xref: /original-bsd/sys/ufs/lfs/lfs_segment.c (revision 6093a5ae)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)lfs_segment.c	7.26 (Berkeley) 07/25/92
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/namei.h>
13 #include <sys/kernel.h>
14 #include <sys/resourcevar.h>
15 #include <sys/file.h>
16 #include <sys/stat.h>
17 #include <sys/buf.h>
18 #include <sys/proc.h>
19 #include <sys/conf.h>
20 #include <sys/vnode.h>
21 #include <sys/malloc.h>
22 #include <sys/mount.h>
23 
24 #include <miscfs/specfs/specdev.h>
25 #include <miscfs/fifofs/fifo.h>
26 
27 #include <ufs/ufs/quota.h>
28 #include <ufs/ufs/inode.h>
29 #include <ufs/ufs/dir.h>
30 #include <ufs/ufs/ufsmount.h>
31 
32 #include <ufs/lfs/lfs.h>
33 #include <ufs/lfs/lfs_extern.h>
34 
35 /* In-memory description of a segment about to be written. */
36 struct segment {
37 	struct buf	**bpp;		/* pointer to buffer array */
38 	struct buf	**cbpp;		/* pointer to next available bp */
39 	struct buf	*ibp;		/* buffer pointer to inode page */
40 	struct finfo	*fip;		/* current fileinfo pointer */
41 	void	*segsum;		/* segment summary info */
42 	u_long	ninodes;		/* number of inodes in this segment */
43 	u_long	seg_bytes_left;		/* bytes left in segment */
44 	u_long	sum_bytes_left;		/* bytes left in summary block */
45 	u_long	seg_number;		/* number of this segment */
46 #define	SEGM_CKP	0x01		/* doing a checkpoint */
47 	u_long	seg_flags;		/* run-time flags for this segment */
48 };
49 
50 /*
51  * Determine if it's OK to start a partial in this segment, or if we need
52  * to go on to a new segment.
53  */
54 #define	LFS_PARTIAL_FITS(fs) \
55 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
56 	1 << (fs)->lfs_fsbtodb)
57 
58 void	 lfs_callback __P((struct buf *));
59 void	 lfs_gather __P((struct lfs *, struct segment *,
60 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
61 void	 lfs_initseg __P((struct lfs *, struct segment *));
62 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
63 int	 lfs_match_data __P((struct lfs *, struct buf *));
64 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
65 int	 lfs_match_indir __P((struct lfs *, struct buf *));
66 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
67 struct buf *
68 	 lfs_newbuf __P((struct lfs *, daddr_t, size_t));
69 void	 lfs_newseg __P((struct lfs *));
70 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
71 void	 lfs_updatemeta __P((struct lfs *,
72 	    struct segment *, struct vnode *, daddr_t *, struct buf **, int));
73 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
74 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
75 int	 lfs_writeseg __P((struct lfs *, struct segment *));
76 void	 lfs_writesuper __P((struct lfs *, struct segment *));
77 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
78 	    struct segment *sp, int dirops));
79 
80 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
81 
82 /*
83  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
84  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
85  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
86  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
87  */
88 
89 int
90 lfs_vflush(vp)
91 	struct vnode *vp;
92 {
93 	struct inode *ip;
94 	struct lfs *fs;
95 	struct segment *sp;
96 	int error, s;
97 
98 #ifdef VERBOSE
99 	printf("lfs_vflush\n");
100 #endif
101 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
102 	lfs_seglock(fs);
103 
104 	/*
105 	 * Allocate a segment structure and enough space to hold pointers to
106 	 * the maximum possible number of buffers which can be described in a
107 	 * single summary block.
108 	 */
109 	sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
110 	sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
111 	    sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
112 	sp->seg_flags = SEGM_CKP;
113 	lfs_initseg(fs, sp);
114 
115 	/*
116 	 * Keep a cumulative count of the outstanding I/O operations.  If the
117 	 * disk drive catches up with us it could go to zero before we finish,
118 	 * so we artificially increment it by one until we've scheduled all of
119 	 * the writes we intend to do.
120 	 */
121 	s = splbio();
122 	++fs->lfs_iocount;
123 	splx(s);
124 
125 	ip = VTOI(vp);
126 	do {
127 		do {
128 			if (vp->v_dirtyblkhd != NULL)
129 				lfs_writefile(fs, sp, vp);
130 		} while (lfs_writeinode(fs, sp, ip));
131 		ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
132 
133 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
134 
135 	/*
136 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
137 	 * moment, the user's process hangs around so we can sleep.
138 	 */
139 	s = splbio();
140 	if (--fs->lfs_iocount && (error =
141 	    tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs vflush", 0))) {
142 		free(sp->bpp, M_SEGMENT);
143 		free(sp, M_SEGMENT);
144 		return (error);
145 	}
146 	splx(s);
147 	lfs_segunlock(fs);
148 
149 	/*
150 	 * XXX
151 	 * Should be writing a checkpoint?
152 	 */
153 	free(sp->bpp, M_SEGMENT);
154 	free(sp, M_SEGMENT);
155 
156 	return (0);
157 }
158 
159 void
160 lfs_writevnodes(fs, mp, sp, dirops)
161 	struct lfs *fs;
162 	struct mount *mp;
163 	struct segment *sp;
164 	int dirops;
165 {
166 	struct inode *ip;
167 	struct vnode *vp;
168 	int error, s;
169 
170 loop:	for (vp = mp->mnt_mounth; vp; vp = vp->v_mountf) {
171 		/*
172 		 * If the vnode that we are about to sync is no longer
173 		 * associated with this mount point, start over.
174 		 */
175 		if (vp->v_mount != mp)
176 			goto loop;
177 
178 		if (dirops && !(vp->v_flag & VDIROP) ||
179 		    !dirops && (vp->v_flag & VDIROP))
180 			continue;
181 		/*
182 		 * XXX
183 		 * Up the ref count so we don't get tossed out of
184 		 * memory.
185 		 */
186 		VREF(vp);
187 
188 		/*
189 		 * Write the inode/file if dirty and it's not the
190 		 * the IFILE.
191 		 */
192 		ip = VTOI(vp);
193 		if ((ip->i_flag & (IMOD | IACC | IUPD | ICHG) ||
194 		    vp->v_dirtyblkhd != NULL) &&
195 		    ip->i_number != LFS_IFILE_INUM) {
196 			if (vp->v_dirtyblkhd != NULL)
197 				lfs_writefile(fs, sp, vp);
198 			(void) lfs_writeinode(fs, sp, ip);
199 			ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
200 		}
201 		vp->v_flag &= ~VDIROP;
202 		vrele(vp);
203 	}
204 }
205 
206 int
207 lfs_segwrite(mp, do_ckp)
208 	struct mount *mp;
209 	int do_ckp;			/* Do a checkpoint. */
210 {
211 	struct buf *bp;
212 	struct inode *ip;
213 	struct lfs *fs;
214 	struct segment *sp;
215 	struct vnode *vp;
216 	SEGUSE *segusep;
217 	daddr_t ibno;
218 	int error, i, s;
219 
220 #ifdef VERBOSE
221 	printf("lfs_segwrite\n");
222 #endif
223 	fs = VFSTOUFS(mp)->um_lfs;
224 	lfs_seglock(fs);
225 
226 	/*
227 	 * Allocate a segment structure and enough space to hold pointers to
228 	 * the maximum possible number of buffers which can be described in a
229 	 * single summary block.
230 	 */
231 	sp = malloc(sizeof(struct segment), M_SEGMENT, M_WAITOK);
232 	sp->bpp = malloc(((LFS_SUMMARY_SIZE - sizeof(SEGSUM)) /
233 	    sizeof(daddr_t) + 1) * sizeof(struct buf *), M_SEGMENT, M_WAITOK);
234 	sp->seg_flags = do_ckp ? SEGM_CKP : 0;
235 	lfs_initseg(fs, sp);
236 
237 	/*
238 	 * Keep a cumulative count of the outstanding I/O operations.  If the
239 	 * disk drive catches up with us it could go to zero before we finish,
240 	 * so we artificially increment it by one until we've scheduled all of
241 	 * the writes we intend to do.  If not a checkpoint, we never do the
242 	 * final decrement, avoiding the wakeup in the callback routine.
243 	 */
244 	s = splbio();
245 	++fs->lfs_iocount;
246 	splx(s);
247 
248 	lfs_writevnodes(fs, mp, sp, 0);
249 	fs->lfs_writer = 1;
250 	if (fs->lfs_dirops && (error =
251 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
252 		free(sp->bpp, M_SEGMENT);
253 		free(sp, M_SEGMENT);
254 		fs->lfs_writer = 0;
255 		return (error);
256 	}
257 
258 	lfs_writevnodes(fs, mp, sp, 1);
259 
260 	/*
261 	 * If we are doing a checkpoint, mark everything since the
262 	 * last checkpoint as no longer ACTIVE.
263 	 */
264 	if (do_ckp)
265 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
266 		     --ibno >= fs->lfs_cleansz; ) {
267 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
268 			    NOCRED, &bp))
269 
270 				panic("lfs: ifile read");
271 			segusep = (SEGUSE *)bp->b_un.b_addr;
272 			for (i = fs->lfs_sepb; i--; segusep++)
273 				segusep->su_flags &= ~SEGUSE_ACTIVE;
274 
275 			LFS_UBWRITE(bp);
276 		}
277 
278 	if (do_ckp || fs->lfs_doifile) {
279 		vp = fs->lfs_ivnode;
280 		while (vget(vp));
281 		ip = VTOI(vp);
282 		if (vp->v_dirtyblkhd != NULL)
283 			lfs_writefile(fs, sp, vp);
284 		(void)lfs_writeinode(fs, sp, ip);
285 		ip->i_flags &= ~(IMOD | IACC | IUPD | ICHG);
286 		vput(vp);
287 		/*
288 		 * This should never happen because we just guaranteed
289 		 * that all the segment usage table blocks are dirty, so
290 		 * no new ones should get written.
291 		 */
292 		if (lfs_writeseg(fs, sp) && do_ckp)
293 			panic("lfs_segwrite: created dirty blocks on ckp");
294 	} else
295 		(void) lfs_writeseg(fs, sp);
296 
297 	/*
298 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
299 	 * moment, the user's process hangs around so we can sleep.
300 	 */
301 	fs->lfs_writer = 0;
302 	fs->lfs_doifile = 0;
303 	wakeup(&fs->lfs_dirops);
304 
305 	s = splbio();
306 	--fs->lfs_iocount;
307 	if (do_ckp) {
308 		if (fs->lfs_iocount && (error =
309 		    tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs sync", 0))) {
310 			free(sp->bpp, M_SEGMENT);
311 			free(sp, M_SEGMENT);
312 			return (error);
313 		}
314 		splx(s);
315 		lfs_writesuper(fs, sp);
316 	} else
317 		splx(s);
318 
319 	lfs_segunlock(fs);
320 
321 	free(sp->bpp, M_SEGMENT);
322 	free(sp, M_SEGMENT);
323 
324 	return (0);
325 }
326 
327 /*
328  * Write the dirty blocks associated with a vnode.
329  */
330 void
331 lfs_writefile(fs, sp, vp)
332 	struct lfs *fs;
333 	struct segment *sp;
334 	struct vnode *vp;
335 {
336 	struct buf *bp;
337 	struct finfo *fip;
338 	IFILE *ifp;
339 
340 #ifdef VERBOSE
341 	printf("lfs_writefile\n");
342 #endif
343 	if (sp->seg_bytes_left < fs->lfs_bsize ||
344 	    sp->sum_bytes_left < sizeof(struct finfo)) {
345 		(void) lfs_writeseg(fs, sp);
346 		lfs_initseg(fs, sp);
347 	}
348 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
349 
350 	fip = sp->fip;
351 	fip->fi_nblocks = 0;
352 	fip->fi_ino = VTOI(vp)->i_number;
353 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
354 	fip->fi_version = ifp->if_version;
355 	brelse(bp);
356 
357 	/*
358 	 * It may not be necessary to write the meta-data blocks at this point,
359 	 * as the roll-forward recovery code should be able to reconstruct the
360 	 * list.
361 	 */
362 	lfs_gather(fs, sp, vp, lfs_match_data);
363 	lfs_gather(fs, sp, vp, lfs_match_indir);
364 	lfs_gather(fs, sp, vp, lfs_match_dindir);
365 #ifdef TRIPLE
366 	lfs_gather(fs, sp, vp, lfs_match_tindir);
367 #endif
368 
369 	fip = sp->fip;
370 #ifdef META
371 	printf("lfs_writefile: adding %d blocks\n", fip->fi_nblocks);
372 #endif
373 	if (fip->fi_nblocks != 0) {
374 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
375 		sp->fip =
376 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
377 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
378 	} else
379 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
380 }
381 
382 int
383 lfs_writeinode(fs, sp, ip)
384 	struct lfs *fs;
385 	struct segment *sp;
386 	struct inode *ip;
387 {
388 	struct buf *bp, *ibp;
389 	IFILE *ifp;
390 	SEGUSE *sup;
391 	daddr_t daddr;
392 	ino_t ino;
393 	int ndx;
394 	int redo_ifile = 0;
395 
396 #ifdef VERBOSE
397 	printf("lfs_writeinode\n");
398 #endif
399 	/* Allocate a new inode block if necessary. */
400 	if (sp->ibp == NULL) {
401 		/* Allocate a new segment if necessary. */
402 		if (sp->seg_bytes_left < fs->lfs_bsize ||
403 		    sp->sum_bytes_left < sizeof(daddr_t)) {
404 			(void) lfs_writeseg(fs, sp);
405 			lfs_initseg(fs, sp);
406 		}
407 
408 		/* Get next inode block. */
409 		daddr = fs->lfs_offset;
410 		fs->lfs_offset += fsbtodb(fs, 1);
411 		sp->ibp = *sp->cbpp++ =
412 		    lfs_newbuf(fs, daddr, fs->lfs_bsize);
413 
414 		/* Set remaining space counters. */
415 		sp->seg_bytes_left -= fs->lfs_bsize;
416 		sp->sum_bytes_left -= sizeof(daddr_t);
417 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
418 		    sp->ninodes / INOPB(fs) - 1;
419 		((daddr_t *)(sp->segsum))[ndx] = daddr;
420 	}
421 
422 	/* Update the inode times and copy the inode onto the inode page. */
423 	ITIMES(ip, &time, &time);
424 	bp = sp->ibp;
425 	bp->b_un.b_dino[sp->ninodes % INOPB(fs)] = ip->i_din;
426 
427 	/* Increment inode count in segment summary block. */
428 	++((SEGSUM *)(sp->segsum))->ss_ninos;
429 
430 	/* If this page is full, set flag to allocate a new page. */
431 	if (++sp->ninodes % INOPB(fs) == 0)
432 		sp->ibp = NULL;
433 
434 	/*
435 	 * If updating the ifile, update the super-block.  Update the disk
436 	 * address and access times for this inode in the ifile.
437 	 */
438 	ino = ip->i_number;
439 	if (ino == LFS_IFILE_INUM) {
440 		daddr = fs->lfs_idaddr;
441 		fs->lfs_idaddr = bp->b_blkno;
442 	} else {
443 		LFS_IENTRY(ifp, fs, ino, ibp);
444 		daddr = ifp->if_daddr;
445 		ifp->if_daddr = bp->b_blkno;
446 		LFS_UBWRITE(ibp);
447 	}
448 
449 	/*
450 	 * No need to update segment usage if there was no former inode address
451 	 * or if the last inode address is in the current partial segment.
452 	 */
453 	if (daddr != LFS_UNUSED_DADDR &&
454 	    !(daddr >= fs->lfs_curseg && daddr <= ifp->if_daddr) ) {
455 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
456 #ifdef DIAGNOSTIC
457 		if (sup->su_nbytes < sizeof(struct dinode)) {
458 			/* XXX -- Change to a panic. */
459 			printf("lfs: negative bytes (segment %d)\n",
460 			    datosn(fs, daddr));
461 			panic("negative bytes");
462 		}
463 #endif
464 		sup->su_nbytes -= sizeof(struct dinode);
465 		LFS_UBWRITE(bp);
466 		redo_ifile = (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
467 	}
468 	return (redo_ifile);
469 }
470 
471 void
472 lfs_gather(fs, sp, vp, match)
473 	struct lfs *fs;
474 	struct segment *sp;
475 	struct vnode *vp;
476 	int (*match) __P((struct lfs *, struct buf *));
477 {
478 	struct buf **bpp, *bp;
479 struct buf *lastbp;
480 	struct finfo *fip;
481 	struct inode *ip;
482 	daddr_t *lbp, *start_lbp;
483 	u_long version;
484 	int s;
485 
486 #ifdef VERBOSE
487 	printf("lfs_gather\n");
488 #endif
489 	ip = VTOI(vp);
490 	bpp = sp->cbpp;
491 	fip = sp->fip;
492 	start_lbp = lbp = &fip->fi_blocks[fip->fi_nblocks];
493 
494 loop:	s = splbio();
495 	lastbp = NULL;
496 	for (bp = vp->v_dirtyblkhd; bp; lastbp = bp, bp = bp->b_blockf) {
497 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
498 		    bp->b_flags & B_GATHERED)
499 			continue;
500 #ifdef DIAGNOSTIC
501 		if (!(bp->b_flags & B_DELWRI))
502 			panic("lfs_gather: bp not B_DELWRI");
503 		if (!(bp->b_flags & B_LOCKED))
504 			panic("lfs_gather: bp not B_LOCKED");
505 #endif
506 		/*
507 		 * If full, finish this segment.  We may be doing I/O, so
508 		 * release and reacquire the splbio().
509 		 */
510 		if (sp->sum_bytes_left < sizeof(daddr_t) ||
511 		    sp->seg_bytes_left < fs->lfs_bsize) {
512 			splx(s);
513 			lfs_updatemeta(fs,
514 			    sp, vp, start_lbp, bpp, lbp - start_lbp);
515 
516 			/* Add the current file to the segment summary. */
517 			++((SEGSUM *)(sp->segsum))->ss_nfinfo;
518 
519 			version = fip->fi_version;
520 			(void) lfs_writeseg(fs, sp);
521 			lfs_initseg(fs, sp);
522 
523 			fip = sp->fip;
524 			fip->fi_version = version;
525 			fip->fi_ino = ip->i_number;
526 			start_lbp = lbp = fip->fi_blocks;
527 
528 			sp->sum_bytes_left -=
529 			    sizeof(struct finfo) - sizeof(daddr_t);
530 
531 			bpp = sp->cbpp;
532 			goto loop;
533 		}
534 
535 		/* Insert into the buffer list, update the FINFO block. */
536 		bp->b_flags |= B_GATHERED;
537 		*sp->cbpp++ = bp;
538 		++fip->fi_nblocks;
539 		*lbp++ = bp->b_lblkno;
540 
541 		sp->sum_bytes_left -= sizeof(daddr_t);
542 		sp->seg_bytes_left -= bp->b_bufsize;
543 	}
544 	splx(s);
545 	lfs_updatemeta(fs, sp, vp, start_lbp, bpp, lbp - start_lbp);
546 }
547 
548 /*
549  * Update the metadata that points to the blocks listed in the FINFO
550  * array.
551  */
552 void
553 lfs_updatemeta(fs, sp, vp, lbp, bpp, nblocks)
554 	struct lfs *fs;
555 	struct segment *sp;
556 	struct vnode *vp;
557 	daddr_t *lbp;
558 	struct buf **bpp;
559 	int nblocks;
560 {
561 	SEGUSE *sup;
562 	struct buf *bp;
563 	INDIR a[NIADDR], *ap;
564 	struct inode *ip;
565 	daddr_t daddr, lbn, off;
566 	int db_per_fsb, error, i, num;
567 
568 #ifdef VERBOSE
569 	printf("lfs_updatemeta\n");
570 #endif
571 	if (nblocks == 0)
572 		return;
573 
574 	/* Sort the blocks. */
575 	lfs_shellsort(bpp, lbp, nblocks);
576 
577 	/*
578 	 * Assign disk addresses, and update references to the logical
579 	 * block and the segment usage information.
580 	 */
581 	db_per_fsb = fsbtodb(fs, 1);
582 	for (i = nblocks; i--; ++bpp) {
583 		lbn = *lbp++;
584 		(*bpp)->b_blkno = off = fs->lfs_offset;
585 		fs->lfs_offset += db_per_fsb;
586 
587 		if (error = lfs_bmaparray(vp, lbn, &daddr, a, &num))
588 			panic("lfs_updatemeta: lfs_bmaparray %d", error);
589 		ip = VTOI(vp);
590 		switch (num) {
591 		case 0:
592 			ip->i_db[lbn] = off;
593 			break;
594 		case 1:
595 			ip->i_ib[a[0].in_off] = off;
596 			break;
597 		default:
598 			ap = &a[num - 1];
599 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
600 				panic("lfs_updatemeta: bread bno %d",
601 				    ap->in_lbn);
602 			/*
603 			 * Bread may create a new indirect block which needs
604 			 * to get counted for the inode.
605 			 */
606 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
607 				ip->i_blocks += btodb(fs->lfs_bsize);
608 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
609 			}
610 			bp->b_un.b_daddr[ap->in_off] = off;
611 			VOP_BWRITE(bp);
612 		}
613 
614 		/* Update segment usage information. */
615 		if (daddr != UNASSIGNED) {
616 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
617 #ifdef DIAGNOSTIC
618 			if (sup->su_nbytes < fs->lfs_bsize) {
619 				/* XXX -- Change to a panic. */
620 				printf("lfs: negative bytes (segment %d)\n",
621 				    datosn(fs, daddr));
622 				panic ("Negative Bytes");
623 			}
624 #endif
625 			sup->su_nbytes -= fs->lfs_bsize;
626 			LFS_UBWRITE(bp);
627 		}
628 	}
629 }
630 
631 /*
632  * Start a new segment.
633  */
634 void
635 lfs_initseg(fs, sp)
636 	struct lfs *fs;
637 	struct segment *sp;
638 {
639 	SEGUSE *sup;
640 	SEGSUM *ssp;
641 	struct buf *bp;
642 	daddr_t lbn, *lbnp;
643 
644 #ifdef VERBOSE
645 	printf("lfs_initseg\n");
646 #endif
647 	/* Advance to the next segment. */
648 	if (!LFS_PARTIAL_FITS(fs)) {
649 		/* Wake up any cleaning procs waiting on this file system. */
650 		wakeup(&fs->lfs_nextseg);
651 		wakeup(&lfs_allclean_wakeup);
652 
653 		lfs_newseg(fs);
654 		fs->lfs_offset = fs->lfs_curseg;
655 		sp->seg_number = datosn(fs, fs->lfs_curseg);
656 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
657 
658 		/*
659 		 * If the segment contains a superblock, update the offset
660 		 * and summary address to skip over it.
661 		 */
662 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
663 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
664 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
665 			sp->seg_bytes_left -= LFS_SBPAD;
666 		}
667 		brelse(bp);
668 	} else {
669 		sp->seg_number = datosn(fs, fs->lfs_curseg);
670 		sp->seg_bytes_left = (fs->lfs_dbpseg -
671 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
672 	}
673 	fs->lfs_lastpseg = fs->lfs_offset;
674 
675 	sp->ibp = NULL;
676 	sp->ninodes = 0;
677 
678 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
679 	sp->cbpp = sp->bpp;
680 	*sp->cbpp = lfs_newbuf(fs, fs->lfs_offset, LFS_SUMMARY_SIZE);
681 	sp->segsum = (*sp->cbpp)->b_un.b_addr;
682 	++sp->cbpp;
683 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
684 
685 	/* Set point to SEGSUM, initialize it. */
686 	ssp = sp->segsum;
687 	ssp->ss_next = fs->lfs_nextseg;
688 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
689 
690 	/* Set pointer to first FINFO, initialize it. */
691 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
692 	sp->fip->fi_nblocks = 0;
693 
694 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
695 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
696 }
697 
698 /*
699  * Return the next segment to write.
700  */
701 void
702 lfs_newseg(fs)
703 	struct lfs *fs;
704 {
705 	CLEANERINFO *cip;
706 	SEGUSE *sup;
707 	struct buf *bp;
708 	int curseg, isdirty, sn;
709 
710 #ifdef VERBOSE
711 	printf("lfs_newseg\n");
712 #endif
713         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
714         sup->su_flags |= SEGUSE_DIRTY;
715         LFS_UBWRITE(bp);
716 
717 	LFS_CLEANERINFO(cip, fs, bp);
718 	--cip->clean;
719 	++cip->dirty;
720 	LFS_UBWRITE(bp);
721 
722 	fs->lfs_lastseg = fs->lfs_curseg;
723 	fs->lfs_curseg = fs->lfs_nextseg;
724 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
725 		sn = (sn + 1) % fs->lfs_nseg;
726 		if (sn == curseg)
727 			panic("lfs_nextseg: no clean segments");
728 		LFS_SEGENTRY(sup, fs, sn, bp);
729 		isdirty = sup->su_flags & SEGUSE_DIRTY;
730 		brelse(bp);
731 		if (!isdirty)
732 			break;
733 	}
734 
735 	fs->lfs_nextseg = sntoda(fs, sn);
736 }
737 
738 int
739 lfs_writeseg(fs, sp)
740 	struct lfs *fs;
741 	struct segment *sp;
742 {
743 	struct buf **bpp, *bp, *cbp;
744 	SEGUSE *sup;
745 	SEGSUM *ssp;
746 	dev_t i_dev;
747 	size_t size;
748 	u_long *datap, *dp;
749 	int ch_per_blk, do_again, i, nblocks, num, s;
750 	int (*strategy)__P((struct vop_strategy_args *));
751 	struct vop_strategy_args vop_strategy_a;
752 	u_short ninos;
753 	char *p;
754 
755 #ifdef VERBOSE
756 	printf("lfs_writeseg\n");
757 #endif
758 	/* Checkpoint always writes superblock, even if no data blocks. */
759 	if ((nblocks = sp->cbpp - sp->bpp) == 0 && !(sp->seg_flags & SEGM_CKP))
760 		return (0);
761 
762 	/*
763 	 * Compute checksum across data and then across summary; the first
764 	 * block (the summary block) is skipped.  Set the create time here
765 	 * so that it's guaranteed to be later than the inode mod times.
766 	 *
767 	 * XXX
768 	 * Fix this to do it inline, instead of malloc/copy.
769 	 */
770 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
771 	for (bpp = sp->bpp, i = nblocks - 1; i--;)
772 		*dp++ = (*++bpp)->b_un.b_words[0];
773 	ssp = (SEGSUM *)sp->segsum;
774 	ssp->ss_create = time.tv_sec;
775 	ssp->ss_datasum = cksum(datap, nblocks * sizeof(u_long));
776 	ssp->ss_sumsum =
777 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
778 	free(datap, M_SEGMENT);
779 
780 	/* Update the segment usage information. */
781 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
782 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
783 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
784 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
785 	sup->su_lastmod = time.tv_sec;
786 	sup->su_flags |= SEGUSE_ACTIVE;
787 	sup->su_ninos += ninos;
788 	++sup->su_nsums;
789 	LFS_UBWRITE(bp);
790 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
791 	do_again = !(bp->b_flags & B_GATHERED);
792 
793 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
794 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
795 
796 	/*
797 	 * When we simply write the blocks we lose a rotation for every block
798 	 * written.  To avoid this problem, we allocate memory in chunks, copy
799 	 * the buffers into the chunk and write the chunk.  56K was chosen as
800 	 * some driver/controllers can't handle unsigned 16 bit transfers.
801 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
802 	 * and brelse the buffer (which will move them to the LRU list).  Add
803 	 * the B_CALL flag to the buffer header so we can count I/O's for the
804 	 * checkpoints and so we can release the allocated memory.
805 	 *
806 	 * XXX
807 	 * This should be removed if the new virtual memory system allows us to
808 	 * easily make the buffers contiguous in kernel memory and if that's
809 	 * fast enough.
810 	 */
811 #define	LFS_CHUNKSIZE	(56 * 1024)
812 	ch_per_blk = LFS_CHUNKSIZE / fs->lfs_bsize;
813 	for (bpp = sp->bpp, i = nblocks; i;) {
814 		num = ch_per_blk;
815 		if (num > i)
816 			num = i;
817 		i -= num;
818 		size = num * fs->lfs_bsize;
819 
820 		cbp = lfs_newbuf(fs, (*bpp)->b_blkno, 0);
821 		cbp->b_dev = i_dev;
822 		cbp->b_flags = B_ASYNC | B_BUSY | B_CALL;
823 		cbp->b_iodone = lfs_callback;
824 		cbp->b_saveaddr = cbp->b_un.b_addr;
825 		cbp->b_un.b_addr = malloc(size, M_SEGMENT, M_WAITOK);
826 
827 		s = splbio();
828 		++fs->lfs_iocount;
829 		for (p = cbp->b_un.b_addr; num--;) {
830 			bp = *bpp++;
831 			bcopy(bp->b_un.b_addr, p, bp->b_bcount);
832 			p += bp->b_bcount;
833 			bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI |
834 			     B_LOCKED | B_GATHERED);
835 			if (!(bp->b_flags & (B_NOCACHE | B_INVAL))) {
836 				bremfree(bp);
837 				reassignbuf(bp, bp->b_vp);
838 			}
839 			brelse(bp);
840 		}
841 		splx(s);
842 		cbp->b_bcount = p - cbp->b_un.b_addr;
843 		vop_strategy_a.a_desc = VDESC(vop_strategy);
844 		vop_strategy_a.a_bp = cbp;
845 		(strategy)(&vop_strategy_a);
846 	}
847 	return (do_again);
848 }
849 
850 void
851 lfs_writesuper(fs, sp)
852 	struct lfs *fs;
853 	struct segment *sp;
854 {
855 	struct buf *bp;
856 	dev_t i_dev;
857 	int (*strategy) __P((struct vop_strategy_args *));
858 	struct vop_strategy_args vop_strategy_a;
859 
860 #ifdef VERBOSE
861 	printf("lfs_writesuper\n");
862 #endif
863 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
864 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
865 
866 	/* Checksum the superblock and copy it into a buffer. */
867 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
868 	bp = lfs_newbuf(fs, fs->lfs_sboffs[0], LFS_SBPAD);
869 	*bp->b_un.b_lfs = *fs;
870 
871 	/* Write the first superblock (wait). */
872 	bp->b_dev = i_dev;
873 	bp->b_flags |= B_BUSY;
874 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
875 	vop_strategy_a.a_desc = VDESC(vop_strategy);
876 	vop_strategy_a.a_bp = bp;
877 	(strategy)(&vop_strategy_a);
878 	biowait(bp);
879 
880 	/* Write the second superblock (don't wait). */
881 	bp->b_blkno = bp->b_lblkno = fs->lfs_sboffs[1];
882 	bp->b_flags |= B_ASYNC | B_BUSY;
883 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
884 	(strategy)(&vop_strategy_a);
885 }
886 
887 /*
888  * Logical block number match routines used when traversing the dirty block
889  * chain.
890  */
891 int
892 lfs_match_data(fs, bp)
893 	struct lfs *fs;
894 	struct buf *bp;
895 {
896 	return (bp->b_lblkno >= 0);
897 }
898 
899 int
900 lfs_match_indir(fs, bp)
901 	struct lfs *fs;
902 	struct buf *bp;
903 {
904 	int lbn;
905 
906 	lbn = bp->b_lblkno;
907 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
908 }
909 
910 int
911 lfs_match_dindir(fs, bp)
912 	struct lfs *fs;
913 	struct buf *bp;
914 {
915 	int lbn;
916 
917 	lbn = bp->b_lblkno;
918 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
919 }
920 
921 int
922 lfs_match_tindir(fs, bp)
923 	struct lfs *fs;
924 	struct buf *bp;
925 {
926 	int lbn;
927 
928 	lbn = bp->b_lblkno;
929 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
930 }
931 
932 /*
933  * Allocate a new buffer header.
934  */
935 struct buf *
936 lfs_newbuf(fs, daddr, size)
937 	struct lfs *fs;
938 	daddr_t daddr;
939 	size_t size;
940 {
941 	struct buf *bp;
942 
943 #ifdef VERBOSE
944 	printf("lfs_newbuf\n");
945 #endif
946 	bp = getnewbuf();
947 	bremhash(bp);
948 	bgetvp(fs->lfs_ivnode, bp);
949 	bp->b_bcount = 0;
950 	bp->b_lblkno = daddr;
951 	bp->b_blkno = daddr;
952 	bp->b_error = 0;
953 	bp->b_resid = 0;
954 	if (size)
955 		allocbuf(bp, size);
956 	bp->b_flags |= B_NOCACHE;
957 	bp->b_saveaddr = NULL;
958 	binshash(bp, &bfreelist[BQ_AGE]);
959 	return (bp);
960 }
961 
962 void
963 lfs_callback(bp)
964 	struct buf *bp;
965 {
966 	struct lfs *fs;
967 
968 	fs = VFSTOUFS(bp->b_vp->v_mount)->um_lfs;
969 #ifdef DIAGNOSTIC
970 	if (fs->lfs_iocount == 0)
971 		panic("lfs_callback: zero iocount\n");
972 #endif
973 	if (--fs->lfs_iocount == 0)
974 		wakeup(&fs->lfs_iocount);
975 
976 	if (bp->b_saveaddr) {
977 		free(bp->b_un.b_addr, M_SEGMENT);
978 		bp->b_un.b_addr = bp->b_saveaddr;
979 		bp->b_saveaddr = NULL;
980 	}
981 	brelse(bp);
982 }
983 
984 /*
985  * Shellsort (diminishing increment sort) from Data Structures and
986  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
987  * see also Knuth Vol. 3, page 84.  The increments are selected from
988  * formula (8), page 95.  Roughly O(N^3/2).
989  */
990 /*
991  * This is our own private copy of shellsort because we want to sort
992  * two parallel arrays (the array of buffer pointers and the array of
993  * logical block numbers) simultaneously.  Note that we cast the array
994  * of logical block numbers to a unsigned in this routine so that the
995  * negative block numbers (meta data blocks) sort AFTER the data blocks.
996  */
997 void
998 lfs_shellsort(bp_array, lb_array, nmemb)
999 	struct buf **bp_array;
1000 	daddr_t *lb_array;
1001 	register int nmemb;
1002 {
1003 	static int __rsshell_increments[] = { 4, 1, 0 };
1004 	register int incr, *incrp, t1, t2;
1005 	struct buf *bp_temp;
1006 	u_long lb_temp;
1007 
1008 	for (incrp = __rsshell_increments; incr = *incrp++;)
1009 		for (t1 = incr; t1 < nmemb; ++t1)
1010 			for (t2 = t1 - incr; t2 >= 0;)
1011 				if (lb_array[t2] > lb_array[t2 + incr]) {
1012 					lb_temp = lb_array[t2];
1013 					lb_array[t2] = lb_array[t2 + incr];
1014 					lb_array[t2 + incr] = lb_temp;
1015 					bp_temp = bp_array[t2];
1016 					bp_array[t2] = bp_array[t2 + incr];
1017 					bp_array[t2 + incr] = bp_temp;
1018 					t2 -= incr;
1019 				} else
1020 					break;
1021 }
1022