	bp->b_vp->v_numoutput += 2;
927 	splx(s);
928 	(strategy)(&vop_strategy_a);
929 	biowait(bp);
930 
931 	/* Write the second superblock (don't wait). */
932 	bp->b_blkno = bp->b_lblkno = fs->lfs_sboffs[1];
933 	bp->b_flags |= B_CALL | B_ASYNC | B_BUSY;
934 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
935 	bp->b_iodone = lfs_supercallback;
936 	(strategy)(&vop_strategy_a);
937 }
938 
939 /*
940  * Logical block number match routines used when traversing the dirty block
941  * chain.
942  */
943 int
944 lfs_match_data(fs, bp)
945 	struct lfs *fs;
946 	struct buf *bp;
947 {
948 	return (bp->b_lblkno >= 0);
949 }
950 
951 int
952 lfs_match_indir(fs, bp)
953 	struct lfs *fs;
954 	struct buf *bp;
955 {
956 	int lbn;
957 
958 	lbn = bp->b_lblkno;
959 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
960 }
961 
962 int
963 lfs_match_dindir(fs, bp)
964 	struct lfs *fs;
965 	struct buf *bp;
966 {
967 	int lbn;
968 
969 	lbn = bp->b_lblkno;
970 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
971 }
972 
973 int
974 lfs_match_tindir(fs, bp)
975 	struct lfs *fs;
976 	struct buf *bp;
977 {
978 	int lbn;
979 
980 	lbn = bp->b_lblkno;
981 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
982 }
983 
984 /*
985  * Allocate a new buffer header.
986  */
987 struct buf *
988 lfs_newbuf(vp, daddr, size)
989 	struct vnode *vp;
990 	daddr_t daddr;
991 	size_t size;
992 {
993 	struct buf *bp;
994 	size_t nbytes;
995 
996 	nbytes = roundup(size, DEV_BSIZE);
997 	bp = malloc(sizeof(struct buf) + nbytes, M_SEGMENT, M_WAITOK);
998 	bzero(bp, sizeof(struct buf) + nbytes);
999 	bgetvp(vp, bp);
1000 	bp->b_un.b_addr = (caddr_t)(bp + 1);
1001 	bp->b_bufsize = size;
1002 	bp->b_bcount = size;
1003 	bp->b_lblkno = daddr;
1004 	bp->b_blkno = daddr;
1005 	bp->b_error = 0;
1006 	bp->b_resid = 0;
1007 	bp->b_iodone = lfs_callback;
1008 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
1009 	return (bp);
1010 }
1011 
1012 void
1013 lfs_callback(bp)
1014 	struct buf *bp;
1015 {
1016 	struct lfs *fs;
1017 
1018 	fs = (struct lfs *)bp->b_saveaddr;
1019 #ifdef DIAGNOSTIC
1020 	if (fs->lfs_iocount == 0)
1021 		panic("lfs_callback: zero iocount\n");
1022 #endif
1023 	if (--fs->lfs_iocount == 0)
1024 		wakeup(&fs->lfs_iocount);
1025 
1026 	brelvp(bp);
1027 	free(bp, M_SEGMENT);
1028 }
1029 
1030 void
1031 lfs_supercallback(bp)
1032 	struct buf *bp;
1033 {
1034 	brelvp(bp);
1035 	free(bp, M_SEGMENT);
1036 }
1037 
1038 /*
1039  * Shellsort (diminishing increment sort) from Data Structures and
1040  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1041  * see also Knuth Vol. 3, page 84.  The increments are selected from
1042  * formula (8), page 95.  Roughly O(N^3/2).
1043  */
1044 /*
1045  * This is our own private copy of shellsort because we want to sort
1046  * two parallel arrays (the array of buffer pointers and the array of
1047  * logical block numbers) simultaneously.  Note that we cast the array
1048  * of logical block numbers to a unsigned in this routine so that the
1049  * negative block numbers (meta data blocks) sort AFTER the data blocks.
1050  */
1051 void
1052 lfs_shellsort(bp_array, lb_array, nmemb)
1053 	struct buf **bp_array;
1054 	daddr_t *lb_array;
1055 	register int nmemb;
1056 {
1057 	static int __rsshell_increments[] = { 4, 1, 0 };
1058 	register int incr, *incrp, t1, t2;
1059 	struct buf *bp_temp;
1060 	u_long lb_temp;
1061 
1062 	for (incrp = __rsshell_increments; incr = *incrp++;)
1063 		for (t1 = incr; t1 < nmemb; ++t1)
1064 			for (t2 = t1 - incr; t2 >= 0;)
1065 				if (lb_array[t2] > lb_array[t2 + incr]) {
1066 					lb_temp = lb_array[t2];
1067 					lb_array[t2] = lb_array[t2 + incr];
1068 					lb_array[t2 + incr] = lb_temp;
1069 					bp_temp = bp_array[t2];
1070 					bp_array[t2] = bp_array[t2 + incr];
1071 					bp_array[t2 + incr] = bp_temp;
1072 					t2 -= incr;
1073 				} else
1074 					break;
1075 }
1076 
1077