xref: /original-bsd/sys/vm/vm_kern.c (revision 3705696b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_kern.c	8.1 (Berkeley) 06/11/93
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Kernel memory management.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_page.h>
48 #include <vm/vm_pageout.h>
49 #include <vm/vm_kern.h>
50 
51 /*
52  *	kmem_alloc_pageable:
53  *
54  *	Allocate pageable memory to the kernel's address map.
55  *	map must be "kernel_map" below.
56  */
57 
58 vm_offset_t kmem_alloc_pageable(map, size)
59 	vm_map_t		map;
60 	register vm_size_t	size;
61 {
62 	vm_offset_t		addr;
63 	register int		result;
64 
65 #if	0
66 	if (map != kernel_map)
67 		panic("kmem_alloc_pageable: not called with kernel_map");
68 #endif
69 
70 	size = round_page(size);
71 
72 	addr = vm_map_min(map);
73 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
74 				&addr, size, TRUE);
75 	if (result != KERN_SUCCESS) {
76 		return(0);
77 	}
78 
79 	return(addr);
80 }
81 
82 /*
83  *	Allocate wired-down memory in the kernel's address map
84  *	or a submap.
85  */
86 vm_offset_t kmem_alloc(map, size)
87 	register vm_map_t	map;
88 	register vm_size_t	size;
89 {
90 	vm_offset_t		addr;
91 	register int		result;
92 	register vm_offset_t	offset;
93 	extern vm_object_t	kernel_object;
94 	vm_offset_t		i;
95 
96 	size = round_page(size);
97 
98 	/*
99 	 *	Use the kernel object for wired-down kernel pages.
100 	 *	Assume that no region of the kernel object is
101 	 *	referenced more than once.
102 	 */
103 
104 	/*
105 	 * Locate sufficient space in the map.  This will give us the
106 	 * final virtual address for the new memory, and thus will tell
107 	 * us the offset within the kernel map.
108 	 */
109 	vm_map_lock(map);
110 	if (vm_map_findspace(map, 0, size, &addr)) {
111 		vm_map_unlock(map);
112 		return (0);
113 	}
114 	offset = addr - VM_MIN_KERNEL_ADDRESS;
115 	vm_object_reference(kernel_object);
116 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
117 	vm_map_unlock(map);
118 
119 	/*
120 	 *	Guarantee that there are pages already in this object
121 	 *	before calling vm_map_pageable.  This is to prevent the
122 	 *	following scenario:
123 	 *
124 	 *		1) Threads have swapped out, so that there is a
125 	 *		   pager for the kernel_object.
126 	 *		2) The kmsg zone is empty, and so we are kmem_allocing
127 	 *		   a new page for it.
128 	 *		3) vm_map_pageable calls vm_fault; there is no page,
129 	 *		   but there is a pager, so we call
130 	 *		   pager_data_request.  But the kmsg zone is empty,
131 	 *		   so we must kmem_alloc.
132 	 *		4) goto 1
133 	 *		5) Even if the kmsg zone is not empty: when we get
134 	 *		   the data back from the pager, it will be (very
135 	 *		   stale) non-zero data.  kmem_alloc is defined to
136 	 *		   return zero-filled memory.
137 	 *
138 	 *	We're intentionally not activating the pages we allocate
139 	 *	to prevent a race with page-out.  vm_map_pageable will wire
140 	 *	the pages.
141 	 */
142 
143 	vm_object_lock(kernel_object);
144 	for (i = 0 ; i < size; i+= PAGE_SIZE) {
145 		vm_page_t	mem;
146 
147 		while ((mem = vm_page_alloc(kernel_object, offset+i)) == NULL) {
148 			vm_object_unlock(kernel_object);
149 			VM_WAIT;
150 			vm_object_lock(kernel_object);
151 		}
152 		vm_page_zero_fill(mem);
153 		mem->flags &= ~PG_BUSY;
154 	}
155 	vm_object_unlock(kernel_object);
156 
157 	/*
158 	 *	And finally, mark the data as non-pageable.
159 	 */
160 
161 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
162 
163 	/*
164 	 *	Try to coalesce the map
165 	 */
166 
167 	vm_map_simplify(map, addr);
168 
169 	return(addr);
170 }
171 
172 /*
173  *	kmem_free:
174  *
175  *	Release a region of kernel virtual memory allocated
176  *	with kmem_alloc, and return the physical pages
177  *	associated with that region.
178  */
179 void kmem_free(map, addr, size)
180 	vm_map_t		map;
181 	register vm_offset_t	addr;
182 	vm_size_t		size;
183 {
184 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
185 }
186 
187 /*
188  *	kmem_suballoc:
189  *
190  *	Allocates a map to manage a subrange
191  *	of the kernel virtual address space.
192  *
193  *	Arguments are as follows:
194  *
195  *	parent		Map to take range from
196  *	size		Size of range to find
197  *	min, max	Returned endpoints of map
198  *	pageable	Can the region be paged
199  */
200 vm_map_t kmem_suballoc(parent, min, max, size, pageable)
201 	register vm_map_t	parent;
202 	vm_offset_t		*min, *max;
203 	register vm_size_t	size;
204 	boolean_t		pageable;
205 {
206 	register int	ret;
207 	vm_map_t	result;
208 
209 	size = round_page(size);
210 
211 	*min = (vm_offset_t) vm_map_min(parent);
212 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
213 				min, size, TRUE);
214 	if (ret != KERN_SUCCESS) {
215 		printf("kmem_suballoc: bad status return of %d.\n", ret);
216 		panic("kmem_suballoc");
217 	}
218 	*max = *min + size;
219 	pmap_reference(vm_map_pmap(parent));
220 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
221 	if (result == NULL)
222 		panic("kmem_suballoc: cannot create submap");
223 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
224 		panic("kmem_suballoc: unable to change range to submap");
225 	return(result);
226 }
227 
228 /*
229  *	vm_move:
230  *
231  *	Move memory from source to destination map, possibly deallocating
232  *	the source map reference to the memory.
233  *
234  *	Parameters are as follows:
235  *
236  *	src_map		Source address map
237  *	src_addr	Address within source map
238  *	dst_map		Destination address map
239  *	num_bytes	Amount of data (in bytes) to copy/move
240  *	src_dealloc	Should source be removed after copy?
241  *
242  *	Assumes the src and dst maps are not already locked.
243  *
244  *	Returns new destination address or 0 (if a failure occurs).
245  */
246 vm_offset_t vm_move(src_map,src_addr,dst_map,num_bytes,src_dealloc)
247 	vm_map_t		src_map;
248 	register vm_offset_t	src_addr;
249 	register vm_map_t	dst_map;
250 	vm_offset_t		num_bytes;
251 	boolean_t		src_dealloc;
252 {
253 	register vm_offset_t	src_start;	/* Beginning of region */
254 	register vm_size_t	src_size;	/* Size of rounded region */
255 	vm_offset_t		dst_start;	/* destination address */
256 	register int		result;
257 
258 	/*
259 	 *	Page-align the source region
260 	 */
261 
262 	src_start = trunc_page(src_addr);
263 	src_size = round_page(src_addr + num_bytes) - src_start;
264 
265 	/*
266 	 *	If there's no destination, we can be at most deallocating
267 	 *	the source range.
268 	 */
269 	if (dst_map == NULL) {
270 		if (src_dealloc)
271 			if (vm_deallocate(src_map, src_start, src_size)
272 					!= KERN_SUCCESS) {
273 				printf("vm_move: deallocate of source");
274 				printf(" failed, dealloc_only clause\n");
275 			}
276 		return(0);
277 	}
278 
279 	/*
280 	 *	Allocate a place to put the copy
281 	 */
282 
283 	dst_start = (vm_offset_t) 0;
284 	if ((result = vm_allocate(dst_map, &dst_start, src_size, TRUE))
285 				== KERN_SUCCESS) {
286 		/*
287 		 *	Perform the copy, asking for deallocation if desired
288 		 */
289 		result = vm_map_copy(dst_map, src_map, dst_start, src_size,
290 					src_start, FALSE, src_dealloc);
291 	}
292 
293 	/*
294 	 *	Return the destination address corresponding to
295 	 *	the source address given (rather than the front
296 	 *	of the newly-allocated page).
297 	 */
298 
299 	if (result == KERN_SUCCESS)
300 		return(dst_start + (src_addr - src_start));
301 	return(0);
302 }
303 
304 /*
305  * Allocate wired-down memory in the kernel's address map for the higher
306  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
307  * kmem_alloc() because we may need to allocate memory at interrupt
308  * level where we cannot block (canwait == FALSE).
309  *
310  * This routine has its own private kernel submap (kmem_map) and object
311  * (kmem_object).  This, combined with the fact that only malloc uses
312  * this routine, ensures that we will never block in map or object waits.
313  *
314  * Note that this still only works in a uni-processor environment and
315  * when called at splhigh().
316  *
317  * We don't worry about expanding the map (adding entries) since entries
318  * for wired maps are statically allocated.
319  */
320 vm_offset_t
321 kmem_malloc(map, size, canwait)
322 	register vm_map_t	map;
323 	register vm_size_t	size;
324 	boolean_t		canwait;
325 {
326 	register vm_offset_t	offset, i;
327 	vm_map_entry_t		entry;
328 	vm_offset_t		addr;
329 	vm_page_t		m;
330 	extern vm_object_t	kmem_object;
331 
332 	if (map != kmem_map && map != mb_map)
333 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
334 
335 	size = round_page(size);
336 	addr = vm_map_min(map);
337 
338 	/*
339 	 * Locate sufficient space in the map.  This will give us the
340 	 * final virtual address for the new memory, and thus will tell
341 	 * us the offset within the kernel map.
342 	 */
343 	vm_map_lock(map);
344 	if (vm_map_findspace(map, 0, size, &addr)) {
345 		vm_map_unlock(map);
346 		if (canwait)		/* XXX  should wait */
347 			panic("kmem_malloc: %s too small",
348 			    map == kmem_map ? "kmem_map" : "mb_map");
349 		return (0);
350 	}
351 	offset = addr - vm_map_min(kmem_map);
352 	vm_object_reference(kmem_object);
353 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
354 
355 	/*
356 	 * If we can wait, just mark the range as wired
357 	 * (will fault pages as necessary).
358 	 */
359 	if (canwait) {
360 		vm_map_unlock(map);
361 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
362 				       FALSE);
363 		vm_map_simplify(map, addr);
364 		return(addr);
365 	}
366 
367 	/*
368 	 * If we cannot wait then we must allocate all memory up front,
369 	 * pulling it off the active queue to prevent pageout.
370 	 */
371 	vm_object_lock(kmem_object);
372 	for (i = 0; i < size; i += PAGE_SIZE) {
373 		m = vm_page_alloc(kmem_object, offset + i);
374 
375 		/*
376 		 * Ran out of space, free everything up and return.
377 		 * Don't need to lock page queues here as we know
378 		 * that the pages we got aren't on any queues.
379 		 */
380 		if (m == NULL) {
381 			while (i != 0) {
382 				i -= PAGE_SIZE;
383 				m = vm_page_lookup(kmem_object, offset + i);
384 				vm_page_free(m);
385 			}
386 			vm_object_unlock(kmem_object);
387 			vm_map_delete(map, addr, addr + size);
388 			vm_map_unlock(map);
389 			return(0);
390 		}
391 #if 0
392 		vm_page_zero_fill(m);
393 #endif
394 		m->flags &= ~PG_BUSY;
395 	}
396 	vm_object_unlock(kmem_object);
397 
398 	/*
399 	 * Mark map entry as non-pageable.
400 	 * Assert: vm_map_insert() will never be able to extend the previous
401 	 * entry so there will be a new entry exactly corresponding to this
402 	 * address range and it will have wired_count == 0.
403 	 */
404 	if (!vm_map_lookup_entry(map, addr, &entry) ||
405 	    entry->start != addr || entry->end != addr + size ||
406 	    entry->wired_count)
407 		panic("kmem_malloc: entry not found or misaligned");
408 	entry->wired_count++;
409 
410 	/*
411 	 * Loop thru pages, entering them in the pmap.
412 	 * (We cannot add them to the wired count without
413 	 * wrapping the vm_page_queue_lock in splimp...)
414 	 */
415 	for (i = 0; i < size; i += PAGE_SIZE) {
416 		vm_object_lock(kmem_object);
417 		m = vm_page_lookup(kmem_object, offset + i);
418 		vm_object_unlock(kmem_object);
419 		pmap_enter(map->pmap, addr + i, VM_PAGE_TO_PHYS(m),
420 			   VM_PROT_DEFAULT, TRUE);
421 	}
422 	vm_map_unlock(map);
423 
424 	vm_map_simplify(map, addr);
425 	return(addr);
426 }
427 
428 /*
429  *	kmem_alloc_wait
430  *
431  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
432  *	has no room, the caller sleeps waiting for more memory in the submap.
433  *
434  */
435 vm_offset_t kmem_alloc_wait(map, size)
436 	vm_map_t	map;
437 	vm_size_t	size;
438 {
439 	vm_offset_t	addr;
440 	int		result;
441 
442 	size = round_page(size);
443 
444 	for (;;) {
445 		/*
446 		 * To make this work for more than one map,
447 		 * use the map's lock to lock out sleepers/wakers.
448 		 */
449 		vm_map_lock(map);
450 		if (vm_map_findspace(map, 0, size, &addr) == 0)
451 			break;
452 		/* no space now; see if we can ever get space */
453 		if (vm_map_max(map) - vm_map_min(map) < size) {
454 			vm_map_unlock(map);
455 			return (0);
456 		}
457 		assert_wait((int)map, TRUE);
458 		vm_map_unlock(map);
459 		thread_block();
460 	}
461 	vm_map_insert(map, NULL, (vm_offset_t)0, addr, addr + size);
462 	vm_map_unlock(map);
463 	return (addr);
464 }
465 
466 /*
467  *	kmem_free_wakeup
468  *
469  *	Returns memory to a submap of the kernel, and wakes up any threads
470  *	waiting for memory in that map.
471  */
472 void	kmem_free_wakeup(map, addr, size)
473 	vm_map_t	map;
474 	vm_offset_t	addr;
475 	vm_size_t	size;
476 {
477 	vm_map_lock(map);
478 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
479 	thread_wakeup((int)map);
480 	vm_map_unlock(map);
481 }
482 
483 /*
484  * Create the kernel map; insert a mapping covering kernel text, data, bss,
485  * and all space allocated thus far (`boostrap' data).  The new map will thus
486  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
487  * the range between `start' and `end' as free.
488  */
489 void kmem_init(start, end)
490 	vm_offset_t start, end;
491 {
492 	register vm_map_t m;
493 
494 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
495 	vm_map_lock(m);
496 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
497 	kernel_map = m;
498 	(void) vm_map_insert(m, NULL, (vm_offset_t)0,
499 	    VM_MIN_KERNEL_ADDRESS, start);
500 	/* ... and ending with the completion of the above `insert' */
501 	vm_map_unlock(m);
502 }
503