xref: /original-bsd/sys/vm/vm_kern.c (revision 68549010)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_kern.c	7.8 (Berkeley) 02/19/92
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Kernel memory management.
41  */
42 
43 #include "param.h"
44 
45 #include "vm.h"
46 #include "vm_page.h"
47 #include "vm_pageout.h"
48 #include "vm_kern.h"
49 
50 /*
51  *	kmem_alloc_pageable:
52  *
53  *	Allocate pageable memory to the kernel's address map.
54  *	map must be "kernel_map" below.
55  */
56 
57 vm_offset_t kmem_alloc_pageable(map, size)
58 	vm_map_t		map;
59 	register vm_size_t	size;
60 {
61 	vm_offset_t		addr;
62 	register int		result;
63 
64 #if	0
65 	if (map != kernel_map)
66 		panic("kmem_alloc_pageable: not called with kernel_map");
67 #endif	0
68 
69 	size = round_page(size);
70 
71 	addr = vm_map_min(map);
72 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
73 				&addr, size, TRUE);
74 	if (result != KERN_SUCCESS) {
75 		return(0);
76 	}
77 
78 	return(addr);
79 }
80 
81 /*
82  *	Allocate wired-down memory in the kernel's address map
83  *	or a submap.
84  */
85 vm_offset_t kmem_alloc(map, size)
86 	register vm_map_t	map;
87 	register vm_size_t	size;
88 {
89 	vm_offset_t		addr;
90 	register int		result;
91 	register vm_offset_t	offset;
92 	extern vm_object_t	kernel_object;
93 	vm_offset_t		i;
94 
95 	size = round_page(size);
96 
97 	/*
98 	 *	Use the kernel object for wired-down kernel pages.
99 	 *	Assume that no region of the kernel object is
100 	 *	referenced more than once.
101 	 */
102 
103 	/*
104 	 * Locate sufficient space in the map.  This will give us the
105 	 * final virtual address for the new memory, and thus will tell
106 	 * us the offset within the kernel map.
107 	 */
108 	vm_map_lock(map);
109 	if (vm_map_findspace(map, 0, size, &addr)) {
110 		vm_map_unlock(map);
111 		return (0);
112 	}
113 	offset = addr - VM_MIN_KERNEL_ADDRESS;
114 	vm_object_reference(kernel_object);
115 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
116 	vm_map_unlock(map);
117 
118 	/*
119 	 *	Guarantee that there are pages already in this object
120 	 *	before calling vm_map_pageable.  This is to prevent the
121 	 *	following scenario:
122 	 *
123 	 *		1) Threads have swapped out, so that there is a
124 	 *		   pager for the kernel_object.
125 	 *		2) The kmsg zone is empty, and so we are kmem_allocing
126 	 *		   a new page for it.
127 	 *		3) vm_map_pageable calls vm_fault; there is no page,
128 	 *		   but there is a pager, so we call
129 	 *		   pager_data_request.  But the kmsg zone is empty,
130 	 *		   so we must kmem_alloc.
131 	 *		4) goto 1
132 	 *		5) Even if the kmsg zone is not empty: when we get
133 	 *		   the data back from the pager, it will be (very
134 	 *		   stale) non-zero data.  kmem_alloc is defined to
135 	 *		   return zero-filled memory.
136 	 *
137 	 *	We're intentionally not activating the pages we allocate
138 	 *	to prevent a race with page-out.  vm_map_pageable will wire
139 	 *	the pages.
140 	 */
141 
142 	vm_object_lock(kernel_object);
143 	for (i = 0 ; i < size; i+= PAGE_SIZE) {
144 		vm_page_t	mem;
145 
146 		while ((mem = vm_page_alloc(kernel_object, offset+i)) == NULL) {
147 			vm_object_unlock(kernel_object);
148 			VM_WAIT;
149 			vm_object_lock(kernel_object);
150 		}
151 		vm_page_zero_fill(mem);
152 		mem->busy = FALSE;
153 	}
154 	vm_object_unlock(kernel_object);
155 
156 	/*
157 	 *	And finally, mark the data as non-pageable.
158 	 */
159 
160 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
161 
162 	/*
163 	 *	Try to coalesce the map
164 	 */
165 
166 	vm_map_simplify(map, addr);
167 
168 	return(addr);
169 }
170 
171 /*
172  *	kmem_free:
173  *
174  *	Release a region of kernel virtual memory allocated
175  *	with kmem_alloc, and return the physical pages
176  *	associated with that region.
177  */
178 void kmem_free(map, addr, size)
179 	vm_map_t		map;
180 	register vm_offset_t	addr;
181 	vm_size_t		size;
182 {
183 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
184 }
185 
186 /*
187  *	kmem_suballoc:
188  *
189  *	Allocates a map to manage a subrange
190  *	of the kernel virtual address space.
191  *
192  *	Arguments are as follows:
193  *
194  *	parent		Map to take range from
195  *	size		Size of range to find
196  *	min, max	Returned endpoints of map
197  *	pageable	Can the region be paged
198  */
199 vm_map_t kmem_suballoc(parent, min, max, size, pageable)
200 	register vm_map_t	parent;
201 	vm_offset_t		*min, *max;
202 	register vm_size_t	size;
203 	boolean_t		pageable;
204 {
205 	register int	ret;
206 	vm_map_t	result;
207 
208 	size = round_page(size);
209 
210 	*min = (vm_offset_t) vm_map_min(parent);
211 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
212 				min, size, TRUE);
213 	if (ret != KERN_SUCCESS) {
214 		printf("kmem_suballoc: bad status return of %d.\n", ret);
215 		panic("kmem_suballoc");
216 	}
217 	*max = *min + size;
218 	pmap_reference(vm_map_pmap(parent));
219 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
220 	if (result == NULL)
221 		panic("kmem_suballoc: cannot create submap");
222 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
223 		panic("kmem_suballoc: unable to change range to submap");
224 	return(result);
225 }
226 
227 /*
228  *	vm_move:
229  *
230  *	Move memory from source to destination map, possibly deallocating
231  *	the source map reference to the memory.
232  *
233  *	Parameters are as follows:
234  *
235  *	src_map		Source address map
236  *	src_addr	Address within source map
237  *	dst_map		Destination address map
238  *	num_bytes	Amount of data (in bytes) to copy/move
239  *	src_dealloc	Should source be removed after copy?
240  *
241  *	Assumes the src and dst maps are not already locked.
242  *
243  *	Returns new destination address or 0 (if a failure occurs).
244  */
245 vm_offset_t vm_move(src_map,src_addr,dst_map,num_bytes,src_dealloc)
246 	vm_map_t		src_map;
247 	register vm_offset_t	src_addr;
248 	register vm_map_t	dst_map;
249 	vm_offset_t		num_bytes;
250 	boolean_t		src_dealloc;
251 {
252 	register vm_offset_t	src_start;	/* Beginning of region */
253 	register vm_size_t	src_size;	/* Size of rounded region */
254 	vm_offset_t		dst_start;	/* destination address */
255 	register int		result;
256 
257 	/*
258 	 *	Page-align the source region
259 	 */
260 
261 	src_start = trunc_page(src_addr);
262 	src_size = round_page(src_addr + num_bytes) - src_start;
263 
264 	/*
265 	 *	If there's no destination, we can be at most deallocating
266 	 *	the source range.
267 	 */
268 	if (dst_map == NULL) {
269 		if (src_dealloc)
270 			if (vm_deallocate(src_map, src_start, src_size)
271 					!= KERN_SUCCESS) {
272 				printf("vm_move: deallocate of source");
273 				printf(" failed, dealloc_only clause\n");
274 			}
275 		return(0);
276 	}
277 
278 	/*
279 	 *	Allocate a place to put the copy
280 	 */
281 
282 	dst_start = (vm_offset_t) 0;
283 	if ((result = vm_allocate(dst_map, &dst_start, src_size, TRUE))
284 				== KERN_SUCCESS) {
285 		/*
286 		 *	Perform the copy, asking for deallocation if desired
287 		 */
288 		result = vm_map_copy(dst_map, src_map, dst_start, src_size,
289 					src_start, FALSE, src_dealloc);
290 	}
291 
292 	/*
293 	 *	Return the destination address corresponding to
294 	 *	the source address given (rather than the front
295 	 *	of the newly-allocated page).
296 	 */
297 
298 	if (result == KERN_SUCCESS)
299 		return(dst_start + (src_addr - src_start));
300 	return(0);
301 }
302 
303 /*
304  * Allocate wired-down memory in the kernel's address map for the higher
305  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
306  * kmem_alloc() because we may need to allocate memory at interrupt
307  * level where we cannot block (canwait == FALSE).
308  *
309  * This routine has its own private kernel submap (kmem_map) and object
310  * (kmem_object).  This, combined with the fact that only malloc uses
311  * this routine, ensures that we will never block in map or object waits.
312  *
313  * Note that this still only works in a uni-processor environment and
314  * when called at splhigh().
315  *
316  * We don't worry about expanding the map (adding entries) since entries
317  * for wired maps are statically allocated.
318  */
319 vm_offset_t
320 kmem_malloc(map, size, canwait)
321 	register vm_map_t	map;
322 	register vm_size_t	size;
323 	boolean_t		canwait;
324 {
325 	register vm_offset_t	offset, i;
326 	vm_map_entry_t		entry;
327 	vm_offset_t		addr;
328 	vm_page_t		m;
329 	extern vm_object_t	kmem_object;
330 
331 	if (map != kmem_map && map != mb_map)
332 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
333 
334 	size = round_page(size);
335 	addr = vm_map_min(map);
336 
337 	/*
338 	 * Locate sufficient space in the map.  This will give us the
339 	 * final virtual address for the new memory, and thus will tell
340 	 * us the offset within the kernel map.
341 	 */
342 	vm_map_lock(map);
343 	if (vm_map_findspace(map, 0, size, &addr)) {
344 		vm_map_unlock(map);
345 		if (canwait)		/* XXX  should wait */
346 			panic("kmem_malloc: %s too small",
347 			    map == kmem_map ? "kmem_map" : "mb_map");
348 		return (0);
349 	}
350 	offset = addr - vm_map_min(kmem_map);
351 	vm_object_reference(kmem_object);
352 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
353 
354 	/*
355 	 * If we can wait, just mark the range as wired
356 	 * (will fault pages as necessary).
357 	 */
358 	if (canwait) {
359 		vm_map_unlock(map);
360 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
361 				       FALSE);
362 		vm_map_simplify(map, addr);
363 		return(addr);
364 	}
365 
366 	/*
367 	 * If we cannot wait then we must allocate all memory up front,
368 	 * pulling it off the active queue to prevent pageout.
369 	 */
370 	vm_object_lock(kmem_object);
371 	for (i = 0; i < size; i += PAGE_SIZE) {
372 		m = vm_page_alloc(kmem_object, offset + i);
373 
374 		/*
375 		 * Ran out of space, free everything up and return.
376 		 * Don't need to lock page queues here as we know
377 		 * that the pages we got aren't on any queues.
378 		 */
379 		if (m == NULL) {
380 			while (i != 0) {
381 				i -= PAGE_SIZE;
382 				m = vm_page_lookup(kmem_object, offset + i);
383 				vm_page_free(m);
384 			}
385 			vm_object_unlock(kmem_object);
386 			vm_map_delete(map, addr, addr + size);
387 			vm_map_unlock(map);
388 			return(0);
389 		}
390 #if 0
391 		vm_page_zero_fill(m);
392 #endif
393 		m->busy = FALSE;
394 	}
395 	vm_object_unlock(kmem_object);
396 
397 	/*
398 	 * Mark map entry as non-pageable.
399 	 * Assert: vm_map_insert() will never be able to extend the previous
400 	 * entry so there will be a new entry exactly corresponding to this
401 	 * address range and it will have wired_count == 0.
402 	 */
403 	if (!vm_map_lookup_entry(map, addr, &entry) ||
404 	    entry->start != addr || entry->end != addr + size ||
405 	    entry->wired_count)
406 		panic("kmem_malloc: entry not found or misaligned");
407 	entry->wired_count++;
408 
409 	/*
410 	 * Loop thru pages, entering them in the pmap.
411 	 * (We cannot add them to the wired count without
412 	 * wrapping the vm_page_queue_lock in splimp...)
413 	 */
414 	for (i = 0; i < size; i += PAGE_SIZE) {
415 		vm_object_lock(kmem_object);
416 		m = vm_page_lookup(kmem_object, offset + i);
417 		vm_object_unlock(kmem_object);
418 		pmap_enter(map->pmap, addr + i, VM_PAGE_TO_PHYS(m),
419 			   VM_PROT_DEFAULT, TRUE);
420 	}
421 	vm_map_unlock(map);
422 
423 	vm_map_simplify(map, addr);
424 	return(addr);
425 }
426 
427 /*
428  *	kmem_alloc_wait
429  *
430  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
431  *	has no room, the caller sleeps waiting for more memory in the submap.
432  *
433  */
434 vm_offset_t kmem_alloc_wait(map, size)
435 	vm_map_t	map;
436 	vm_size_t	size;
437 {
438 	vm_offset_t	addr;
439 	int		result;
440 
441 	size = round_page(size);
442 
443 	for (;;) {
444 		/*
445 		 * To make this work for more than one map,
446 		 * use the map's lock to lock out sleepers/wakers.
447 		 */
448 		vm_map_lock(map);
449 		if (vm_map_findspace(map, 0, size, &addr) == 0)
450 			break;
451 		/* no space now; see if we can ever get space */
452 		if (vm_map_max(map) - vm_map_min(map) < size) {
453 			vm_map_unlock(map);
454 			return (0);
455 		}
456 		assert_wait((int)map, TRUE);
457 		vm_map_unlock(map);
458 		thread_block();
459 	}
460 	vm_map_insert(map, NULL, (vm_offset_t)0, addr, addr + size);
461 	vm_map_unlock(map);
462 	return (addr);
463 }
464 
465 /*
466  *	kmem_free_wakeup
467  *
468  *	Returns memory to a submap of the kernel, and wakes up any threads
469  *	waiting for memory in that map.
470  */
471 void	kmem_free_wakeup(map, addr, size)
472 	vm_map_t	map;
473 	vm_offset_t	addr;
474 	vm_size_t	size;
475 {
476 	vm_map_lock(map);
477 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
478 	thread_wakeup((int)map);
479 	vm_map_unlock(map);
480 }
481 
482 /*
483  * Create the kernel map; insert a mapping covering kernel text, data, bss,
484  * and all space allocated thus far (`boostrap' data).  The new map will thus
485  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
486  * the range between `start' and `end' as free.
487  */
488 void kmem_init(start, end)
489 	vm_offset_t start, end;
490 {
491 	register vm_map_t m;
492 
493 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
494 	vm_map_lock(m);
495 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
496 	kernel_map = m;
497 	(void) vm_map_insert(m, NULL, (vm_offset_t)0,
498 	    VM_MIN_KERNEL_ADDRESS, start);
499 	/* ... and ending with the completion of the above `insert' */
500 	vm_map_unlock(m);
501 }
502