xref: /original-bsd/sys/ufs/lfs/lfs_segment.c (revision b293393a)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  *
7  *	@(#)lfs_segment.c	8.4 (Berkeley) 12/30/93
8  */
9 
10 #include <sys/param.h>
11 #include <sys/systm.h>
12 #include <sys/namei.h>
13 #include <sys/kernel.h>
14 #include <sys/resourcevar.h>
15 #include <sys/file.h>
16 #include <sys/stat.h>
17 #include <sys/buf.h>
18 #include <sys/proc.h>
19 #include <sys/conf.h>
20 #include <sys/vnode.h>
21 #include <sys/malloc.h>
22 #include <sys/mount.h>
23 
24 #include <miscfs/specfs/specdev.h>
25 #include <miscfs/fifofs/fifo.h>
26 
27 #include <ufs/ufs/quota.h>
28 #include <ufs/ufs/inode.h>
29 #include <ufs/ufs/dir.h>
30 #include <ufs/ufs/ufsmount.h>
31 #include <ufs/ufs/ufs_extern.h>
32 
33 #include <ufs/lfs/lfs.h>
34 #include <ufs/lfs/lfs_extern.h>
35 
36 extern int count_lock_queue __P((void));
37 
38 #define MAX_ACTIVE	10
39 /*
40  * Determine if it's OK to start a partial in this segment, or if we need
41  * to go on to a new segment.
42  */
43 #define	LFS_PARTIAL_FITS(fs) \
44 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
45 	1 << (fs)->lfs_fsbtodb)
46 
47 void	 lfs_callback __P((struct buf *));
48 void	 lfs_gather __P((struct lfs *, struct segment *,
49 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
50 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
51 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
52 int	 lfs_match_data __P((struct lfs *, struct buf *));
53 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
54 int	 lfs_match_indir __P((struct lfs *, struct buf *));
55 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
56 void	 lfs_newseg __P((struct lfs *));
57 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
58 void	 lfs_supercallback __P((struct buf *));
59 void	 lfs_updatemeta __P((struct segment *));
60 int	 lfs_vref __P((struct vnode *));
61 void	 lfs_vunref __P((struct vnode *));
62 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
63 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
64 int	 lfs_writeseg __P((struct lfs *, struct segment *));
65 void	 lfs_writesuper __P((struct lfs *));
66 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
67 	    struct segment *sp, int dirops));
68 
69 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
70 
71 /* Statistics Counters */
72 #define DOSTATS
73 struct lfs_stats lfs_stats;
74 
75 /* op values to lfs_writevnodes */
76 #define	VN_REG	0
77 #define	VN_DIROP	1
78 #define	VN_EMPTY	2
79 
80 /*
81  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
82  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
83  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
84  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
85  */
86 
87 int
88 lfs_vflush(vp)
89 	struct vnode *vp;
90 {
91 	struct inode *ip;
92 	struct lfs *fs;
93 	struct segment *sp;
94 	int error, s;
95 
96 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
97 	if (fs->lfs_nactive > MAX_ACTIVE)
98 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
99 	lfs_seglock(fs, SEGM_SYNC);
100 	sp = fs->lfs_sp;
101 
102 
103 	ip = VTOI(vp);
104 	if (vp->v_dirtyblkhd.lh_first == NULL)
105 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
106 
107 	do {
108 		do {
109 			if (vp->v_dirtyblkhd.lh_first != NULL)
110 				lfs_writefile(fs, sp, vp);
111 		} while (lfs_writeinode(fs, sp, ip));
112 
113 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
114 
115 #ifdef DOSTATS
116 	++lfs_stats.nwrites;
117 	if (sp->seg_flags & SEGM_SYNC)
118 		++lfs_stats.nsync_writes;
119 	if (sp->seg_flags & SEGM_CKP)
120 		++lfs_stats.ncheckpoints;
121 #endif
122 	lfs_segunlock(fs);
123 	return (0);
124 }
125 
126 void
127 lfs_writevnodes(fs, mp, sp, op)
128 	struct lfs *fs;
129 	struct mount *mp;
130 	struct segment *sp;
131 	int op;
132 {
133 	struct inode *ip;
134 	struct vnode *vp;
135 	int error, s, active;
136 
137 loop:
138 	for (vp = mp->mnt_vnodelist.lh_first;
139 	     vp != NULL;
140 	     vp = vp->v_mntvnodes.le_next) {
141 		/*
142 		 * If the vnode that we are about to sync is no longer
143 		 * associated with this mount point, start over.
144 		 */
145 		if (vp->v_mount != mp)
146 			goto loop;
147 
148 		/* XXX ignore dirops for now
149 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
150 		    op != VN_DIROP && (vp->v_flag & VDIROP))
151 			continue;
152 		*/
153 
154 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
155 			continue;
156 
157 		if (vp->v_type == VNON)
158 			continue;
159 
160 		if (lfs_vref(vp))
161 			continue;
162 
163 		/*
164 		 * Write the inode/file if dirty and it's not the
165 		 * the IFILE.
166 		 */
167 		ip = VTOI(vp);
168 		if ((ip->i_flag &
169 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
170 		    vp->v_dirtyblkhd.lh_first != NULL) &&
171 		    ip->i_number != LFS_IFILE_INUM) {
172 			if (vp->v_dirtyblkhd.lh_first != NULL)
173 				lfs_writefile(fs, sp, vp);
174 			(void) lfs_writeinode(fs, sp, ip);
175 		}
176 		vp->v_flag &= ~VDIROP;
177 		lfs_vunref(vp);
178 	}
179 }
180 
181 int
182 lfs_segwrite(mp, flags)
183 	struct mount *mp;
184 	int flags;			/* Do a checkpoint. */
185 {
186 	struct buf *bp;
187 	struct inode *ip;
188 	struct lfs *fs;
189 	struct segment *sp;
190 	struct vnode *vp;
191 	SEGUSE *segusep;
192 	daddr_t ibno;
193 	CLEANERINFO *cip;
194 	int clean, error, i, s;
195 	int do_ckp;
196 
197 	fs = VFSTOUFS(mp)->um_lfs;
198 
199  	/*
200  	 * If we have fewer than 2 clean segments, wait until cleaner
201 	 * writes.
202  	 */
203 	do {
204 		LFS_CLEANERINFO(cip, fs, bp);
205 		clean = cip->clean;
206 		brelse(bp);
207 		if (clean <= 2) {
208 			printf ("segs clean: %d\n", clean);
209 			wakeup(&lfs_allclean_wakeup);
210 			if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
211 			    "lfs writer", 0))
212 				return (error);
213 		}
214 	} while (clean <= 2 );
215 
216 	/*
217 	 * Allocate a segment structure and enough space to hold pointers to
218 	 * the maximum possible number of buffers which can be described in a
219 	 * single summary block.
220 	 */
221 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
222 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
223 	sp = fs->lfs_sp;
224 
225 	lfs_writevnodes(fs, mp, sp, VN_REG);
226 
227 	/* XXX ignore ordering of dirops for now */
228 	/* XXX
229 	fs->lfs_writer = 1;
230 	if (fs->lfs_dirops && (error =
231 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
232 		free(sp->bpp, M_SEGMENT);
233 		free(sp, M_SEGMENT);
234 		fs->lfs_writer = 0;
235 		return (error);
236 	}
237 
238 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
239 	*/
240 
241 	/*
242 	 * If we are doing a checkpoint, mark everything since the
243 	 * last checkpoint as no longer ACTIVE.
244 	 */
245 	if (do_ckp)
246 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
247 		     --ibno >= fs->lfs_cleansz; ) {
248 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
249 			    NOCRED, &bp))
250 
251 				panic("lfs: ifile read");
252 			segusep = (SEGUSE *)bp->b_data;
253 			for (i = fs->lfs_sepb; i--; segusep++)
254 				segusep->su_flags &= ~SEGUSE_ACTIVE;
255 
256 			error = VOP_BWRITE(bp);
257 		}
258 
259 	if (do_ckp || fs->lfs_doifile) {
260 redo:
261 		vp = fs->lfs_ivnode;
262 		while (vget(vp, 1));
263 		ip = VTOI(vp);
264 		if (vp->v_dirtyblkhd.lh_first != NULL)
265 			lfs_writefile(fs, sp, vp);
266 		(void)lfs_writeinode(fs, sp, ip);
267 		vput(vp);
268 		if (lfs_writeseg(fs, sp) && do_ckp)
269 			goto redo;
270 	} else
271 		(void) lfs_writeseg(fs, sp);
272 
273 	/*
274 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
275 	 * moment, the user's process hangs around so we can sleep.
276 	 */
277 	/* XXX ignore dirops for now
278 	fs->lfs_writer = 0;
279 	fs->lfs_doifile = 0;
280 	wakeup(&fs->lfs_dirops);
281 	*/
282 
283 #ifdef DOSTATS
284 	++lfs_stats.nwrites;
285 	if (sp->seg_flags & SEGM_SYNC)
286 		++lfs_stats.nsync_writes;
287 	if (sp->seg_flags & SEGM_CKP)
288 		++lfs_stats.ncheckpoints;
289 #endif
290 	lfs_segunlock(fs);
291 	return (0);
292 }
293 
294 /*
295  * Write the dirty blocks associated with a vnode.
296  */
297 void
298 lfs_writefile(fs, sp, vp)
299 	struct lfs *fs;
300 	struct segment *sp;
301 	struct vnode *vp;
302 {
303 	struct buf *bp;
304 	struct finfo *fip;
305 	IFILE *ifp;
306 
307 	if (sp->seg_bytes_left < fs->lfs_bsize ||
308 	    sp->sum_bytes_left < sizeof(struct finfo))
309 		(void) lfs_writeseg(fs, sp);
310 
311 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
312 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
313 
314 	fip = sp->fip;
315 	fip->fi_nblocks = 0;
316 	fip->fi_ino = VTOI(vp)->i_number;
317 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
318 	fip->fi_version = ifp->if_version;
319 	brelse(bp);
320 
321 	/*
322 	 * It may not be necessary to write the meta-data blocks at this point,
323 	 * as the roll-forward recovery code should be able to reconstruct the
324 	 * list.
325 	 */
326 	lfs_gather(fs, sp, vp, lfs_match_data);
327 	lfs_gather(fs, sp, vp, lfs_match_indir);
328 	lfs_gather(fs, sp, vp, lfs_match_dindir);
329 #ifdef TRIPLE
330 	lfs_gather(fs, sp, vp, lfs_match_tindir);
331 #endif
332 
333 	fip = sp->fip;
334 	if (fip->fi_nblocks != 0) {
335 		sp->fip =
336 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
337 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
338 		sp->start_lbp = &sp->fip->fi_blocks[0];
339 	} else {
340 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
341 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
342 	}
343 }
344 
345 int
346 lfs_writeinode(fs, sp, ip)
347 	struct lfs *fs;
348 	struct segment *sp;
349 	struct inode *ip;
350 {
351 	struct buf *bp, *ibp;
352 	IFILE *ifp;
353 	SEGUSE *sup;
354 	daddr_t daddr;
355 	ino_t ino;
356 	int error, i, ndx;
357 	int redo_ifile = 0;
358 
359 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
360 		return(0);
361 
362 	/* Allocate a new inode block if necessary. */
363 	if (sp->ibp == NULL) {
364 		/* Allocate a new segment if necessary. */
365 		if (sp->seg_bytes_left < fs->lfs_bsize ||
366 		    sp->sum_bytes_left < sizeof(daddr_t))
367 			(void) lfs_writeseg(fs, sp);
368 
369 		/* Get next inode block. */
370 		daddr = fs->lfs_offset;
371 		fs->lfs_offset += fsbtodb(fs, 1);
372 		sp->ibp = *sp->cbpp++ =
373 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
374 		    fs->lfs_bsize);
375 		/* Zero out inode numbers */
376 		for (i = 0; i < INOPB(fs); ++i)
377 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
378 		++sp->start_bpp;
379 		fs->lfs_avail -= fsbtodb(fs, 1);
380 		/* Set remaining space counters. */
381 		sp->seg_bytes_left -= fs->lfs_bsize;
382 		sp->sum_bytes_left -= sizeof(daddr_t);
383 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
384 		    sp->ninodes / INOPB(fs) - 1;
385 		((daddr_t *)(sp->segsum))[ndx] = daddr;
386 	}
387 
388 	/* Update the inode times and copy the inode onto the inode page. */
389 	if (ip->i_flag & IN_MODIFIED)
390 		--fs->lfs_uinodes;
391 	ITIMES(ip, &time, &time);
392 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
393 	bp = sp->ibp;
394 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
395 	/* Increment inode count in segment summary block. */
396 	++((SEGSUM *)(sp->segsum))->ss_ninos;
397 
398 	/* If this page is full, set flag to allocate a new page. */
399 	if (++sp->ninodes % INOPB(fs) == 0)
400 		sp->ibp = NULL;
401 
402 	/*
403 	 * If updating the ifile, update the super-block.  Update the disk
404 	 * address and access times for this inode in the ifile.
405 	 */
406 	ino = ip->i_number;
407 	if (ino == LFS_IFILE_INUM) {
408 		daddr = fs->lfs_idaddr;
409 		fs->lfs_idaddr = bp->b_blkno;
410 	} else {
411 		LFS_IENTRY(ifp, fs, ino, ibp);
412 		daddr = ifp->if_daddr;
413 		ifp->if_daddr = bp->b_blkno;
414 		error = VOP_BWRITE(ibp);
415 	}
416 
417 	/*
418 	 * No need to update segment usage if there was no former inode address
419 	 * or if the last inode address is in the current partial segment.
420 	 */
421 	if (daddr != LFS_UNUSED_DADDR &&
422 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
423 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
424 #ifdef DIAGNOSTIC
425 		if (sup->su_nbytes < sizeof(struct dinode)) {
426 			/* XXX -- Change to a panic. */
427 			printf("lfs: negative bytes (segment %d)\n",
428 			    datosn(fs, daddr));
429 			panic("negative bytes");
430 		}
431 #endif
432 		sup->su_nbytes -= sizeof(struct dinode);
433 		redo_ifile =
434 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
435 		error = VOP_BWRITE(bp);
436 	}
437 	return (redo_ifile);
438 }
439 
440 int
441 lfs_gatherblock(sp, bp, sptr)
442 	struct segment *sp;
443 	struct buf *bp;
444 	int *sptr;
445 {
446 	struct lfs *fs;
447 	int version;
448 
449 	/*
450 	 * If full, finish this segment.  We may be doing I/O, so
451 	 * release and reacquire the splbio().
452 	 */
453 #ifdef DIAGNOSTIC
454 	if (sp->vp == NULL)
455 		panic ("lfs_gatherblock: Null vp in segment");
456 #endif
457 	fs = sp->fs;
458 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
459 	    sp->seg_bytes_left < fs->lfs_bsize) {
460 		if (sptr)
461 			splx(*sptr);
462 		lfs_updatemeta(sp);
463 
464 		version = sp->fip->fi_version;
465 		(void) lfs_writeseg(fs, sp);
466 
467 		sp->fip->fi_version = version;
468 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
469 		/* Add the current file to the segment summary. */
470 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
471 		sp->sum_bytes_left -=
472 		    sizeof(struct finfo) - sizeof(daddr_t);
473 
474 		if (sptr)
475 			*sptr = splbio();
476 		return(1);
477 	}
478 
479 	/* Insert into the buffer list, update the FINFO block. */
480 	bp->b_flags |= B_GATHERED;
481 	*sp->cbpp++ = bp;
482 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
483 
484 	sp->sum_bytes_left -= sizeof(daddr_t);
485 	sp->seg_bytes_left -= fs->lfs_bsize;
486 	return(0);
487 }
488 
489 void
490 lfs_gather(fs, sp, vp, match)
491 	struct lfs *fs;
492 	struct segment *sp;
493 	struct vnode *vp;
494 	int (*match) __P((struct lfs *, struct buf *));
495 {
496 	struct buf *bp;
497 	int s;
498 
499 	sp->vp = vp;
500 	s = splbio();
501 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
502 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
503 		    bp->b_flags & B_GATHERED)
504 			continue;
505 #ifdef DIAGNOSTIC
506 		if (!(bp->b_flags & B_DELWRI))
507 			panic("lfs_gather: bp not B_DELWRI");
508 		if (!(bp->b_flags & B_LOCKED))
509 			panic("lfs_gather: bp not B_LOCKED");
510 #endif
511 		if (lfs_gatherblock(sp, bp, &s))
512 			goto loop;
513 	}
514 	splx(s);
515 	lfs_updatemeta(sp);
516 	sp->vp = NULL;
517 }
518 
519 
520 /*
521  * Update the metadata that points to the blocks listed in the FINFO
522  * array.
523  */
524 void
525 lfs_updatemeta(sp)
526 	struct segment *sp;
527 {
528 	SEGUSE *sup;
529 	struct buf *bp;
530 	struct lfs *fs;
531 	struct vnode *vp;
532 	struct indir a[NIADDR + 2], *ap;
533 	struct inode *ip;
534 	daddr_t daddr, lbn, off;
535 	int db_per_fsb, error, i, nblocks, num;
536 
537 	vp = sp->vp;
538 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
539 	if (vp == NULL || nblocks == 0)
540 		return;
541 
542 	/* Sort the blocks. */
543 	if (!(sp->seg_flags & SEGM_CLEAN))
544 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
545 
546 	/*
547 	 * Assign disk addresses, and update references to the logical
548 	 * block and the segment usage information.
549 	 */
550 	fs = sp->fs;
551 	db_per_fsb = fsbtodb(fs, 1);
552 	for (i = nblocks; i--; ++sp->start_bpp) {
553 		lbn = *sp->start_lbp++;
554 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
555 		fs->lfs_offset += db_per_fsb;
556 
557 		if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL))
558 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
559 		ip = VTOI(vp);
560 		switch (num) {
561 		case 0:
562 			ip->i_db[lbn] = off;
563 			break;
564 		case 1:
565 			ip->i_ib[a[0].in_off] = off;
566 			break;
567 		default:
568 			ap = &a[num - 1];
569 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
570 				panic("lfs_updatemeta: bread bno %d",
571 				    ap->in_lbn);
572 			/*
573 			 * Bread may create a new indirect block which needs
574 			 * to get counted for the inode.
575 			 */
576 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
577 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
578 				ip->i_blocks += btodb(fs->lfs_bsize);
579 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
580 			}
581 			((daddr_t *)bp->b_data)[ap->in_off] = off;
582 			VOP_BWRITE(bp);
583 		}
584 
585 		/* Update segment usage information. */
586 		if (daddr != UNASSIGNED &&
587 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
588 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
589 #ifdef DIAGNOSTIC
590 			if (sup->su_nbytes < fs->lfs_bsize) {
591 				/* XXX -- Change to a panic. */
592 				printf("lfs: negative bytes (segment %d)\n",
593 				    datosn(fs, daddr));
594 				panic ("Negative Bytes");
595 			}
596 #endif
597 			sup->su_nbytes -= fs->lfs_bsize;
598 			error = VOP_BWRITE(bp);
599 		}
600 	}
601 }
602 
603 /*
604  * Start a new segment.
605  */
606 int
607 lfs_initseg(fs)
608 	struct lfs *fs;
609 {
610 	struct segment *sp;
611 	SEGUSE *sup;
612 	SEGSUM *ssp;
613 	struct buf *bp;
614 	daddr_t lbn, *lbnp;
615 	int repeat;
616 
617 	sp = fs->lfs_sp;
618 
619 	repeat = 0;
620 	/* Advance to the next segment. */
621 	if (!LFS_PARTIAL_FITS(fs)) {
622 		/* Wake up any cleaning procs waiting on this file system. */
623 		wakeup(&lfs_allclean_wakeup);
624 
625 		lfs_newseg(fs);
626 		repeat = 1;
627 		fs->lfs_offset = fs->lfs_curseg;
628 		sp->seg_number = datosn(fs, fs->lfs_curseg);
629 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
630 
631 		/*
632 		 * If the segment contains a superblock, update the offset
633 		 * and summary address to skip over it.
634 		 */
635 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
636 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
637 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
638 			sp->seg_bytes_left -= LFS_SBPAD;
639 		}
640 		brelse(bp);
641 	} else {
642 		sp->seg_number = datosn(fs, fs->lfs_curseg);
643 		sp->seg_bytes_left = (fs->lfs_dbpseg -
644 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
645 	}
646 	fs->lfs_lastpseg = fs->lfs_offset;
647 
648 	sp->fs = fs;
649 	sp->ibp = NULL;
650 	sp->ninodes = 0;
651 
652 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
653 	sp->cbpp = sp->bpp;
654 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
655 	     LFS_SUMMARY_SIZE);
656 	sp->segsum = (*sp->cbpp)->b_data;
657 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
658 	sp->start_bpp = ++sp->cbpp;
659 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
660 
661 	/* Set point to SEGSUM, initialize it. */
662 	ssp = sp->segsum;
663 	ssp->ss_next = fs->lfs_nextseg;
664 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
665 
666 	/* Set pointer to first FINFO, initialize it. */
667 	sp->fip = (struct finfo *)(sp->segsum + sizeof(SEGSUM));
668 	sp->fip->fi_nblocks = 0;
669 	sp->start_lbp = &sp->fip->fi_blocks[0];
670 
671 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
672 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
673 
674 	return(repeat);
675 }
676 
677 /*
678  * Return the next segment to write.
679  */
680 void
681 lfs_newseg(fs)
682 	struct lfs *fs;
683 {
684 	CLEANERINFO *cip;
685 	SEGUSE *sup;
686 	struct buf *bp;
687 	int curseg, error, isdirty, sn;
688 
689         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
690         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
691 	sup->su_nbytes = 0;
692 	sup->su_nsums = 0;
693 	sup->su_ninos = 0;
694         (void) VOP_BWRITE(bp);
695 
696 	LFS_CLEANERINFO(cip, fs, bp);
697 	--cip->clean;
698 	++cip->dirty;
699 	(void) VOP_BWRITE(bp);
700 
701 	fs->lfs_lastseg = fs->lfs_curseg;
702 	fs->lfs_curseg = fs->lfs_nextseg;
703 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
704 		sn = (sn + 1) % fs->lfs_nseg;
705 		if (sn == curseg)
706 			panic("lfs_nextseg: no clean segments");
707 		LFS_SEGENTRY(sup, fs, sn, bp);
708 		isdirty = sup->su_flags & SEGUSE_DIRTY;
709 		brelse(bp);
710 		if (!isdirty)
711 			break;
712 	}
713 
714 	++fs->lfs_nactive;
715 	fs->lfs_nextseg = sntoda(fs, sn);
716 #ifdef DOSTATS
717 	++lfs_stats.segsused;
718 #endif
719 }
720 
721 int
722 lfs_writeseg(fs, sp)
723 	struct lfs *fs;
724 	struct segment *sp;
725 {
726 	extern int locked_queue_count;
727 	struct buf **bpp, *bp, *cbp;
728 	SEGUSE *sup;
729 	SEGSUM *ssp;
730 	dev_t i_dev;
731 	size_t size;
732 	u_long *datap, *dp;
733 	int ch_per_blk, do_again, error, i, nblocks, num, s;
734 	int (*strategy)__P((struct vop_strategy_args *));
735 	struct vop_strategy_args vop_strategy_a;
736 	u_short ninos;
737 	char *p;
738 
739 	/*
740 	 * If there are no buffers other than the segment summary to write
741 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
742 	 * even if there aren't any buffers, you need to write the superblock.
743 	 */
744 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
745 		return (0);
746 
747 	ssp = (SEGSUM *)sp->segsum;
748 
749 	/* Update the segment usage information. */
750 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
751 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
752 	sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift;
753 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
754 	sup->su_nbytes += LFS_SUMMARY_SIZE;
755 	sup->su_lastmod = time.tv_sec;
756 	sup->su_ninos += ninos;
757 	++sup->su_nsums;
758 	do_again = !(bp->b_flags & B_GATHERED);
759 	(void)VOP_BWRITE(bp);
760 	/*
761 	 * Compute checksum across data and then across summary; the first
762 	 * block (the summary block) is skipped.  Set the create time here
763 	 * so that it's guaranteed to be later than the inode mod times.
764 	 *
765 	 * XXX
766 	 * Fix this to do it inline, instead of malloc/copy.
767 	 */
768 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
769 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
770 		if ((*++bpp)->b_flags & B_INVAL) {
771 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
772 				panic("lfs_writeseg: copyin failed");
773 		} else
774 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
775 	}
776 	ssp->ss_create = time.tv_sec;
777 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
778 	ssp->ss_sumsum =
779 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
780 	free(datap, M_SEGMENT);
781 #ifdef DIAGNOSTIC
782 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
783 		panic("lfs_writeseg: No diskspace for summary");
784 #endif
785 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
786 
787 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
788 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
789 
790 	/*
791 	 * When we simply write the blocks we lose a rotation for every block
792 	 * written.  To avoid this problem, we allocate memory in chunks, copy
793 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
794 	 * largest size I/O devices can handle.
795 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
796 	 * and brelse the buffer (which will move them to the LRU list).  Add
797 	 * the B_CALL flag to the buffer header so we can count I/O's for the
798 	 * checkpoints and so we can release the allocated memory.
799 	 *
800 	 * XXX
801 	 * This should be removed if the new virtual memory system allows us to
802 	 * easily make the buffers contiguous in kernel memory and if that's
803 	 * fast enough.
804 	 */
805 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
806 	for (bpp = sp->bpp, i = nblocks; i;) {
807 		num = ch_per_blk;
808 		if (num > i)
809 			num = i;
810 		i -= num;
811 		size = num * fs->lfs_bsize;
812 
813 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
814 		    (*bpp)->b_blkno, size);
815 		cbp->b_dev = i_dev;
816 		cbp->b_flags |= B_ASYNC | B_BUSY;
817 
818 		s = splbio();
819 		++fs->lfs_iocount;
820 		for (p = cbp->b_data; num--;) {
821 			bp = *bpp++;
822 			/*
823 			 * Fake buffers from the cleaner are marked as B_INVAL.
824 			 * We need to copy the data from user space rather than
825 			 * from the buffer indicated.
826 			 * XXX == what do I do on an error?
827 			 */
828 			if (bp->b_flags & B_INVAL) {
829 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
830 					panic("lfs_writeseg: copyin failed");
831 			} else
832 				bcopy(bp->b_data, p, bp->b_bcount);
833 			p += bp->b_bcount;
834 			if (bp->b_flags & B_LOCKED)
835 				--locked_queue_count;
836 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
837 			     B_LOCKED | B_GATHERED);
838 			if (bp->b_flags & B_CALL) {
839 				/* if B_CALL, it was created with newbuf */
840 				brelvp(bp);
841 				if (!(bp->b_flags & B_INVAL))
842 					free(bp->b_data, M_SEGMENT);
843 				free(bp, M_SEGMENT);
844 			} else {
845 				bremfree(bp);
846 				bp->b_flags |= B_DONE;
847 				reassignbuf(bp, bp->b_vp);
848 				brelse(bp);
849 			}
850 		}
851 		++cbp->b_vp->v_numoutput;
852 		splx(s);
853 		cbp->b_bcount = p - (char *)cbp->b_data;
854 		/*
855 		 * XXXX This is a gross and disgusting hack.  Since these
856 		 * buffers are physically addressed, they hang off the
857 		 * device vnode (devvp).  As a result, they have no way
858 		 * of getting to the LFS superblock or lfs structure to
859 		 * keep track of the number of I/O's pending.  So, I am
860 		 * going to stuff the fs into the saveaddr field of
861 		 * the buffer (yuk).
862 		 */
863 		cbp->b_saveaddr = (caddr_t)fs;
864 		vop_strategy_a.a_desc = VDESC(vop_strategy);
865 		vop_strategy_a.a_bp = cbp;
866 		(strategy)(&vop_strategy_a);
867 	}
868 	/*
869 	 * XXX
870 	 * Vinvalbuf can move locked buffers off the locked queue
871 	 * and we have no way of knowing about this.  So, after
872 	 * doing a big write, we recalculate how many bufers are
873 	 * really still left on the locked queue.
874 	 */
875 	locked_queue_count = count_lock_queue();
876 	wakeup(&locked_queue_count);
877 #ifdef DOSTATS
878 	++lfs_stats.psegwrites;
879 	lfs_stats.blocktot += nblocks - 1;
880 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
881 		++lfs_stats.psyncwrites;
882 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
883 		++lfs_stats.pcleanwrites;
884 		lfs_stats.cleanblocks += nblocks - 1;
885 	}
886 #endif
887 	return (lfs_initseg(fs) || do_again);
888 }
889 
890 void
891 lfs_writesuper(fs)
892 	struct lfs *fs;
893 {
894 	struct buf *bp;
895 	dev_t i_dev;
896 	int (*strategy) __P((struct vop_strategy_args *));
897 	int s;
898 	struct vop_strategy_args vop_strategy_a;
899 
900 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
901 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
902 
903 	/* Checksum the superblock and copy it into a buffer. */
904 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
905 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
906 	    LFS_SBPAD);
907 	*(struct lfs *)bp->b_data = *fs;
908 
909 	/* XXX Toggle between first two superblocks; for now just write first */
910 	bp->b_dev = i_dev;
911 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
912 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
913 	bp->b_iodone = lfs_supercallback;
914 	vop_strategy_a.a_desc = VDESC(vop_strategy);
915 	vop_strategy_a.a_bp = bp;
916 	s = splbio();
917 	++bp->b_vp->v_numoutput;
918 	splx(s);
919 	(strategy)(&vop_strategy_a);
920 }
921 
922 /*
923  * Logical block number match routines used when traversing the dirty block
924  * chain.
925  */
926 int
927 lfs_match_data(fs, bp)
928 	struct lfs *fs;
929 	struct buf *bp;
930 {
931 	return (bp->b_lblkno >= 0);
932 }
933 
934 int
935 lfs_match_indir(fs, bp)
936 	struct lfs *fs;
937 	struct buf *bp;
938 {
939 	int lbn;
940 
941 	lbn = bp->b_lblkno;
942 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
943 }
944 
945 int
946 lfs_match_dindir(fs, bp)
947 	struct lfs *fs;
948 	struct buf *bp;
949 {
950 	int lbn;
951 
952 	lbn = bp->b_lblkno;
953 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
954 }
955 
956 int
957 lfs_match_tindir(fs, bp)
958 	struct lfs *fs;
959 	struct buf *bp;
960 {
961 	int lbn;
962 
963 	lbn = bp->b_lblkno;
964 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
965 }
966 
967 /*
968  * Allocate a new buffer header.
969  */
970 struct buf *
971 lfs_newbuf(vp, daddr, size)
972 	struct vnode *vp;
973 	daddr_t daddr;
974 	size_t size;
975 {
976 	struct buf *bp;
977 	size_t nbytes;
978 
979 	nbytes = roundup(size, DEV_BSIZE);
980 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
981 	bzero(bp, sizeof(struct buf));
982 	if (nbytes)
983 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
984 	bgetvp(vp, bp);
985 	bp->b_bufsize = size;
986 	bp->b_bcount = size;
987 	bp->b_lblkno = daddr;
988 	bp->b_blkno = daddr;
989 	bp->b_error = 0;
990 	bp->b_resid = 0;
991 	bp->b_iodone = lfs_callback;
992 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
993 	return (bp);
994 }
995 
996 void
997 lfs_callback(bp)
998 	struct buf *bp;
999 {
1000 	struct lfs *fs;
1001 
1002 	fs = (struct lfs *)bp->b_saveaddr;
1003 #ifdef DIAGNOSTIC
1004 	if (fs->lfs_iocount == 0)
1005 		panic("lfs_callback: zero iocount\n");
1006 #endif
1007 	if (--fs->lfs_iocount == 0)
1008 		wakeup(&fs->lfs_iocount);
1009 
1010 	brelvp(bp);
1011 	free(bp->b_data, M_SEGMENT);
1012 	free(bp, M_SEGMENT);
1013 }
1014 
1015 void
1016 lfs_supercallback(bp)
1017 	struct buf *bp;
1018 {
1019 	brelvp(bp);
1020 	free(bp->b_data, M_SEGMENT);
1021 	free(bp, M_SEGMENT);
1022 }
1023 
1024 /*
1025  * Shellsort (diminishing increment sort) from Data Structures and
1026  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1027  * see also Knuth Vol. 3, page 84.  The increments are selected from
1028  * formula (8), page 95.  Roughly O(N^3/2).
1029  */
1030 /*
1031  * This is our own private copy of shellsort because we want to sort
1032  * two parallel arrays (the array of buffer pointers and the array of
1033  * logical block numbers) simultaneously.  Note that we cast the array
1034  * of logical block numbers to a unsigned in this routine so that the
1035  * negative block numbers (meta data blocks) sort AFTER the data blocks.
1036  */
1037 void
1038 lfs_shellsort(bp_array, lb_array, nmemb)
1039 	struct buf **bp_array;
1040 	daddr_t *lb_array;
1041 	register int nmemb;
1042 {
1043 	static int __rsshell_increments[] = { 4, 1, 0 };
1044 	register int incr, *incrp, t1, t2;
1045 	struct buf *bp_temp;
1046 	u_long lb_temp;
1047 
1048 	for (incrp = __rsshell_increments; incr = *incrp++;)
1049 		for (t1 = incr; t1 < nmemb; ++t1)
1050 			for (t2 = t1 - incr; t2 >= 0;)
1051 				if (lb_array[t2] > lb_array[t2 + incr]) {
1052 					lb_temp = lb_array[t2];
1053 					lb_array[t2] = lb_array[t2 + incr];
1054 					lb_array[t2 + incr] = lb_temp;
1055 					bp_temp = bp_array[t2];
1056 					bp_array[t2] = bp_array[t2 + incr];
1057 					bp_array[t2 + incr] = bp_temp;
1058 					t2 -= incr;
1059 				} else
1060 					break;
1061 }
1062 
1063 /*
1064  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
1065  */
1066 lfs_vref(vp)
1067 	register struct vnode *vp;
1068 {
1069 
1070 	if (vp->v_flag & VXLOCK)
1071 		return(1);
1072 	return (vget(vp, 0));
1073 }
1074 
1075 void
1076 lfs_vunref(vp)
1077 	register struct vnode *vp;
1078 {
1079 	extern int lfs_no_inactive;
1080 
1081 	/*
1082 	 * This is vrele except that we do not want to VOP_INACTIVE
1083 	 * this vnode. Rather than inline vrele here, we use a global
1084 	 * flag to tell lfs_inactive not to run. Yes, its gross.
1085 	 */
1086 	lfs_no_inactive = 1;
1087 	vrele(vp);
1088 	lfs_no_inactive = 0;
1089 }
1090