xref: /original-bsd/sys/vm/vm_kern.c (revision dd262573)
1 /*
2  * Copyright (c) 1985, Avadis Tevanian, Jr., Michael Wayne Young
3  * Copyright (c) 1987 Carnegie-Mellon University
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * The CMU software License Agreement specifies the terms and conditions
11  * for use and redistribution.
12  *
13  *	@(#)vm_kern.c	7.1 (Berkeley) 12/05/90
14  */
15 
16 /*
17  *	Kernel memory management.
18  */
19 
20 #include "types.h"
21 
22 #include "../vm/vm_param.h"
23 #include "../vm/vm_map.h"
24 #include "../vm/vm_page.h"
25 #include "../vm/vm_pageout.h"
26 #include "../vm/vm_kern.h"
27 
28 /*
29  *	kmem_alloc_pageable:
30  *
31  *	Allocate pageable memory to the kernel's address map.
32  *	map must be "kernel_map" below.
33  */
34 
35 vm_offset_t kmem_alloc_pageable(map, size)
36 	vm_map_t		map;
37 	register vm_size_t	size;
38 {
39 	vm_offset_t		addr;
40 	register int		result;
41 
42 #if	0
43 	if (map != kernel_map)
44 		panic("kmem_alloc_pageable: not called with kernel_map");
45 #endif	0
46 
47 	size = round_page(size);
48 
49 	addr = vm_map_min(map);
50 	result = vm_map_find(map, VM_OBJECT_NULL, (vm_offset_t) 0,
51 				&addr, size, TRUE);
52 	if (result != KERN_SUCCESS) {
53 		return(0);
54 	}
55 
56 	return(addr);
57 }
58 
59 /*
60  *	Allocate wired-down memory in the kernel's address map
61  *	or a submap.
62  */
63 vm_offset_t kmem_alloc(map, size)
64 	register vm_map_t	map;
65 	register vm_size_t	size;
66 {
67 	vm_offset_t		addr;
68 	register int		result;
69 	register vm_offset_t	offset;
70 	extern vm_object_t	kernel_object;
71 	vm_offset_t		i;
72 
73 	size = round_page(size);
74 
75 	/*
76 	 *	Use the kernel object for wired-down kernel pages.
77 	 *	Assume that no region of the kernel object is
78 	 *	referenced more than once.
79 	 */
80 
81 	addr = vm_map_min(map);
82 	result = vm_map_find(map, VM_OBJECT_NULL, (vm_offset_t) 0,
83 				 &addr, size, TRUE);
84 	if (result != KERN_SUCCESS) {
85 		return(0);
86 	}
87 
88 	/*
89 	 *	Since we didn't know where the new region would
90 	 *	start, we couldn't supply the correct offset into
91 	 *	the kernel object.  Re-allocate that address
92 	 *	region with the correct offset.
93 	 */
94 
95 	offset = addr - VM_MIN_KERNEL_ADDRESS;
96 	vm_object_reference(kernel_object);
97 
98 	vm_map_lock(map);
99 	vm_map_delete(map, addr, addr + size);
100 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
101 	vm_map_unlock(map);
102 
103 	/*
104 	 *	Guarantee that there are pages already in this object
105 	 *	before calling vm_map_pageable.  This is to prevent the
106 	 *	following scenario:
107 	 *
108 	 *		1) Threads have swapped out, so that there is a
109 	 *		   pager for the kernel_object.
110 	 *		2) The kmsg zone is empty, and so we are kmem_allocing
111 	 *		   a new page for it.
112 	 *		3) vm_map_pageable calls vm_fault; there is no page,
113 	 *		   but there is a pager, so we call
114 	 *		   pager_data_request.  But the kmsg zone is empty,
115 	 *		   so we must kmem_alloc.
116 	 *		4) goto 1
117 	 *		5) Even if the kmsg zone is not empty: when we get
118 	 *		   the data back from the pager, it will be (very
119 	 *		   stale) non-zero data.  kmem_alloc is defined to
120 	 *		   return zero-filled memory.
121 	 *
122 	 *	We're intentionally not activating the pages we allocate
123 	 *	to prevent a race with page-out.  vm_map_pageable will wire
124 	 *	the pages.
125 	 */
126 
127 	vm_object_lock(kernel_object);
128 	for (i = 0 ; i < size; i+= PAGE_SIZE) {
129 		vm_page_t	mem;
130 
131 		while ((mem = vm_page_alloc(kernel_object, offset+i))
132 			    == VM_PAGE_NULL) {
133 			vm_object_unlock(kernel_object);
134 			VM_WAIT;
135 			vm_object_lock(kernel_object);
136 		}
137 		vm_page_zero_fill(mem);
138 		mem->busy = FALSE;
139 	}
140 	vm_object_unlock(kernel_object);
141 
142 	/*
143 	 *	And finally, mark the data as non-pageable.
144 	 */
145 
146 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
147 
148 	/*
149 	 *	Try to coalesce the map
150 	 */
151 
152 	vm_map_simplify(map, addr);
153 
154 	return(addr);
155 }
156 
157 /*
158  *	kmem_free:
159  *
160  *	Release a region of kernel virtual memory allocated
161  *	with kmem_alloc, and return the physical pages
162  *	associated with that region.
163  */
164 void kmem_free(map, addr, size)
165 	vm_map_t		map;
166 	register vm_offset_t	addr;
167 	vm_size_t		size;
168 {
169 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
170 }
171 
172 /*
173  *	kmem_suballoc:
174  *
175  *	Allocates a map to manage a subrange
176  *	of the kernel virtual address space.
177  *
178  *	Arguments are as follows:
179  *
180  *	parent		Map to take range from
181  *	size		Size of range to find
182  *	min, max	Returned endpoints of map
183  *	pageable	Can the region be paged
184  */
185 vm_map_t kmem_suballoc(parent, min, max, size, pageable)
186 	register vm_map_t	parent;
187 	vm_offset_t		*min, *max;
188 	register vm_size_t	size;
189 	boolean_t		pageable;
190 {
191 	register int	ret;
192 	vm_map_t	result;
193 
194 	size = round_page(size);
195 
196 	*min = (vm_offset_t) vm_map_min(parent);
197 	ret = vm_map_find(parent, VM_OBJECT_NULL, (vm_offset_t) 0,
198 				min, size, TRUE);
199 	if (ret != KERN_SUCCESS) {
200 		printf("kmem_suballoc: bad status return of %d.\n", ret);
201 		panic("kmem_suballoc");
202 	}
203 	*max = *min + size;
204 	pmap_reference(vm_map_pmap(parent));
205 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
206 	if (result == VM_MAP_NULL)
207 		panic("kmem_suballoc: cannot create submap");
208 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
209 		panic("kmem_suballoc: unable to change range to submap");
210 	return(result);
211 }
212 
213 /*
214  *	vm_move:
215  *
216  *	Move memory from source to destination map, possibly deallocating
217  *	the source map reference to the memory.
218  *
219  *	Parameters are as follows:
220  *
221  *	src_map		Source address map
222  *	src_addr	Address within source map
223  *	dst_map		Destination address map
224  *	num_bytes	Amount of data (in bytes) to copy/move
225  *	src_dealloc	Should source be removed after copy?
226  *
227  *	Assumes the src and dst maps are not already locked.
228  *
229  *	Returns new destination address or 0 (if a failure occurs).
230  */
231 vm_offset_t vm_move(src_map,src_addr,dst_map,num_bytes,src_dealloc)
232 	vm_map_t		src_map;
233 	register vm_offset_t	src_addr;
234 	register vm_map_t	dst_map;
235 	vm_offset_t		num_bytes;
236 	boolean_t		src_dealloc;
237 {
238 	register vm_offset_t	src_start;	/* Beginning of region */
239 	register vm_size_t	src_size;	/* Size of rounded region */
240 	vm_offset_t		dst_start;	/* destination address */
241 	register int		result;
242 
243 	/*
244 	 *	Page-align the source region
245 	 */
246 
247 	src_start = trunc_page(src_addr);
248 	src_size = round_page(src_addr + num_bytes) - src_start;
249 
250 	/*
251 	 *	If there's no destination, we can be at most deallocating
252 	 *	the source range.
253 	 */
254 	if (dst_map == VM_MAP_NULL) {
255 		if (src_dealloc)
256 			if (vm_deallocate(src_map, src_start, src_size)
257 					!= KERN_SUCCESS) {
258 				printf("vm_move: deallocate of source");
259 				printf(" failed, dealloc_only clause\n");
260 			}
261 		return(0);
262 	}
263 
264 	/*
265 	 *	Allocate a place to put the copy
266 	 */
267 
268 	dst_start = (vm_offset_t) 0;
269 	if ((result = vm_allocate(dst_map, &dst_start, src_size, TRUE))
270 				== KERN_SUCCESS) {
271 		/*
272 		 *	Perform the copy, asking for deallocation if desired
273 		 */
274 		result = vm_map_copy(dst_map, src_map, dst_start, src_size,
275 					src_start, FALSE, src_dealloc);
276 	}
277 
278 	/*
279 	 *	Return the destination address corresponding to
280 	 *	the source address given (rather than the front
281 	 *	of the newly-allocated page).
282 	 */
283 
284 	if (result == KERN_SUCCESS)
285 		return(dst_start + (src_addr - src_start));
286 	return(0);
287 }
288 
289 /*
290  * Allocate wired-down memory in the kernel's address map for the higher
291  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
292  * kmem_alloc() because we may need to allocate memory at interrupt
293  * level where we cannot block (canwait == FALSE).
294  *
295  * This routine has its own private kernel submap (kmem_map) and object
296  * (kmem_object).  This, combined with the fact that only malloc uses
297  * this routine, ensures that we will never block in map or object waits.
298  *
299  * Note that this still only works in a uni-processor environment and
300  * when called at splhigh().
301  *
302  * We don't worry about expanding the map (adding entries) since entries
303  * for wired maps are statically allocated.
304  */
305 vm_offset_t
306 kmem_malloc(map, size, canwait)
307 	register vm_map_t	map;
308 	register vm_size_t	size;
309 	boolean_t		canwait;
310 {
311 	register vm_offset_t	offset, i;
312 	vm_map_entry_t		entry;
313 	vm_offset_t		addr;
314 	vm_page_t		m;
315 	extern vm_object_t	kmem_object;
316 
317 	if (map != kmem_map && map != mb_map)
318 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
319 
320 	size = round_page(size);
321 	addr = vm_map_min(map);
322 
323 	if (vm_map_find(map, VM_OBJECT_NULL, (vm_offset_t)0,
324 			&addr, size, TRUE) != KERN_SUCCESS)
325 		return(0);
326 
327 	/*
328 	 * Since we didn't know where the new region would start,
329 	 * we couldn't supply the correct offset into the kmem object.
330 	 * Re-allocate that address region with the correct offset.
331 	 */
332 	offset = addr - vm_map_min(kmem_map);
333 	vm_object_reference(kmem_object);
334 
335 	vm_map_lock(map);
336 	vm_map_delete(map, addr, addr + size);
337 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
338 
339 	/*
340 	 * If we can wait, just mark the range as wired
341 	 * (will fault pages as necessary).
342 	 */
343 	if (canwait) {
344 		vm_map_unlock(map);
345 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
346 				       FALSE);
347 		vm_map_simplify(map, addr);
348 		return(addr);
349 	}
350 
351 	/*
352 	 * If we cannot wait then we must allocate all memory up front,
353 	 * pulling it off the active queue to prevent pageout.
354 	 */
355 	vm_object_lock(kmem_object);
356 	for (i = 0; i < size; i += PAGE_SIZE) {
357 		m = vm_page_alloc(kmem_object, offset + i);
358 
359 		/*
360 		 * Ran out of space, free everything up and return.
361 		 * Don't need to lock page queues here as we know
362 		 * that the pages we got aren't on any queues.
363 		 */
364 		if (m == VM_PAGE_NULL) {
365 			while (i != 0) {
366 				i -= PAGE_SIZE;
367 				m = vm_page_lookup(kmem_object, offset + i);
368 				vm_page_free(m);
369 			}
370 			vm_object_unlock(kmem_object);
371 			vm_map_delete(map, addr, addr + size);
372 			vm_map_unlock(map);
373 			return(0);
374 		}
375 #if 0
376 		vm_page_zero_fill(m);
377 #endif
378 		m->busy = FALSE;
379 	}
380 	vm_object_unlock(kmem_object);
381 
382 	/*
383 	 * Mark map entry as non-pageable.
384 	 * Assert: vm_map_insert() will never be able to extend the previous
385 	 * entry so there will be a new entry exactly corresponding to this
386 	 * address range and it will have wired_count == 0.
387 	 */
388 	if (!vm_map_lookup_entry(map, addr, &entry) ||
389 	    entry->start != addr || entry->end != addr + size ||
390 	    entry->wired_count)
391 		panic("kmem_malloc: entry not found or misaligned");
392 	entry->wired_count++;
393 
394 	/*
395 	 * Loop thru pages, entering them in the pmap.
396 	 * (We cannot add them to the wired count without
397 	 * wrapping the vm_page_queue_lock in splimp...)
398 	 */
399 	for (i = 0; i < size; i += PAGE_SIZE) {
400 		vm_object_lock(kmem_object);
401 		m = vm_page_lookup(kmem_object, offset + i);
402 		vm_object_unlock(kmem_object);
403 		pmap_enter(map->pmap, addr + i, VM_PAGE_TO_PHYS(m),
404 			   VM_PROT_DEFAULT, TRUE);
405 	}
406 	vm_map_unlock(map);
407 
408 	vm_map_simplify(map, addr);
409 	return(addr);
410 }
411 
412 /*
413  *	kmem_alloc_wait
414  *
415  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
416  *	has no room, the caller sleeps waiting for more memory in the submap.
417  *
418  */
419 vm_offset_t kmem_alloc_wait(map, size)
420 	vm_map_t	map;
421 	vm_size_t	size;
422 {
423 	vm_offset_t	addr;
424 	int		result;
425 
426 	size = round_page(size);
427 
428 	do {
429 		/*
430 		 *	To make this work for more than one map,
431 		 *	use the map's lock to lock out sleepers/wakers.
432 		 *	Unfortunately, vm_map_find also grabs the map lock.
433 		 */
434 		vm_map_lock(map);
435 		lock_set_recursive(&map->lock);
436 
437 		addr = vm_map_min(map);
438 		result = vm_map_find(map, VM_OBJECT_NULL, (vm_offset_t) 0,
439 				&addr, size, TRUE);
440 
441 		lock_clear_recursive(&map->lock);
442 		if (result != KERN_SUCCESS) {
443 
444 			if ( (vm_map_max(map) - vm_map_min(map)) < size ) {
445 				vm_map_unlock(map);
446 				return(0);
447 			}
448 
449 			assert_wait((int)map, TRUE);
450 			vm_map_unlock(map);
451 			thread_block();
452 		}
453 		else {
454 			vm_map_unlock(map);
455 		}
456 
457 	} while (result != KERN_SUCCESS);
458 
459 	return(addr);
460 }
461 
462 /*
463  *	kmem_free_wakeup
464  *
465  *	Returns memory to a submap of the kernel, and wakes up any threads
466  *	waiting for memory in that map.
467  */
468 void	kmem_free_wakeup(map, addr, size)
469 	vm_map_t	map;
470 	vm_offset_t	addr;
471 	vm_size_t	size;
472 {
473 	vm_map_lock(map);
474 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
475 	thread_wakeup((int)map);
476 	vm_map_unlock(map);
477 }
478 
479 /*
480  *	kmem_init:
481  *
482  *	Initialize the kernel's virtual memory map, taking
483  *	into account all memory allocated up to this time.
484  */
485 void kmem_init(start, end)
486 	vm_offset_t	start;
487 	vm_offset_t	end;
488 {
489 	vm_offset_t	addr;
490 	extern vm_map_t	kernel_map;
491 
492 	addr = VM_MIN_KERNEL_ADDRESS;
493 	kernel_map = vm_map_create(pmap_kernel(), addr, end, FALSE);
494 	(void) vm_map_find(kernel_map, VM_OBJECT_NULL, (vm_offset_t) 0,
495 				&addr, (start - VM_MIN_KERNEL_ADDRESS),
496 				FALSE);
497 }
498