xref: /original-bsd/sys/vm/vm_kern.c (revision 0997b878)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_kern.c	8.4 (Berkeley) 01/09/95
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Kernel memory management.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_page.h>
48 #include <vm/vm_pageout.h>
49 #include <vm/vm_kern.h>
50 
51 /*
52  *	kmem_alloc_pageable:
53  *
54  *	Allocate pageable memory to the kernel's address map.
55  *	map must be "kernel_map" below.
56  */
57 vm_offset_t
58 kmem_alloc_pageable(map, size)
59 	vm_map_t		map;
60 	register vm_size_t	size;
61 {
62 	vm_offset_t		addr;
63 	register int		result;
64 
65 #if	0
66 	if (map != kernel_map)
67 		panic("kmem_alloc_pageable: not called with kernel_map");
68 #endif
69 
70 	size = round_page(size);
71 
72 	addr = vm_map_min(map);
73 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
74 				&addr, size, TRUE);
75 	if (result != KERN_SUCCESS) {
76 		return(0);
77 	}
78 
79 	return(addr);
80 }
81 
82 /*
83  *	Allocate wired-down memory in the kernel's address map
84  *	or a submap.
85  */
86 vm_offset_t
87 kmem_alloc(map, size)
88 	register vm_map_t	map;
89 	register vm_size_t	size;
90 {
91 	vm_offset_t		addr;
92 	register vm_offset_t	offset;
93 	extern vm_object_t	kernel_object;
94 	vm_offset_t		i;
95 
96 	size = round_page(size);
97 
98 	/*
99 	 *	Use the kernel object for wired-down kernel pages.
100 	 *	Assume that no region of the kernel object is
101 	 *	referenced more than once.
102 	 */
103 
104 	/*
105 	 * Locate sufficient space in the map.  This will give us the
106 	 * final virtual address for the new memory, and thus will tell
107 	 * us the offset within the kernel map.
108 	 */
109 	vm_map_lock(map);
110 	if (vm_map_findspace(map, 0, size, &addr)) {
111 		vm_map_unlock(map);
112 		return (0);
113 	}
114 	offset = addr - VM_MIN_KERNEL_ADDRESS;
115 	vm_object_reference(kernel_object);
116 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
117 	vm_map_unlock(map);
118 
119 	/*
120 	 *	Guarantee that there are pages already in this object
121 	 *	before calling vm_map_pageable.  This is to prevent the
122 	 *	following scenario:
123 	 *
124 	 *		1) Threads have swapped out, so that there is a
125 	 *		   pager for the kernel_object.
126 	 *		2) The kmsg zone is empty, and so we are kmem_allocing
127 	 *		   a new page for it.
128 	 *		3) vm_map_pageable calls vm_fault; there is no page,
129 	 *		   but there is a pager, so we call
130 	 *		   pager_data_request.  But the kmsg zone is empty,
131 	 *		   so we must kmem_alloc.
132 	 *		4) goto 1
133 	 *		5) Even if the kmsg zone is not empty: when we get
134 	 *		   the data back from the pager, it will be (very
135 	 *		   stale) non-zero data.  kmem_alloc is defined to
136 	 *		   return zero-filled memory.
137 	 *
138 	 *	We're intentionally not activating the pages we allocate
139 	 *	to prevent a race with page-out.  vm_map_pageable will wire
140 	 *	the pages.
141 	 */
142 
143 	vm_object_lock(kernel_object);
144 	for (i = 0 ; i < size; i+= PAGE_SIZE) {
145 		vm_page_t	mem;
146 
147 		while ((mem = vm_page_alloc(kernel_object, offset+i)) == NULL) {
148 			vm_object_unlock(kernel_object);
149 			VM_WAIT;
150 			vm_object_lock(kernel_object);
151 		}
152 		vm_page_zero_fill(mem);
153 		mem->flags &= ~PG_BUSY;
154 	}
155 	vm_object_unlock(kernel_object);
156 
157 	/*
158 	 *	And finally, mark the data as non-pageable.
159 	 */
160 
161 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
162 
163 	/*
164 	 *	Try to coalesce the map
165 	 */
166 
167 	vm_map_simplify(map, addr);
168 
169 	return(addr);
170 }
171 
172 /*
173  *	kmem_free:
174  *
175  *	Release a region of kernel virtual memory allocated
176  *	with kmem_alloc, and return the physical pages
177  *	associated with that region.
178  */
179 void
180 kmem_free(map, addr, size)
181 	vm_map_t		map;
182 	register vm_offset_t	addr;
183 	vm_size_t		size;
184 {
185 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
186 }
187 
188 /*
189  *	kmem_suballoc:
190  *
191  *	Allocates a map to manage a subrange
192  *	of the kernel virtual address space.
193  *
194  *	Arguments are as follows:
195  *
196  *	parent		Map to take range from
197  *	size		Size of range to find
198  *	min, max	Returned endpoints of map
199  *	pageable	Can the region be paged
200  */
201 vm_map_t
202 kmem_suballoc(parent, min, max, size, pageable)
203 	register vm_map_t	parent;
204 	vm_offset_t		*min, *max;
205 	register vm_size_t	size;
206 	boolean_t		pageable;
207 {
208 	register int	ret;
209 	vm_map_t	result;
210 
211 	size = round_page(size);
212 
213 	*min = (vm_offset_t) vm_map_min(parent);
214 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
215 				min, size, TRUE);
216 	if (ret != KERN_SUCCESS) {
217 		printf("kmem_suballoc: bad status return of %d.\n", ret);
218 		panic("kmem_suballoc");
219 	}
220 	*max = *min + size;
221 	pmap_reference(vm_map_pmap(parent));
222 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
223 	if (result == NULL)
224 		panic("kmem_suballoc: cannot create submap");
225 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
226 		panic("kmem_suballoc: unable to change range to submap");
227 	return(result);
228 }
229 
230 /*
231  * Allocate wired-down memory in the kernel's address map for the higher
232  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
233  * kmem_alloc() because we may need to allocate memory at interrupt
234  * level where we cannot block (canwait == FALSE).
235  *
236  * This routine has its own private kernel submap (kmem_map) and object
237  * (kmem_object).  This, combined with the fact that only malloc uses
238  * this routine, ensures that we will never block in map or object waits.
239  *
240  * Note that this still only works in a uni-processor environment and
241  * when called at splhigh().
242  *
243  * We don't worry about expanding the map (adding entries) since entries
244  * for wired maps are statically allocated.
245  */
246 vm_offset_t
247 kmem_malloc(map, size, canwait)
248 	register vm_map_t	map;
249 	register vm_size_t	size;
250 	boolean_t		canwait;
251 {
252 	register vm_offset_t	offset, i;
253 	vm_map_entry_t		entry;
254 	vm_offset_t		addr;
255 	vm_page_t		m;
256 	extern vm_object_t	kmem_object;
257 
258 	if (map != kmem_map && map != mb_map)
259 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
260 
261 	size = round_page(size);
262 	addr = vm_map_min(map);
263 
264 	/*
265 	 * Locate sufficient space in the map.  This will give us the
266 	 * final virtual address for the new memory, and thus will tell
267 	 * us the offset within the kernel map.
268 	 */
269 	vm_map_lock(map);
270 	if (vm_map_findspace(map, 0, size, &addr)) {
271 		vm_map_unlock(map);
272 		if (canwait)		/* XXX  should wait */
273 			panic("kmem_malloc: %s too small",
274 			    map == kmem_map ? "kmem_map" : "mb_map");
275 		return (0);
276 	}
277 	offset = addr - vm_map_min(kmem_map);
278 	vm_object_reference(kmem_object);
279 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
280 
281 	/*
282 	 * If we can wait, just mark the range as wired
283 	 * (will fault pages as necessary).
284 	 */
285 	if (canwait) {
286 		vm_map_unlock(map);
287 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
288 				       FALSE);
289 		vm_map_simplify(map, addr);
290 		return(addr);
291 	}
292 
293 	/*
294 	 * If we cannot wait then we must allocate all memory up front,
295 	 * pulling it off the active queue to prevent pageout.
296 	 */
297 	vm_object_lock(kmem_object);
298 	for (i = 0; i < size; i += PAGE_SIZE) {
299 		m = vm_page_alloc(kmem_object, offset + i);
300 
301 		/*
302 		 * Ran out of space, free everything up and return.
303 		 * Don't need to lock page queues here as we know
304 		 * that the pages we got aren't on any queues.
305 		 */
306 		if (m == NULL) {
307 			while (i != 0) {
308 				i -= PAGE_SIZE;
309 				m = vm_page_lookup(kmem_object, offset + i);
310 				vm_page_free(m);
311 			}
312 			vm_object_unlock(kmem_object);
313 			vm_map_delete(map, addr, addr + size);
314 			vm_map_unlock(map);
315 			return(0);
316 		}
317 #if 0
318 		vm_page_zero_fill(m);
319 #endif
320 		m->flags &= ~PG_BUSY;
321 	}
322 	vm_object_unlock(kmem_object);
323 
324 	/*
325 	 * Mark map entry as non-pageable.
326 	 * Assert: vm_map_insert() will never be able to extend the previous
327 	 * entry so there will be a new entry exactly corresponding to this
328 	 * address range and it will have wired_count == 0.
329 	 */
330 	if (!vm_map_lookup_entry(map, addr, &entry) ||
331 	    entry->start != addr || entry->end != addr + size ||
332 	    entry->wired_count)
333 		panic("kmem_malloc: entry not found or misaligned");
334 	entry->wired_count++;
335 
336 	/*
337 	 * Loop thru pages, entering them in the pmap.
338 	 * (We cannot add them to the wired count without
339 	 * wrapping the vm_page_queue_lock in splimp...)
340 	 */
341 	for (i = 0; i < size; i += PAGE_SIZE) {
342 		vm_object_lock(kmem_object);
343 		m = vm_page_lookup(kmem_object, offset + i);
344 		vm_object_unlock(kmem_object);
345 		pmap_enter(map->pmap, addr + i, VM_PAGE_TO_PHYS(m),
346 			   VM_PROT_DEFAULT, TRUE);
347 	}
348 	vm_map_unlock(map);
349 
350 	vm_map_simplify(map, addr);
351 	return(addr);
352 }
353 
354 /*
355  *	kmem_alloc_wait
356  *
357  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
358  *	has no room, the caller sleeps waiting for more memory in the submap.
359  *
360  */
361 vm_offset_t
362 kmem_alloc_wait(map, size)
363 	vm_map_t	map;
364 	vm_size_t	size;
365 {
366 	vm_offset_t	addr;
367 
368 	size = round_page(size);
369 
370 	for (;;) {
371 		/*
372 		 * To make this work for more than one map,
373 		 * use the map's lock to lock out sleepers/wakers.
374 		 */
375 		vm_map_lock(map);
376 		if (vm_map_findspace(map, 0, size, &addr) == 0)
377 			break;
378 		/* no space now; see if we can ever get space */
379 		if (vm_map_max(map) - vm_map_min(map) < size) {
380 			vm_map_unlock(map);
381 			return (0);
382 		}
383 		assert_wait(map, TRUE);
384 		vm_map_unlock(map);
385 		thread_block();
386 	}
387 	vm_map_insert(map, NULL, (vm_offset_t)0, addr, addr + size);
388 	vm_map_unlock(map);
389 	return (addr);
390 }
391 
392 /*
393  *	kmem_free_wakeup
394  *
395  *	Returns memory to a submap of the kernel, and wakes up any threads
396  *	waiting for memory in that map.
397  */
398 void
399 kmem_free_wakeup(map, addr, size)
400 	vm_map_t	map;
401 	vm_offset_t	addr;
402 	vm_size_t	size;
403 {
404 	vm_map_lock(map);
405 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
406 	thread_wakeup(map);
407 	vm_map_unlock(map);
408 }
409 
410 /*
411  * Create the kernel map; insert a mapping covering kernel text, data, bss,
412  * and all space allocated thus far (`boostrap' data).  The new map will thus
413  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
414  * the range between `start' and `end' as free.
415  */
416 void
417 kmem_init(start, end)
418 	vm_offset_t start, end;
419 {
420 	register vm_map_t m;
421 
422 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
423 	vm_map_lock(m);
424 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
425 	kernel_map = m;
426 	(void) vm_map_insert(m, NULL, (vm_offset_t)0,
427 	    VM_MIN_KERNEL_ADDRESS, start);
428 	/* ... and ending with the completion of the above `insert' */
429 	vm_map_unlock(m);
430 }
431