xref: /original-bsd/sys/vm/vm_kern.c (revision e59fb703)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_kern.c	7.4 (Berkeley) 05/07/91
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Kernel memory management.
41  */
42 
43 #include "param.h"
44 
45 #include "vm.h"
46 #include "vm_page.h"
47 #include "vm_pageout.h"
48 #include "vm_kern.h"
49 
50 /*
51  *	kmem_alloc_pageable:
52  *
53  *	Allocate pageable memory to the kernel's address map.
54  *	map must be "kernel_map" below.
55  */
56 
57 vm_offset_t kmem_alloc_pageable(map, size)
58 	vm_map_t		map;
59 	register vm_size_t	size;
60 {
61 	vm_offset_t		addr;
62 	register int		result;
63 
64 #if	0
65 	if (map != kernel_map)
66 		panic("kmem_alloc_pageable: not called with kernel_map");
67 #endif	0
68 
69 	size = round_page(size);
70 
71 	addr = vm_map_min(map);
72 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
73 				&addr, size, TRUE);
74 	if (result != KERN_SUCCESS) {
75 		return(0);
76 	}
77 
78 	return(addr);
79 }
80 
81 /*
82  *	Allocate wired-down memory in the kernel's address map
83  *	or a submap.
84  */
85 vm_offset_t kmem_alloc(map, size)
86 	register vm_map_t	map;
87 	register vm_size_t	size;
88 {
89 	vm_offset_t		addr;
90 	register int		result;
91 	register vm_offset_t	offset;
92 	extern vm_object_t	kernel_object;
93 	vm_offset_t		i;
94 
95 	size = round_page(size);
96 
97 	/*
98 	 *	Use the kernel object for wired-down kernel pages.
99 	 *	Assume that no region of the kernel object is
100 	 *	referenced more than once.
101 	 */
102 
103 	addr = vm_map_min(map);
104 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
105 				 &addr, size, TRUE);
106 	if (result != KERN_SUCCESS) {
107 		return(0);
108 	}
109 
110 	/*
111 	 *	Since we didn't know where the new region would
112 	 *	start, we couldn't supply the correct offset into
113 	 *	the kernel object.  Re-allocate that address
114 	 *	region with the correct offset.
115 	 */
116 
117 	offset = addr - VM_MIN_KERNEL_ADDRESS;
118 	vm_object_reference(kernel_object);
119 
120 	vm_map_lock(map);
121 	vm_map_delete(map, addr, addr + size);
122 	vm_map_insert(map, kernel_object, offset, addr, addr + size);
123 	vm_map_unlock(map);
124 
125 	/*
126 	 *	Guarantee that there are pages already in this object
127 	 *	before calling vm_map_pageable.  This is to prevent the
128 	 *	following scenario:
129 	 *
130 	 *		1) Threads have swapped out, so that there is a
131 	 *		   pager for the kernel_object.
132 	 *		2) The kmsg zone is empty, and so we are kmem_allocing
133 	 *		   a new page for it.
134 	 *		3) vm_map_pageable calls vm_fault; there is no page,
135 	 *		   but there is a pager, so we call
136 	 *		   pager_data_request.  But the kmsg zone is empty,
137 	 *		   so we must kmem_alloc.
138 	 *		4) goto 1
139 	 *		5) Even if the kmsg zone is not empty: when we get
140 	 *		   the data back from the pager, it will be (very
141 	 *		   stale) non-zero data.  kmem_alloc is defined to
142 	 *		   return zero-filled memory.
143 	 *
144 	 *	We're intentionally not activating the pages we allocate
145 	 *	to prevent a race with page-out.  vm_map_pageable will wire
146 	 *	the pages.
147 	 */
148 
149 	vm_object_lock(kernel_object);
150 	for (i = 0 ; i < size; i+= PAGE_SIZE) {
151 		vm_page_t	mem;
152 
153 		while ((mem = vm_page_alloc(kernel_object, offset+i)) == NULL) {
154 			vm_object_unlock(kernel_object);
155 			VM_WAIT;
156 			vm_object_lock(kernel_object);
157 		}
158 		vm_page_zero_fill(mem);
159 		mem->busy = FALSE;
160 	}
161 	vm_object_unlock(kernel_object);
162 
163 	/*
164 	 *	And finally, mark the data as non-pageable.
165 	 */
166 
167 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
168 
169 	/*
170 	 *	Try to coalesce the map
171 	 */
172 
173 	vm_map_simplify(map, addr);
174 
175 	return(addr);
176 }
177 
178 /*
179  *	kmem_free:
180  *
181  *	Release a region of kernel virtual memory allocated
182  *	with kmem_alloc, and return the physical pages
183  *	associated with that region.
184  */
185 void kmem_free(map, addr, size)
186 	vm_map_t		map;
187 	register vm_offset_t	addr;
188 	vm_size_t		size;
189 {
190 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
191 }
192 
193 /*
194  *	kmem_suballoc:
195  *
196  *	Allocates a map to manage a subrange
197  *	of the kernel virtual address space.
198  *
199  *	Arguments are as follows:
200  *
201  *	parent		Map to take range from
202  *	size		Size of range to find
203  *	min, max	Returned endpoints of map
204  *	pageable	Can the region be paged
205  */
206 vm_map_t kmem_suballoc(parent, min, max, size, pageable)
207 	register vm_map_t	parent;
208 	vm_offset_t		*min, *max;
209 	register vm_size_t	size;
210 	boolean_t		pageable;
211 {
212 	register int	ret;
213 	vm_map_t	result;
214 
215 	size = round_page(size);
216 
217 	*min = (vm_offset_t) vm_map_min(parent);
218 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
219 				min, size, TRUE);
220 	if (ret != KERN_SUCCESS) {
221 		printf("kmem_suballoc: bad status return of %d.\n", ret);
222 		panic("kmem_suballoc");
223 	}
224 	*max = *min + size;
225 	pmap_reference(vm_map_pmap(parent));
226 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
227 	if (result == NULL)
228 		panic("kmem_suballoc: cannot create submap");
229 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
230 		panic("kmem_suballoc: unable to change range to submap");
231 	return(result);
232 }
233 
234 /*
235  *	vm_move:
236  *
237  *	Move memory from source to destination map, possibly deallocating
238  *	the source map reference to the memory.
239  *
240  *	Parameters are as follows:
241  *
242  *	src_map		Source address map
243  *	src_addr	Address within source map
244  *	dst_map		Destination address map
245  *	num_bytes	Amount of data (in bytes) to copy/move
246  *	src_dealloc	Should source be removed after copy?
247  *
248  *	Assumes the src and dst maps are not already locked.
249  *
250  *	Returns new destination address or 0 (if a failure occurs).
251  */
252 vm_offset_t vm_move(src_map,src_addr,dst_map,num_bytes,src_dealloc)
253 	vm_map_t		src_map;
254 	register vm_offset_t	src_addr;
255 	register vm_map_t	dst_map;
256 	vm_offset_t		num_bytes;
257 	boolean_t		src_dealloc;
258 {
259 	register vm_offset_t	src_start;	/* Beginning of region */
260 	register vm_size_t	src_size;	/* Size of rounded region */
261 	vm_offset_t		dst_start;	/* destination address */
262 	register int		result;
263 
264 	/*
265 	 *	Page-align the source region
266 	 */
267 
268 	src_start = trunc_page(src_addr);
269 	src_size = round_page(src_addr + num_bytes) - src_start;
270 
271 	/*
272 	 *	If there's no destination, we can be at most deallocating
273 	 *	the source range.
274 	 */
275 	if (dst_map == NULL) {
276 		if (src_dealloc)
277 			if (vm_deallocate(src_map, src_start, src_size)
278 					!= KERN_SUCCESS) {
279 				printf("vm_move: deallocate of source");
280 				printf(" failed, dealloc_only clause\n");
281 			}
282 		return(0);
283 	}
284 
285 	/*
286 	 *	Allocate a place to put the copy
287 	 */
288 
289 	dst_start = (vm_offset_t) 0;
290 	if ((result = vm_allocate(dst_map, &dst_start, src_size, TRUE))
291 				== KERN_SUCCESS) {
292 		/*
293 		 *	Perform the copy, asking for deallocation if desired
294 		 */
295 		result = vm_map_copy(dst_map, src_map, dst_start, src_size,
296 					src_start, FALSE, src_dealloc);
297 	}
298 
299 	/*
300 	 *	Return the destination address corresponding to
301 	 *	the source address given (rather than the front
302 	 *	of the newly-allocated page).
303 	 */
304 
305 	if (result == KERN_SUCCESS)
306 		return(dst_start + (src_addr - src_start));
307 	return(0);
308 }
309 
310 /*
311  * Allocate wired-down memory in the kernel's address map for the higher
312  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
313  * kmem_alloc() because we may need to allocate memory at interrupt
314  * level where we cannot block (canwait == FALSE).
315  *
316  * This routine has its own private kernel submap (kmem_map) and object
317  * (kmem_object).  This, combined with the fact that only malloc uses
318  * this routine, ensures that we will never block in map or object waits.
319  *
320  * Note that this still only works in a uni-processor environment and
321  * when called at splhigh().
322  *
323  * We don't worry about expanding the map (adding entries) since entries
324  * for wired maps are statically allocated.
325  */
326 vm_offset_t
327 kmem_malloc(map, size, canwait)
328 	register vm_map_t	map;
329 	register vm_size_t	size;
330 	boolean_t		canwait;
331 {
332 	register vm_offset_t	offset, i;
333 	vm_map_entry_t		entry;
334 	vm_offset_t		addr;
335 	vm_page_t		m;
336 	extern vm_object_t	kmem_object;
337 
338 	if (map != kmem_map && map != mb_map)
339 		panic("kern_malloc_alloc: map != {kmem,mb}_map");
340 
341 	size = round_page(size);
342 	addr = vm_map_min(map);
343 
344 	if (vm_map_find(map, NULL, (vm_offset_t)0,
345 			&addr, size, TRUE) != KERN_SUCCESS) {
346 		if (canwait)
347 			panic("kmem_malloc: kmem_map too small");
348 		return(0);
349 	}
350 
351 	/*
352 	 * Since we didn't know where the new region would start,
353 	 * we couldn't supply the correct offset into the kmem object.
354 	 * Re-allocate that address region with the correct offset.
355 	 */
356 	offset = addr - vm_map_min(kmem_map);
357 	vm_object_reference(kmem_object);
358 
359 	vm_map_lock(map);
360 	vm_map_delete(map, addr, addr + size);
361 	vm_map_insert(map, kmem_object, offset, addr, addr + size);
362 
363 	/*
364 	 * If we can wait, just mark the range as wired
365 	 * (will fault pages as necessary).
366 	 */
367 	if (canwait) {
368 		vm_map_unlock(map);
369 		(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size,
370 				       FALSE);
371 		vm_map_simplify(map, addr);
372 		return(addr);
373 	}
374 
375 	/*
376 	 * If we cannot wait then we must allocate all memory up front,
377 	 * pulling it off the active queue to prevent pageout.
378 	 */
379 	vm_object_lock(kmem_object);
380 	for (i = 0; i < size; i += PAGE_SIZE) {
381 		m = vm_page_alloc(kmem_object, offset + i);
382 
383 		/*
384 		 * Ran out of space, free everything up and return.
385 		 * Don't need to lock page queues here as we know
386 		 * that the pages we got aren't on any queues.
387 		 */
388 		if (m == NULL) {
389 			while (i != 0) {
390 				i -= PAGE_SIZE;
391 				m = vm_page_lookup(kmem_object, offset + i);
392 				vm_page_free(m);
393 			}
394 			vm_object_unlock(kmem_object);
395 			vm_map_delete(map, addr, addr + size);
396 			vm_map_unlock(map);
397 			return(0);
398 		}
399 #if 0
400 		vm_page_zero_fill(m);
401 #endif
402 		m->busy = FALSE;
403 	}
404 	vm_object_unlock(kmem_object);
405 
406 	/*
407 	 * Mark map entry as non-pageable.
408 	 * Assert: vm_map_insert() will never be able to extend the previous
409 	 * entry so there will be a new entry exactly corresponding to this
410 	 * address range and it will have wired_count == 0.
411 	 */
412 	if (!vm_map_lookup_entry(map, addr, &entry) ||
413 	    entry->start != addr || entry->end != addr + size ||
414 	    entry->wired_count)
415 		panic("kmem_malloc: entry not found or misaligned");
416 	entry->wired_count++;
417 
418 	/*
419 	 * Loop thru pages, entering them in the pmap.
420 	 * (We cannot add them to the wired count without
421 	 * wrapping the vm_page_queue_lock in splimp...)
422 	 */
423 	for (i = 0; i < size; i += PAGE_SIZE) {
424 		vm_object_lock(kmem_object);
425 		m = vm_page_lookup(kmem_object, offset + i);
426 		vm_object_unlock(kmem_object);
427 		pmap_enter(map->pmap, addr + i, VM_PAGE_TO_PHYS(m),
428 			   VM_PROT_DEFAULT, TRUE);
429 	}
430 	vm_map_unlock(map);
431 
432 	vm_map_simplify(map, addr);
433 	return(addr);
434 }
435 
436 /*
437  *	kmem_alloc_wait
438  *
439  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
440  *	has no room, the caller sleeps waiting for more memory in the submap.
441  *
442  */
443 vm_offset_t kmem_alloc_wait(map, size)
444 	vm_map_t	map;
445 	vm_size_t	size;
446 {
447 	vm_offset_t	addr;
448 	int		result;
449 
450 	size = round_page(size);
451 
452 	do {
453 		/*
454 		 *	To make this work for more than one map,
455 		 *	use the map's lock to lock out sleepers/wakers.
456 		 *	Unfortunately, vm_map_find also grabs the map lock.
457 		 */
458 		vm_map_lock(map);
459 		lock_set_recursive(&map->lock);
460 
461 		addr = vm_map_min(map);
462 		result = vm_map_find(map, NULL, (vm_offset_t) 0,
463 				&addr, size, TRUE);
464 
465 		lock_clear_recursive(&map->lock);
466 		if (result != KERN_SUCCESS) {
467 
468 			if ( (vm_map_max(map) - vm_map_min(map)) < size ) {
469 				vm_map_unlock(map);
470 				return(0);
471 			}
472 
473 			assert_wait((int)map, TRUE);
474 			vm_map_unlock(map);
475 			thread_block();
476 		}
477 		else {
478 			vm_map_unlock(map);
479 		}
480 
481 	} while (result != KERN_SUCCESS);
482 
483 	return(addr);
484 }
485 
486 /*
487  *	kmem_free_wakeup
488  *
489  *	Returns memory to a submap of the kernel, and wakes up any threads
490  *	waiting for memory in that map.
491  */
492 void	kmem_free_wakeup(map, addr, size)
493 	vm_map_t	map;
494 	vm_offset_t	addr;
495 	vm_size_t	size;
496 {
497 	vm_map_lock(map);
498 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
499 	thread_wakeup((int)map);
500 	vm_map_unlock(map);
501 }
502 
503 /*
504  *	kmem_init:
505  *
506  *	Initialize the kernel's virtual memory map, taking
507  *	into account all memory allocated up to this time.
508  */
509 void kmem_init(start, end)
510 	vm_offset_t	start;
511 	vm_offset_t	end;
512 {
513 	vm_offset_t	addr;
514 	extern vm_map_t	kernel_map;
515 
516 	addr = VM_MIN_KERNEL_ADDRESS;
517 	kernel_map = vm_map_create(pmap_kernel(), addr, end, FALSE);
518 	(void) vm_map_find(kernel_map, NULL, (vm_offset_t) 0,
519 				&addr, (start - VM_MIN_KERNEL_ADDRESS),
520 				FALSE);
521 }
522