xref: /original-bsd/sys/vm/vm_map.c (revision 0ac4996f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_map.c	8.8 (Berkeley) 05/14/95
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Virtual memory mapping module.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_page.h>
49 
50 /*
51  *	Virtual memory maps provide for the mapping, protection,
52  *	and sharing of virtual memory objects.  In addition,
53  *	this module provides for an efficient virtual copy of
54  *	memory from one map to another.
55  *
56  *	Synchronization is required prior to most operations.
57  *
58  *	Maps consist of an ordered doubly-linked list of simple
59  *	entries; a single hint is used to speed up lookups.
60  *
61  *	In order to properly represent the sharing of virtual
62  *	memory regions among maps, the map structure is bi-level.
63  *	Top-level ("address") maps refer to regions of sharable
64  *	virtual memory.  These regions are implemented as
65  *	("sharing") maps, which then refer to the actual virtual
66  *	memory objects.  When two address maps "share" memory,
67  *	their top-level maps both have references to the same
68  *	sharing map.  When memory is virtual-copied from one
69  *	address map to another, the references in the sharing
70  *	maps are actually copied -- no copying occurs at the
71  *	virtual memory object level.
72  *
73  *	Since portions of maps are specified by start/end addreses,
74  *	which may not align with existing map entries, all
75  *	routines merely "clip" entries to these start/end values.
76  *	[That is, an entry is split into two, bordering at a
77  *	start or end value.]  Note that these clippings may not
78  *	always be necessary (as the two resulting entries are then
79  *	not changed); however, the clipping is done for convenience.
80  *	No attempt is currently made to "glue back together" two
81  *	abutting entries.
82  *
83  *	As mentioned above, virtual copy operations are performed
84  *	by copying VM object references from one sharing map to
85  *	another, and then marking both regions as copy-on-write.
86  *	It is important to note that only one writeable reference
87  *	to a VM object region exists in any map -- this means that
88  *	shadow object creation can be delayed until a write operation
89  *	occurs.
90  */
91 
92 /*
93  *	vm_map_startup:
94  *
95  *	Initialize the vm_map module.  Must be called before
96  *	any other vm_map routines.
97  *
98  *	Map and entry structures are allocated from the general
99  *	purpose memory pool with some exceptions:
100  *
101  *	- The kernel map and kmem submap are allocated statically.
102  *	- Kernel map entries are allocated out of a static pool.
103  *
104  *	These restrictions are necessary since malloc() uses the
105  *	maps and requires map entries.
106  */
107 
108 vm_offset_t	kentry_data;
109 vm_size_t	kentry_data_size;
110 vm_map_entry_t	kentry_free;
111 vm_map_t	kmap_free;
112 
113 static void	_vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
114 static void	_vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
115 
116 void
117 vm_map_startup()
118 {
119 	register int i;
120 	register vm_map_entry_t mep;
121 	vm_map_t mp;
122 
123 	/*
124 	 * Static map structures for allocation before initialization of
125 	 * kernel map or kmem map.  vm_map_create knows how to deal with them.
126 	 */
127 	kmap_free = mp = (vm_map_t) kentry_data;
128 	i = MAX_KMAP;
129 	while (--i > 0) {
130 		mp->header.next = (vm_map_entry_t) (mp + 1);
131 		mp++;
132 	}
133 	mp++->header.next = NULL;
134 
135 	/*
136 	 * Form a free list of statically allocated kernel map entries
137 	 * with the rest.
138 	 */
139 	kentry_free = mep = (vm_map_entry_t) mp;
140 	i = (kentry_data_size - MAX_KMAP * sizeof *mp) / sizeof *mep;
141 	while (--i > 0) {
142 		mep->next = mep + 1;
143 		mep++;
144 	}
145 	mep->next = NULL;
146 }
147 
148 /*
149  * Allocate a vmspace structure, including a vm_map and pmap,
150  * and initialize those structures.  The refcnt is set to 1.
151  * The remaining fields must be initialized by the caller.
152  */
153 struct vmspace *
154 vmspace_alloc(min, max, pageable)
155 	vm_offset_t min, max;
156 	int pageable;
157 {
158 	register struct vmspace *vm;
159 
160 	MALLOC(vm, struct vmspace *, sizeof(struct vmspace), M_VMMAP, M_WAITOK);
161 	bzero(vm, (caddr_t) &vm->vm_startcopy - (caddr_t) vm);
162 	vm_map_init(&vm->vm_map, min, max, pageable);
163 	pmap_pinit(&vm->vm_pmap);
164 	vm->vm_map.pmap = &vm->vm_pmap;		/* XXX */
165 	vm->vm_refcnt = 1;
166 	return (vm);
167 }
168 
169 void
170 vmspace_free(vm)
171 	register struct vmspace *vm;
172 {
173 
174 	if (--vm->vm_refcnt == 0) {
175 		/*
176 		 * Lock the map, to wait out all other references to it.
177 		 * Delete all of the mappings and pages they hold,
178 		 * then call the pmap module to reclaim anything left.
179 		 */
180 		vm_map_lock(&vm->vm_map);
181 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
182 		    vm->vm_map.max_offset);
183 		pmap_release(&vm->vm_pmap);
184 		FREE(vm, M_VMMAP);
185 	}
186 }
187 
188 /*
189  *	vm_map_create:
190  *
191  *	Creates and returns a new empty VM map with
192  *	the given physical map structure, and having
193  *	the given lower and upper address bounds.
194  */
195 vm_map_t
196 vm_map_create(pmap, min, max, pageable)
197 	pmap_t		pmap;
198 	vm_offset_t	min, max;
199 	boolean_t	pageable;
200 {
201 	register vm_map_t	result;
202 	extern vm_map_t		kmem_map;
203 
204 	if (kmem_map == NULL) {
205 		result = kmap_free;
206 		if (result == NULL)
207 			panic("vm_map_create: out of maps");
208 		kmap_free = (vm_map_t) result->header.next;
209 	} else
210 		MALLOC(result, vm_map_t, sizeof(struct vm_map),
211 		       M_VMMAP, M_WAITOK);
212 
213 	vm_map_init(result, min, max, pageable);
214 	result->pmap = pmap;
215 	return(result);
216 }
217 
218 /*
219  * Initialize an existing vm_map structure
220  * such as that in the vmspace structure.
221  * The pmap is set elsewhere.
222  */
223 void
224 vm_map_init(map, min, max, pageable)
225 	register struct vm_map *map;
226 	vm_offset_t	min, max;
227 	boolean_t	pageable;
228 {
229 	map->header.next = map->header.prev = &map->header;
230 	map->nentries = 0;
231 	map->size = 0;
232 	map->ref_count = 1;
233 	map->is_main_map = TRUE;
234 	map->min_offset = min;
235 	map->max_offset = max;
236 	map->entries_pageable = pageable;
237 	map->first_free = &map->header;
238 	map->hint = &map->header;
239 	map->timestamp = 0;
240 	lockinit(&map->lock, PVM, "thrd_sleep", 0, 0);
241 	simple_lock_init(&map->ref_lock);
242 	simple_lock_init(&map->hint_lock);
243 }
244 
245 /*
246  *	vm_map_entry_create:	[ internal use only ]
247  *
248  *	Allocates a VM map entry for insertion.
249  *	No entry fields are filled in.  This routine is
250  */
251 vm_map_entry_t
252 vm_map_entry_create(map)
253 	vm_map_t	map;
254 {
255 	vm_map_entry_t	entry;
256 #ifdef DEBUG
257 	extern vm_map_t		kernel_map, kmem_map, mb_map, pager_map;
258 	boolean_t		isspecial;
259 
260 	isspecial = (map == kernel_map || map == kmem_map ||
261 		     map == mb_map || map == pager_map);
262 	if (isspecial && map->entries_pageable ||
263 	    !isspecial && !map->entries_pageable)
264 		panic("vm_map_entry_create: bogus map");
265 #endif
266 	if (map->entries_pageable) {
267 		MALLOC(entry, vm_map_entry_t, sizeof(struct vm_map_entry),
268 		       M_VMMAPENT, M_WAITOK);
269 	} else {
270 		if (entry = kentry_free)
271 			kentry_free = kentry_free->next;
272 	}
273 	if (entry == NULL)
274 		panic("vm_map_entry_create: out of map entries");
275 
276 	return(entry);
277 }
278 
279 /*
280  *	vm_map_entry_dispose:	[ internal use only ]
281  *
282  *	Inverse of vm_map_entry_create.
283  */
284 void
285 vm_map_entry_dispose(map, entry)
286 	vm_map_t	map;
287 	vm_map_entry_t	entry;
288 {
289 #ifdef DEBUG
290 	extern vm_map_t		kernel_map, kmem_map, mb_map, pager_map;
291 	boolean_t		isspecial;
292 
293 	isspecial = (map == kernel_map || map == kmem_map ||
294 		     map == mb_map || map == pager_map);
295 	if (isspecial && map->entries_pageable ||
296 	    !isspecial && !map->entries_pageable)
297 		panic("vm_map_entry_dispose: bogus map");
298 #endif
299 	if (map->entries_pageable) {
300 		FREE(entry, M_VMMAPENT);
301 	} else {
302 		entry->next = kentry_free;
303 		kentry_free = entry;
304 	}
305 }
306 
307 /*
308  *	vm_map_entry_{un,}link:
309  *
310  *	Insert/remove entries from maps.
311  */
312 #define	vm_map_entry_link(map, after_where, entry) \
313 		{ \
314 		(map)->nentries++; \
315 		(entry)->prev = (after_where); \
316 		(entry)->next = (after_where)->next; \
317 		(entry)->prev->next = (entry); \
318 		(entry)->next->prev = (entry); \
319 		}
320 #define	vm_map_entry_unlink(map, entry) \
321 		{ \
322 		(map)->nentries--; \
323 		(entry)->next->prev = (entry)->prev; \
324 		(entry)->prev->next = (entry)->next; \
325 		}
326 
327 /*
328  *	vm_map_reference:
329  *
330  *	Creates another valid reference to the given map.
331  *
332  */
333 void
334 vm_map_reference(map)
335 	register vm_map_t	map;
336 {
337 	if (map == NULL)
338 		return;
339 
340 	simple_lock(&map->ref_lock);
341 	map->ref_count++;
342 	simple_unlock(&map->ref_lock);
343 }
344 
345 /*
346  *	vm_map_deallocate:
347  *
348  *	Removes a reference from the specified map,
349  *	destroying it if no references remain.
350  *	The map should not be locked.
351  */
352 void
353 vm_map_deallocate(map)
354 	register vm_map_t	map;
355 {
356 	register int		c;
357 
358 	if (map == NULL)
359 		return;
360 
361 	simple_lock(&map->ref_lock);
362 	c = --map->ref_count;
363 	simple_unlock(&map->ref_lock);
364 
365 	if (c > 0) {
366 		return;
367 	}
368 
369 	/*
370 	 *	Lock the map, to wait out all other references
371 	 *	to it.
372 	 */
373 
374 	vm_map_lock(map);
375 
376 	(void) vm_map_delete(map, map->min_offset, map->max_offset);
377 
378 	pmap_destroy(map->pmap);
379 
380 	FREE(map, M_VMMAP);
381 }
382 
383 /*
384  *	vm_map_insert:
385  *
386  *	Inserts the given whole VM object into the target
387  *	map at the specified address range.  The object's
388  *	size should match that of the address range.
389  *
390  *	Requires that the map be locked, and leaves it so.
391  */
392 int
393 vm_map_insert(map, object, offset, start, end)
394 	vm_map_t	map;
395 	vm_object_t	object;
396 	vm_offset_t	offset;
397 	vm_offset_t	start;
398 	vm_offset_t	end;
399 {
400 	register vm_map_entry_t		new_entry;
401 	register vm_map_entry_t		prev_entry;
402 	vm_map_entry_t			temp_entry;
403 
404 	/*
405 	 *	Check that the start and end points are not bogus.
406 	 */
407 
408 	if ((start < map->min_offset) || (end > map->max_offset) ||
409 			(start >= end))
410 		return(KERN_INVALID_ADDRESS);
411 
412 	/*
413 	 *	Find the entry prior to the proposed
414 	 *	starting address; if it's part of an
415 	 *	existing entry, this range is bogus.
416 	 */
417 
418 	if (vm_map_lookup_entry(map, start, &temp_entry))
419 		return(KERN_NO_SPACE);
420 
421 	prev_entry = temp_entry;
422 
423 	/*
424 	 *	Assert that the next entry doesn't overlap the
425 	 *	end point.
426 	 */
427 
428 	if ((prev_entry->next != &map->header) &&
429 			(prev_entry->next->start < end))
430 		return(KERN_NO_SPACE);
431 
432 	/*
433 	 *	See if we can avoid creating a new entry by
434 	 *	extending one of our neighbors.
435 	 */
436 
437 	if (object == NULL) {
438 		if ((prev_entry != &map->header) &&
439 		    (prev_entry->end == start) &&
440 		    (map->is_main_map) &&
441 		    (prev_entry->is_a_map == FALSE) &&
442 		    (prev_entry->is_sub_map == FALSE) &&
443 		    (prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
444 		    (prev_entry->protection == VM_PROT_DEFAULT) &&
445 		    (prev_entry->max_protection == VM_PROT_DEFAULT) &&
446 		    (prev_entry->wired_count == 0)) {
447 
448 			if (vm_object_coalesce(prev_entry->object.vm_object,
449 					NULL,
450 					prev_entry->offset,
451 					(vm_offset_t) 0,
452 					(vm_size_t)(prev_entry->end
453 						     - prev_entry->start),
454 					(vm_size_t)(end - prev_entry->end))) {
455 				/*
456 				 *	Coalesced the two objects - can extend
457 				 *	the previous map entry to include the
458 				 *	new range.
459 				 */
460 				map->size += (end - prev_entry->end);
461 				prev_entry->end = end;
462 				return(KERN_SUCCESS);
463 			}
464 		}
465 	}
466 
467 	/*
468 	 *	Create a new entry
469 	 */
470 
471 	new_entry = vm_map_entry_create(map);
472 	new_entry->start = start;
473 	new_entry->end = end;
474 
475 	new_entry->is_a_map = FALSE;
476 	new_entry->is_sub_map = FALSE;
477 	new_entry->object.vm_object = object;
478 	new_entry->offset = offset;
479 
480 	new_entry->copy_on_write = FALSE;
481 	new_entry->needs_copy = FALSE;
482 
483 	if (map->is_main_map) {
484 		new_entry->inheritance = VM_INHERIT_DEFAULT;
485 		new_entry->protection = VM_PROT_DEFAULT;
486 		new_entry->max_protection = VM_PROT_DEFAULT;
487 		new_entry->wired_count = 0;
488 	}
489 
490 	/*
491 	 *	Insert the new entry into the list
492 	 */
493 
494 	vm_map_entry_link(map, prev_entry, new_entry);
495 	map->size += new_entry->end - new_entry->start;
496 
497 	/*
498 	 *	Update the free space hint
499 	 */
500 
501 	if ((map->first_free == prev_entry) && (prev_entry->end >= new_entry->start))
502 		map->first_free = new_entry;
503 
504 	return(KERN_SUCCESS);
505 }
506 
507 /*
508  *	SAVE_HINT:
509  *
510  *	Saves the specified entry as the hint for
511  *	future lookups.  Performs necessary interlocks.
512  */
513 #define	SAVE_HINT(map,value) \
514 		simple_lock(&(map)->hint_lock); \
515 		(map)->hint = (value); \
516 		simple_unlock(&(map)->hint_lock);
517 
518 /*
519  *	vm_map_lookup_entry:	[ internal use only ]
520  *
521  *	Finds the map entry containing (or
522  *	immediately preceding) the specified address
523  *	in the given map; the entry is returned
524  *	in the "entry" parameter.  The boolean
525  *	result indicates whether the address is
526  *	actually contained in the map.
527  */
528 boolean_t
529 vm_map_lookup_entry(map, address, entry)
530 	register vm_map_t	map;
531 	register vm_offset_t	address;
532 	vm_map_entry_t		*entry;		/* OUT */
533 {
534 	register vm_map_entry_t		cur;
535 	register vm_map_entry_t		last;
536 
537 	/*
538 	 *	Start looking either from the head of the
539 	 *	list, or from the hint.
540 	 */
541 
542 	simple_lock(&map->hint_lock);
543 	cur = map->hint;
544 	simple_unlock(&map->hint_lock);
545 
546 	if (cur == &map->header)
547 		cur = cur->next;
548 
549 	if (address >= cur->start) {
550 	    	/*
551 		 *	Go from hint to end of list.
552 		 *
553 		 *	But first, make a quick check to see if
554 		 *	we are already looking at the entry we
555 		 *	want (which is usually the case).
556 		 *	Note also that we don't need to save the hint
557 		 *	here... it is the same hint (unless we are
558 		 *	at the header, in which case the hint didn't
559 		 *	buy us anything anyway).
560 		 */
561 		last = &map->header;
562 		if ((cur != last) && (cur->end > address)) {
563 			*entry = cur;
564 			return(TRUE);
565 		}
566 	}
567 	else {
568 	    	/*
569 		 *	Go from start to hint, *inclusively*
570 		 */
571 		last = cur->next;
572 		cur = map->header.next;
573 	}
574 
575 	/*
576 	 *	Search linearly
577 	 */
578 
579 	while (cur != last) {
580 		if (cur->end > address) {
581 			if (address >= cur->start) {
582 			    	/*
583 				 *	Save this lookup for future
584 				 *	hints, and return
585 				 */
586 
587 				*entry = cur;
588 				SAVE_HINT(map, cur);
589 				return(TRUE);
590 			}
591 			break;
592 		}
593 		cur = cur->next;
594 	}
595 	*entry = cur->prev;
596 	SAVE_HINT(map, *entry);
597 	return(FALSE);
598 }
599 
600 /*
601  * Find sufficient space for `length' bytes in the given map, starting at
602  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
603  */
604 int
605 vm_map_findspace(map, start, length, addr)
606 	register vm_map_t map;
607 	register vm_offset_t start;
608 	vm_size_t length;
609 	vm_offset_t *addr;
610 {
611 	register vm_map_entry_t entry, next;
612 	register vm_offset_t end;
613 
614 	if (start < map->min_offset)
615 		start = map->min_offset;
616 	if (start > map->max_offset)
617 		return (1);
618 
619 	/*
620 	 * Look for the first possible address; if there's already
621 	 * something at this address, we have to start after it.
622 	 */
623 	if (start == map->min_offset) {
624 		if ((entry = map->first_free) != &map->header)
625 			start = entry->end;
626 	} else {
627 		vm_map_entry_t tmp;
628 		if (vm_map_lookup_entry(map, start, &tmp))
629 			start = tmp->end;
630 		entry = tmp;
631 	}
632 
633 	/*
634 	 * Look through the rest of the map, trying to fit a new region in
635 	 * the gap between existing regions, or after the very last region.
636 	 */
637 	for (;; start = (entry = next)->end) {
638 		/*
639 		 * Find the end of the proposed new region.  Be sure we didn't
640 		 * go beyond the end of the map, or wrap around the address;
641 		 * if so, we lose.  Otherwise, if this is the last entry, or
642 		 * if the proposed new region fits before the next entry, we
643 		 * win.
644 		 */
645 		end = start + length;
646 		if (end > map->max_offset || end < start)
647 			return (1);
648 		next = entry->next;
649 		if (next == &map->header || next->start >= end)
650 			break;
651 	}
652 	SAVE_HINT(map, entry);
653 	*addr = start;
654 	return (0);
655 }
656 
657 /*
658  *	vm_map_find finds an unallocated region in the target address
659  *	map with the given length.  The search is defined to be
660  *	first-fit from the specified address; the region found is
661  *	returned in the same parameter.
662  *
663  */
664 int
665 vm_map_find(map, object, offset, addr, length, find_space)
666 	vm_map_t	map;
667 	vm_object_t	object;
668 	vm_offset_t	offset;
669 	vm_offset_t	*addr;		/* IN/OUT */
670 	vm_size_t	length;
671 	boolean_t	find_space;
672 {
673 	register vm_offset_t	start;
674 	int			result;
675 
676 	start = *addr;
677 	vm_map_lock(map);
678 	if (find_space) {
679 		if (vm_map_findspace(map, start, length, addr)) {
680 			vm_map_unlock(map);
681 			return (KERN_NO_SPACE);
682 		}
683 		start = *addr;
684 	}
685 	result = vm_map_insert(map, object, offset, start, start + length);
686 	vm_map_unlock(map);
687 	return (result);
688 }
689 
690 /*
691  *	vm_map_simplify_entry:	[ internal use only ]
692  *
693  *	Simplify the given map entry by:
694  *		removing extra sharing maps
695  *		[XXX maybe later] merging with a neighbor
696  */
697 void
698 vm_map_simplify_entry(map, entry)
699 	vm_map_t	map;
700 	vm_map_entry_t	entry;
701 {
702 #ifdef	lint
703 	map++;
704 #endif
705 
706 	/*
707 	 *	If this entry corresponds to a sharing map, then
708 	 *	see if we can remove the level of indirection.
709 	 *	If it's not a sharing map, then it points to
710 	 *	a VM object, so see if we can merge with either
711 	 *	of our neighbors.
712 	 */
713 
714 	if (entry->is_sub_map)
715 		return;
716 	if (entry->is_a_map) {
717 #if	0
718 		vm_map_t	my_share_map;
719 		int		count;
720 
721 		my_share_map = entry->object.share_map;
722 		simple_lock(&my_share_map->ref_lock);
723 		count = my_share_map->ref_count;
724 		simple_unlock(&my_share_map->ref_lock);
725 
726 		if (count == 1) {
727 			/* Can move the region from
728 			 * entry->start to entry->end (+ entry->offset)
729 			 * in my_share_map into place of entry.
730 			 * Later.
731 			 */
732 		}
733 #endif
734 	}
735 	else {
736 		/*
737 		 *	Try to merge with our neighbors.
738 		 *
739 		 *	Conditions for merge are:
740 		 *
741 		 *	1.  entries are adjacent.
742 		 *	2.  both entries point to objects
743 		 *	    with null pagers.
744 		 *
745 		 * 	If a merge is possible, we replace the two
746 		 *	entries with a single entry, then merge
747 		 *	the two objects into a single object.
748 		 *
749 		 *	Now, all that is left to do is write the
750 		 *	code!
751 		 */
752 	}
753 }
754 
755 /*
756  *	vm_map_clip_start:	[ internal use only ]
757  *
758  *	Asserts that the given entry begins at or after
759  *	the specified address; if necessary,
760  *	it splits the entry into two.
761  */
762 #define vm_map_clip_start(map, entry, startaddr) \
763 { \
764 	if (startaddr > entry->start) \
765 		_vm_map_clip_start(map, entry, startaddr); \
766 }
767 
768 /*
769  *	This routine is called only when it is known that
770  *	the entry must be split.
771  */
772 static void
773 _vm_map_clip_start(map, entry, start)
774 	register vm_map_t	map;
775 	register vm_map_entry_t	entry;
776 	register vm_offset_t	start;
777 {
778 	register vm_map_entry_t	new_entry;
779 
780 	/*
781 	 *	See if we can simplify this entry first
782 	 */
783 
784 	vm_map_simplify_entry(map, entry);
785 
786 	/*
787 	 *	Split off the front portion --
788 	 *	note that we must insert the new
789 	 *	entry BEFORE this one, so that
790 	 *	this entry has the specified starting
791 	 *	address.
792 	 */
793 
794 	new_entry = vm_map_entry_create(map);
795 	*new_entry = *entry;
796 
797 	new_entry->end = start;
798 	entry->offset += (start - entry->start);
799 	entry->start = start;
800 
801 	vm_map_entry_link(map, entry->prev, new_entry);
802 
803 	if (entry->is_a_map || entry->is_sub_map)
804 	 	vm_map_reference(new_entry->object.share_map);
805 	else
806 		vm_object_reference(new_entry->object.vm_object);
807 }
808 
809 /*
810  *	vm_map_clip_end:	[ internal use only ]
811  *
812  *	Asserts that the given entry ends at or before
813  *	the specified address; if necessary,
814  *	it splits the entry into two.
815  */
816 
817 #define vm_map_clip_end(map, entry, endaddr) \
818 { \
819 	if (endaddr < entry->end) \
820 		_vm_map_clip_end(map, entry, endaddr); \
821 }
822 
823 /*
824  *	This routine is called only when it is known that
825  *	the entry must be split.
826  */
827 static void
828 _vm_map_clip_end(map, entry, end)
829 	register vm_map_t	map;
830 	register vm_map_entry_t	entry;
831 	register vm_offset_t	end;
832 {
833 	register vm_map_entry_t	new_entry;
834 
835 	/*
836 	 *	Create a new entry and insert it
837 	 *	AFTER the specified entry
838 	 */
839 
840 	new_entry = vm_map_entry_create(map);
841 	*new_entry = *entry;
842 
843 	new_entry->start = entry->end = end;
844 	new_entry->offset += (end - entry->start);
845 
846 	vm_map_entry_link(map, entry, new_entry);
847 
848 	if (entry->is_a_map || entry->is_sub_map)
849 	 	vm_map_reference(new_entry->object.share_map);
850 	else
851 		vm_object_reference(new_entry->object.vm_object);
852 }
853 
854 /*
855  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
856  *
857  *	Asserts that the starting and ending region
858  *	addresses fall within the valid range of the map.
859  */
860 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
861 		{					\
862 		if (start < vm_map_min(map))		\
863 			start = vm_map_min(map);	\
864 		if (end > vm_map_max(map))		\
865 			end = vm_map_max(map);		\
866 		if (start > end)			\
867 			start = end;			\
868 		}
869 
870 /*
871  *	vm_map_submap:		[ kernel use only ]
872  *
873  *	Mark the given range as handled by a subordinate map.
874  *
875  *	This range must have been created with vm_map_find,
876  *	and no other operations may have been performed on this
877  *	range prior to calling vm_map_submap.
878  *
879  *	Only a limited number of operations can be performed
880  *	within this rage after calling vm_map_submap:
881  *		vm_fault
882  *	[Don't try vm_map_copy!]
883  *
884  *	To remove a submapping, one must first remove the
885  *	range from the superior map, and then destroy the
886  *	submap (if desired).  [Better yet, don't try it.]
887  */
888 int
889 vm_map_submap(map, start, end, submap)
890 	register vm_map_t	map;
891 	register vm_offset_t	start;
892 	register vm_offset_t	end;
893 	vm_map_t		submap;
894 {
895 	vm_map_entry_t		entry;
896 	register int		result = KERN_INVALID_ARGUMENT;
897 
898 	vm_map_lock(map);
899 
900 	VM_MAP_RANGE_CHECK(map, start, end);
901 
902 	if (vm_map_lookup_entry(map, start, &entry)) {
903 		vm_map_clip_start(map, entry, start);
904 	}
905 	 else
906 		entry = entry->next;
907 
908 	vm_map_clip_end(map, entry, end);
909 
910 	if ((entry->start == start) && (entry->end == end) &&
911 	    (!entry->is_a_map) &&
912 	    (entry->object.vm_object == NULL) &&
913 	    (!entry->copy_on_write)) {
914 		entry->is_a_map = FALSE;
915 		entry->is_sub_map = TRUE;
916 		vm_map_reference(entry->object.sub_map = submap);
917 		result = KERN_SUCCESS;
918 	}
919 	vm_map_unlock(map);
920 
921 	return(result);
922 }
923 
924 /*
925  *	vm_map_protect:
926  *
927  *	Sets the protection of the specified address
928  *	region in the target map.  If "set_max" is
929  *	specified, the maximum protection is to be set;
930  *	otherwise, only the current protection is affected.
931  */
932 int
933 vm_map_protect(map, start, end, new_prot, set_max)
934 	register vm_map_t	map;
935 	register vm_offset_t	start;
936 	register vm_offset_t	end;
937 	register vm_prot_t	new_prot;
938 	register boolean_t	set_max;
939 {
940 	register vm_map_entry_t		current;
941 	vm_map_entry_t			entry;
942 
943 	vm_map_lock(map);
944 
945 	VM_MAP_RANGE_CHECK(map, start, end);
946 
947 	if (vm_map_lookup_entry(map, start, &entry)) {
948 		vm_map_clip_start(map, entry, start);
949 	}
950 	 else
951 		entry = entry->next;
952 
953 	/*
954 	 *	Make a first pass to check for protection
955 	 *	violations.
956 	 */
957 
958 	current = entry;
959 	while ((current != &map->header) && (current->start < end)) {
960 		if (current->is_sub_map)
961 			return(KERN_INVALID_ARGUMENT);
962 		if ((new_prot & current->max_protection) != new_prot) {
963 			vm_map_unlock(map);
964 			return(KERN_PROTECTION_FAILURE);
965 		}
966 
967 		current = current->next;
968 	}
969 
970 	/*
971 	 *	Go back and fix up protections.
972 	 *	[Note that clipping is not necessary the second time.]
973 	 */
974 
975 	current = entry;
976 
977 	while ((current != &map->header) && (current->start < end)) {
978 		vm_prot_t	old_prot;
979 
980 		vm_map_clip_end(map, current, end);
981 
982 		old_prot = current->protection;
983 		if (set_max)
984 			current->protection =
985 				(current->max_protection = new_prot) &
986 					old_prot;
987 		else
988 			current->protection = new_prot;
989 
990 		/*
991 		 *	Update physical map if necessary.
992 		 *	Worry about copy-on-write here -- CHECK THIS XXX
993 		 */
994 
995 		if (current->protection != old_prot) {
996 
997 #define MASK(entry)	((entry)->copy_on_write ? ~VM_PROT_WRITE : \
998 							VM_PROT_ALL)
999 #define	max(a,b)	((a) > (b) ? (a) : (b))
1000 
1001 			if (current->is_a_map) {
1002 				vm_map_entry_t	share_entry;
1003 				vm_offset_t	share_end;
1004 
1005 				vm_map_lock(current->object.share_map);
1006 				(void) vm_map_lookup_entry(
1007 						current->object.share_map,
1008 						current->offset,
1009 						&share_entry);
1010 				share_end = current->offset +
1011 					(current->end - current->start);
1012 				while ((share_entry !=
1013 					&current->object.share_map->header) &&
1014 					(share_entry->start < share_end)) {
1015 
1016 					pmap_protect(map->pmap,
1017 						(max(share_entry->start,
1018 							current->offset) -
1019 							current->offset +
1020 							current->start),
1021 						min(share_entry->end,
1022 							share_end) -
1023 						current->offset +
1024 						current->start,
1025 						current->protection &
1026 							MASK(share_entry));
1027 
1028 					share_entry = share_entry->next;
1029 				}
1030 				vm_map_unlock(current->object.share_map);
1031 			}
1032 			else
1033 			 	pmap_protect(map->pmap, current->start,
1034 					current->end,
1035 					current->protection & MASK(entry));
1036 #undef	max
1037 #undef	MASK
1038 		}
1039 		current = current->next;
1040 	}
1041 
1042 	vm_map_unlock(map);
1043 	return(KERN_SUCCESS);
1044 }
1045 
1046 /*
1047  *	vm_map_inherit:
1048  *
1049  *	Sets the inheritance of the specified address
1050  *	range in the target map.  Inheritance
1051  *	affects how the map will be shared with
1052  *	child maps at the time of vm_map_fork.
1053  */
1054 int
1055 vm_map_inherit(map, start, end, new_inheritance)
1056 	register vm_map_t	map;
1057 	register vm_offset_t	start;
1058 	register vm_offset_t	end;
1059 	register vm_inherit_t	new_inheritance;
1060 {
1061 	register vm_map_entry_t	entry;
1062 	vm_map_entry_t	temp_entry;
1063 
1064 	switch (new_inheritance) {
1065 	case VM_INHERIT_NONE:
1066 	case VM_INHERIT_COPY:
1067 	case VM_INHERIT_SHARE:
1068 		break;
1069 	default:
1070 		return(KERN_INVALID_ARGUMENT);
1071 	}
1072 
1073 	vm_map_lock(map);
1074 
1075 	VM_MAP_RANGE_CHECK(map, start, end);
1076 
1077 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1078 		entry = temp_entry;
1079 		vm_map_clip_start(map, entry, start);
1080 	}
1081 	else
1082 		entry = temp_entry->next;
1083 
1084 	while ((entry != &map->header) && (entry->start < end)) {
1085 		vm_map_clip_end(map, entry, end);
1086 
1087 		entry->inheritance = new_inheritance;
1088 
1089 		entry = entry->next;
1090 	}
1091 
1092 	vm_map_unlock(map);
1093 	return(KERN_SUCCESS);
1094 }
1095 
1096 /*
1097  *	vm_map_pageable:
1098  *
1099  *	Sets the pageability of the specified address
1100  *	range in the target map.  Regions specified
1101  *	as not pageable require locked-down physical
1102  *	memory and physical page maps.
1103  *
1104  *	The map must not be locked, but a reference
1105  *	must remain to the map throughout the call.
1106  */
1107 int
1108 vm_map_pageable(map, start, end, new_pageable)
1109 	register vm_map_t	map;
1110 	register vm_offset_t	start;
1111 	register vm_offset_t	end;
1112 	register boolean_t	new_pageable;
1113 {
1114 	register vm_map_entry_t	entry;
1115 	vm_map_entry_t		start_entry;
1116 	register vm_offset_t	failed;
1117 	int			rv;
1118 
1119 	vm_map_lock(map);
1120 
1121 	VM_MAP_RANGE_CHECK(map, start, end);
1122 
1123 	/*
1124 	 *	Only one pageability change may take place at one
1125 	 *	time, since vm_fault assumes it will be called
1126 	 *	only once for each wiring/unwiring.  Therefore, we
1127 	 *	have to make sure we're actually changing the pageability
1128 	 *	for the entire region.  We do so before making any changes.
1129 	 */
1130 
1131 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1132 		vm_map_unlock(map);
1133 		return(KERN_INVALID_ADDRESS);
1134 	}
1135 	entry = start_entry;
1136 
1137 	/*
1138 	 *	Actions are rather different for wiring and unwiring,
1139 	 *	so we have two separate cases.
1140 	 */
1141 
1142 	if (new_pageable) {
1143 
1144 		vm_map_clip_start(map, entry, start);
1145 
1146 		/*
1147 		 *	Unwiring.  First ensure that the range to be
1148 		 *	unwired is really wired down and that there
1149 		 *	are no holes.
1150 		 */
1151 		while ((entry != &map->header) && (entry->start < end)) {
1152 
1153 		    if (entry->wired_count == 0 ||
1154 			(entry->end < end &&
1155 			 (entry->next == &map->header ||
1156 			  entry->next->start > entry->end))) {
1157 			vm_map_unlock(map);
1158 			return(KERN_INVALID_ARGUMENT);
1159 		    }
1160 		    entry = entry->next;
1161 		}
1162 
1163 		/*
1164 		 *	Now decrement the wiring count for each region.
1165 		 *	If a region becomes completely unwired,
1166 		 *	unwire its physical pages and mappings.
1167 		 */
1168 		vm_map_set_recursive(&map->lock);
1169 
1170 		entry = start_entry;
1171 		while ((entry != &map->header) && (entry->start < end)) {
1172 		    vm_map_clip_end(map, entry, end);
1173 
1174 		    entry->wired_count--;
1175 		    if (entry->wired_count == 0)
1176 			vm_fault_unwire(map, entry->start, entry->end);
1177 
1178 		    entry = entry->next;
1179 		}
1180 		vm_map_clear_recursive(&map->lock);
1181 	}
1182 
1183 	else {
1184 		/*
1185 		 *	Wiring.  We must do this in two passes:
1186 		 *
1187 		 *	1.  Holding the write lock, we create any shadow
1188 		 *	    or zero-fill objects that need to be created.
1189 		 *	    Then we clip each map entry to the region to be
1190 		 *	    wired and increment its wiring count.  We
1191 		 *	    create objects before clipping the map entries
1192 		 *	    to avoid object proliferation.
1193 		 *
1194 		 *	2.  We downgrade to a read lock, and call
1195 		 *	    vm_fault_wire to fault in the pages for any
1196 		 *	    newly wired area (wired_count is 1).
1197 		 *
1198 		 *	Downgrading to a read lock for vm_fault_wire avoids
1199 		 *	a possible deadlock with another thread that may have
1200 		 *	faulted on one of the pages to be wired (it would mark
1201 		 *	the page busy, blocking us, then in turn block on the
1202 		 *	map lock that we hold).  Because of problems in the
1203 		 *	recursive lock package, we cannot upgrade to a write
1204 		 *	lock in vm_map_lookup.  Thus, any actions that require
1205 		 *	the write lock must be done beforehand.  Because we
1206 		 *	keep the read lock on the map, the copy-on-write status
1207 		 *	of the entries we modify here cannot change.
1208 		 */
1209 
1210 		/*
1211 		 *	Pass 1.
1212 		 */
1213 		while ((entry != &map->header) && (entry->start < end)) {
1214 		    if (entry->wired_count == 0) {
1215 
1216 			/*
1217 			 *	Perform actions of vm_map_lookup that need
1218 			 *	the write lock on the map: create a shadow
1219 			 *	object for a copy-on-write region, or an
1220 			 *	object for a zero-fill region.
1221 			 *
1222 			 *	We don't have to do this for entries that
1223 			 *	point to sharing maps, because we won't hold
1224 			 *	the lock on the sharing map.
1225 			 */
1226 			if (!entry->is_a_map) {
1227 			    if (entry->needs_copy &&
1228 				((entry->protection & VM_PROT_WRITE) != 0)) {
1229 
1230 				vm_object_shadow(&entry->object.vm_object,
1231 						&entry->offset,
1232 						(vm_size_t)(entry->end
1233 							- entry->start));
1234 				entry->needs_copy = FALSE;
1235 			    }
1236 			    else if (entry->object.vm_object == NULL) {
1237 				entry->object.vm_object =
1238 				    vm_object_allocate((vm_size_t)(entry->end
1239 				    			- entry->start));
1240 				entry->offset = (vm_offset_t)0;
1241 			    }
1242 			}
1243 		    }
1244 		    vm_map_clip_start(map, entry, start);
1245 		    vm_map_clip_end(map, entry, end);
1246 		    entry->wired_count++;
1247 
1248 		    /*
1249 		     * Check for holes
1250 		     */
1251 		    if (entry->end < end &&
1252 			(entry->next == &map->header ||
1253 			 entry->next->start > entry->end)) {
1254 			/*
1255 			 *	Found one.  Object creation actions
1256 			 *	do not need to be undone, but the
1257 			 *	wired counts need to be restored.
1258 			 */
1259 			while (entry != &map->header && entry->end > start) {
1260 			    entry->wired_count--;
1261 			    entry = entry->prev;
1262 			}
1263 			vm_map_unlock(map);
1264 			return(KERN_INVALID_ARGUMENT);
1265 		    }
1266 		    entry = entry->next;
1267 		}
1268 
1269 		/*
1270 		 *	Pass 2.
1271 		 */
1272 
1273 		/*
1274 		 * HACK HACK HACK HACK
1275 		 *
1276 		 * If we are wiring in the kernel map or a submap of it,
1277 		 * unlock the map to avoid deadlocks.  We trust that the
1278 		 * kernel threads are well-behaved, and therefore will
1279 		 * not do anything destructive to this region of the map
1280 		 * while we have it unlocked.  We cannot trust user threads
1281 		 * to do the same.
1282 		 *
1283 		 * HACK HACK HACK HACK
1284 		 */
1285 		if (vm_map_pmap(map) == kernel_pmap) {
1286 		    vm_map_unlock(map);		/* trust me ... */
1287 		}
1288 		else {
1289 		    vm_map_set_recursive(&map->lock);
1290 		    lockmgr(&map->lock, LK_DOWNGRADE, (void *)0, curproc);
1291 		}
1292 
1293 		rv = 0;
1294 		entry = start_entry;
1295 		while (entry != &map->header && entry->start < end) {
1296 		    /*
1297 		     * If vm_fault_wire fails for any page we need to
1298 		     * undo what has been done.  We decrement the wiring
1299 		     * count for those pages which have not yet been
1300 		     * wired (now) and unwire those that have (later).
1301 		     *
1302 		     * XXX this violates the locking protocol on the map,
1303 		     * needs to be fixed.
1304 		     */
1305 		    if (rv)
1306 			entry->wired_count--;
1307 		    else if (entry->wired_count == 1) {
1308 			rv = vm_fault_wire(map, entry->start, entry->end);
1309 			if (rv) {
1310 			    failed = entry->start;
1311 			    entry->wired_count--;
1312 			}
1313 		    }
1314 		    entry = entry->next;
1315 		}
1316 
1317 		if (vm_map_pmap(map) == kernel_pmap) {
1318 		    vm_map_lock(map);
1319 		}
1320 		else {
1321 		    vm_map_clear_recursive(&map->lock);
1322 		}
1323 		if (rv) {
1324 		    vm_map_unlock(map);
1325 		    (void) vm_map_pageable(map, start, failed, TRUE);
1326 		    return(rv);
1327 		}
1328 	}
1329 
1330 	vm_map_unlock(map);
1331 
1332 	return(KERN_SUCCESS);
1333 }
1334 
1335 /*
1336  * vm_map_clean
1337  *
1338  * Push any dirty cached pages in the address range to their pager.
1339  * If syncio is TRUE, dirty pages are written synchronously.
1340  * If invalidate is TRUE, any cached pages are freed as well.
1341  *
1342  * Returns an error if any part of the specified range is not mapped.
1343  */
1344 int
1345 vm_map_clean(map, start, end, syncio, invalidate)
1346 	vm_map_t	map;
1347 	vm_offset_t	start;
1348 	vm_offset_t	end;
1349 	boolean_t	syncio;
1350 	boolean_t	invalidate;
1351 {
1352 	register vm_map_entry_t current;
1353 	vm_map_entry_t entry;
1354 	vm_size_t size;
1355 	vm_object_t object;
1356 	vm_offset_t offset;
1357 
1358 	vm_map_lock_read(map);
1359 	VM_MAP_RANGE_CHECK(map, start, end);
1360 	if (!vm_map_lookup_entry(map, start, &entry)) {
1361 		vm_map_unlock_read(map);
1362 		return(KERN_INVALID_ADDRESS);
1363 	}
1364 
1365 	/*
1366 	 * Make a first pass to check for holes.
1367 	 */
1368 	for (current = entry; current->start < end; current = current->next) {
1369 		if (current->is_sub_map) {
1370 			vm_map_unlock_read(map);
1371 			return(KERN_INVALID_ARGUMENT);
1372 		}
1373 		if (end > current->end &&
1374 		    (current->next == &map->header ||
1375 		     current->end != current->next->start)) {
1376 			vm_map_unlock_read(map);
1377 			return(KERN_INVALID_ADDRESS);
1378 		}
1379 	}
1380 
1381 	/*
1382 	 * Make a second pass, cleaning/uncaching pages from the indicated
1383 	 * objects as we go.
1384 	 */
1385 	for (current = entry; current->start < end; current = current->next) {
1386 		offset = current->offset + (start - current->start);
1387 		size = (end <= current->end ? end : current->end) - start;
1388 		if (current->is_a_map) {
1389 			register vm_map_t smap;
1390 			vm_map_entry_t tentry;
1391 			vm_size_t tsize;
1392 
1393 			smap = current->object.share_map;
1394 			vm_map_lock_read(smap);
1395 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1396 			tsize = tentry->end - offset;
1397 			if (tsize < size)
1398 				size = tsize;
1399 			object = tentry->object.vm_object;
1400 			offset = tentry->offset + (offset - tentry->start);
1401 			vm_object_lock(object);
1402 			vm_map_unlock_read(smap);
1403 		} else {
1404 			object = current->object.vm_object;
1405 			vm_object_lock(object);
1406 		}
1407 		/*
1408 		 * Flush pages if writing is allowed.
1409 		 * XXX should we continue on an error?
1410 		 */
1411 		if ((current->protection & VM_PROT_WRITE) &&
1412 		    !vm_object_page_clean(object, offset, offset+size,
1413 					  syncio, FALSE)) {
1414 			vm_object_unlock(object);
1415 			vm_map_unlock_read(map);
1416 			return(KERN_FAILURE);
1417 		}
1418 		if (invalidate)
1419 			vm_object_page_remove(object, offset, offset+size);
1420 		vm_object_unlock(object);
1421 		start += size;
1422 	}
1423 
1424 	vm_map_unlock_read(map);
1425 	return(KERN_SUCCESS);
1426 }
1427 
1428 /*
1429  *	vm_map_entry_unwire:	[ internal use only ]
1430  *
1431  *	Make the region specified by this entry pageable.
1432  *
1433  *	The map in question should be locked.
1434  *	[This is the reason for this routine's existence.]
1435  */
1436 void
1437 vm_map_entry_unwire(map, entry)
1438 	vm_map_t		map;
1439 	register vm_map_entry_t	entry;
1440 {
1441 	vm_fault_unwire(map, entry->start, entry->end);
1442 	entry->wired_count = 0;
1443 }
1444 
1445 /*
1446  *	vm_map_entry_delete:	[ internal use only ]
1447  *
1448  *	Deallocate the given entry from the target map.
1449  */
1450 void
1451 vm_map_entry_delete(map, entry)
1452 	register vm_map_t	map;
1453 	register vm_map_entry_t	entry;
1454 {
1455 	if (entry->wired_count != 0)
1456 		vm_map_entry_unwire(map, entry);
1457 
1458 	vm_map_entry_unlink(map, entry);
1459 	map->size -= entry->end - entry->start;
1460 
1461 	if (entry->is_a_map || entry->is_sub_map)
1462 		vm_map_deallocate(entry->object.share_map);
1463 	else
1464 	 	vm_object_deallocate(entry->object.vm_object);
1465 
1466 	vm_map_entry_dispose(map, entry);
1467 }
1468 
1469 /*
1470  *	vm_map_delete:	[ internal use only ]
1471  *
1472  *	Deallocates the given address range from the target
1473  *	map.
1474  *
1475  *	When called with a sharing map, removes pages from
1476  *	that region from all physical maps.
1477  */
1478 int
1479 vm_map_delete(map, start, end)
1480 	register vm_map_t	map;
1481 	vm_offset_t		start;
1482 	register vm_offset_t	end;
1483 {
1484 	register vm_map_entry_t	entry;
1485 	vm_map_entry_t		first_entry;
1486 
1487 	/*
1488 	 *	Find the start of the region, and clip it
1489 	 */
1490 
1491 	if (!vm_map_lookup_entry(map, start, &first_entry))
1492 		entry = first_entry->next;
1493 	else {
1494 		entry = first_entry;
1495 		vm_map_clip_start(map, entry, start);
1496 
1497 		/*
1498 		 *	Fix the lookup hint now, rather than each
1499 		 *	time though the loop.
1500 		 */
1501 
1502 		SAVE_HINT(map, entry->prev);
1503 	}
1504 
1505 	/*
1506 	 *	Save the free space hint
1507 	 */
1508 
1509 	if (map->first_free->start >= start)
1510 		map->first_free = entry->prev;
1511 
1512 	/*
1513 	 *	Step through all entries in this region
1514 	 */
1515 
1516 	while ((entry != &map->header) && (entry->start < end)) {
1517 		vm_map_entry_t		next;
1518 		register vm_offset_t	s, e;
1519 		register vm_object_t	object;
1520 
1521 		vm_map_clip_end(map, entry, end);
1522 
1523 		next = entry->next;
1524 		s = entry->start;
1525 		e = entry->end;
1526 
1527 		/*
1528 		 *	Unwire before removing addresses from the pmap;
1529 		 *	otherwise, unwiring will put the entries back in
1530 		 *	the pmap.
1531 		 */
1532 
1533 		object = entry->object.vm_object;
1534 		if (entry->wired_count != 0)
1535 			vm_map_entry_unwire(map, entry);
1536 
1537 		/*
1538 		 *	If this is a sharing map, we must remove
1539 		 *	*all* references to this data, since we can't
1540 		 *	find all of the physical maps which are sharing
1541 		 *	it.
1542 		 */
1543 
1544 		if (object == kernel_object || object == kmem_object)
1545 			vm_object_page_remove(object, entry->offset,
1546 					entry->offset + (e - s));
1547 		else if (!map->is_main_map)
1548 			vm_object_pmap_remove(object,
1549 					 entry->offset,
1550 					 entry->offset + (e - s));
1551 		else
1552 			pmap_remove(map->pmap, s, e);
1553 
1554 		/*
1555 		 *	Delete the entry (which may delete the object)
1556 		 *	only after removing all pmap entries pointing
1557 		 *	to its pages.  (Otherwise, its page frames may
1558 		 *	be reallocated, and any modify bits will be
1559 		 *	set in the wrong object!)
1560 		 */
1561 
1562 		vm_map_entry_delete(map, entry);
1563 		entry = next;
1564 	}
1565 	return(KERN_SUCCESS);
1566 }
1567 
1568 /*
1569  *	vm_map_remove:
1570  *
1571  *	Remove the given address range from the target map.
1572  *	This is the exported form of vm_map_delete.
1573  */
1574 int
1575 vm_map_remove(map, start, end)
1576 	register vm_map_t	map;
1577 	register vm_offset_t	start;
1578 	register vm_offset_t	end;
1579 {
1580 	register int		result;
1581 
1582 	vm_map_lock(map);
1583 	VM_MAP_RANGE_CHECK(map, start, end);
1584 	result = vm_map_delete(map, start, end);
1585 	vm_map_unlock(map);
1586 
1587 	return(result);
1588 }
1589 
1590 /*
1591  *	vm_map_check_protection:
1592  *
1593  *	Assert that the target map allows the specified
1594  *	privilege on the entire address region given.
1595  *	The entire region must be allocated.
1596  */
1597 boolean_t
1598 vm_map_check_protection(map, start, end, protection)
1599 	register vm_map_t	map;
1600 	register vm_offset_t	start;
1601 	register vm_offset_t	end;
1602 	register vm_prot_t	protection;
1603 {
1604 	register vm_map_entry_t	entry;
1605 	vm_map_entry_t		tmp_entry;
1606 
1607 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1608 		return(FALSE);
1609 	}
1610 
1611 	entry = tmp_entry;
1612 
1613 	while (start < end) {
1614 		if (entry == &map->header) {
1615 			return(FALSE);
1616 		}
1617 
1618 		/*
1619 		 *	No holes allowed!
1620 		 */
1621 
1622 		if (start < entry->start) {
1623 			return(FALSE);
1624 		}
1625 
1626 		/*
1627 		 * Check protection associated with entry.
1628 		 */
1629 
1630 		if ((entry->protection & protection) != protection) {
1631 			return(FALSE);
1632 		}
1633 
1634 		/* go to next entry */
1635 
1636 		start = entry->end;
1637 		entry = entry->next;
1638 	}
1639 	return(TRUE);
1640 }
1641 
1642 /*
1643  *	vm_map_copy_entry:
1644  *
1645  *	Copies the contents of the source entry to the destination
1646  *	entry.  The entries *must* be aligned properly.
1647  */
1648 void
1649 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
1650 	vm_map_t		src_map, dst_map;
1651 	register vm_map_entry_t	src_entry, dst_entry;
1652 {
1653 	vm_object_t	temp_object;
1654 
1655 	if (src_entry->is_sub_map || dst_entry->is_sub_map)
1656 		return;
1657 
1658 	if (dst_entry->object.vm_object != NULL &&
1659 	    (dst_entry->object.vm_object->flags & OBJ_INTERNAL) == 0)
1660 		printf("vm_map_copy_entry: copying over permanent data!\n");
1661 
1662 	/*
1663 	 *	If our destination map was wired down,
1664 	 *	unwire it now.
1665 	 */
1666 
1667 	if (dst_entry->wired_count != 0)
1668 		vm_map_entry_unwire(dst_map, dst_entry);
1669 
1670 	/*
1671 	 *	If we're dealing with a sharing map, we
1672 	 *	must remove the destination pages from
1673 	 *	all maps (since we cannot know which maps
1674 	 *	this sharing map belongs in).
1675 	 */
1676 
1677 	if (dst_map->is_main_map)
1678 		pmap_remove(dst_map->pmap, dst_entry->start, dst_entry->end);
1679 	else
1680 		vm_object_pmap_remove(dst_entry->object.vm_object,
1681 			dst_entry->offset,
1682 			dst_entry->offset +
1683 				(dst_entry->end - dst_entry->start));
1684 
1685 	if (src_entry->wired_count == 0) {
1686 
1687 		boolean_t	src_needs_copy;
1688 
1689 		/*
1690 		 *	If the source entry is marked needs_copy,
1691 		 *	it is already write-protected.
1692 		 */
1693 		if (!src_entry->needs_copy) {
1694 
1695 			boolean_t	su;
1696 
1697 			/*
1698 			 *	If the source entry has only one mapping,
1699 			 *	we can just protect the virtual address
1700 			 *	range.
1701 			 */
1702 			if (!(su = src_map->is_main_map)) {
1703 				simple_lock(&src_map->ref_lock);
1704 				su = (src_map->ref_count == 1);
1705 				simple_unlock(&src_map->ref_lock);
1706 			}
1707 
1708 			if (su) {
1709 				pmap_protect(src_map->pmap,
1710 					src_entry->start,
1711 					src_entry->end,
1712 					src_entry->protection & ~VM_PROT_WRITE);
1713 			}
1714 			else {
1715 				vm_object_pmap_copy(src_entry->object.vm_object,
1716 					src_entry->offset,
1717 					src_entry->offset + (src_entry->end
1718 							    -src_entry->start));
1719 			}
1720 		}
1721 
1722 		/*
1723 		 *	Make a copy of the object.
1724 		 */
1725 		temp_object = dst_entry->object.vm_object;
1726 		vm_object_copy(src_entry->object.vm_object,
1727 				src_entry->offset,
1728 				(vm_size_t)(src_entry->end -
1729 					    src_entry->start),
1730 				&dst_entry->object.vm_object,
1731 				&dst_entry->offset,
1732 				&src_needs_copy);
1733 		/*
1734 		 *	If we didn't get a copy-object now, mark the
1735 		 *	source map entry so that a shadow will be created
1736 		 *	to hold its changed pages.
1737 		 */
1738 		if (src_needs_copy)
1739 			src_entry->needs_copy = TRUE;
1740 
1741 		/*
1742 		 *	The destination always needs to have a shadow
1743 		 *	created.
1744 		 */
1745 		dst_entry->needs_copy = TRUE;
1746 
1747 		/*
1748 		 *	Mark the entries copy-on-write, so that write-enabling
1749 		 *	the entry won't make copy-on-write pages writable.
1750 		 */
1751 		src_entry->copy_on_write = TRUE;
1752 		dst_entry->copy_on_write = TRUE;
1753 		/*
1754 		 *	Get rid of the old object.
1755 		 */
1756 		vm_object_deallocate(temp_object);
1757 
1758 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
1759 			dst_entry->end - dst_entry->start, src_entry->start);
1760 	}
1761 	else {
1762 		/*
1763 		 *	Of course, wired down pages can't be set copy-on-write.
1764 		 *	Cause wired pages to be copied into the new
1765 		 *	map by simulating faults (the new pages are
1766 		 *	pageable)
1767 		 */
1768 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
1769 	}
1770 }
1771 
1772 /*
1773  *	vm_map_copy:
1774  *
1775  *	Perform a virtual memory copy from the source
1776  *	address map/range to the destination map/range.
1777  *
1778  *	If src_destroy or dst_alloc is requested,
1779  *	the source and destination regions should be
1780  *	disjoint, not only in the top-level map, but
1781  *	in the sharing maps as well.  [The best way
1782  *	to guarantee this is to use a new intermediate
1783  *	map to make copies.  This also reduces map
1784  *	fragmentation.]
1785  */
1786 int
1787 vm_map_copy(dst_map, src_map,
1788 			  dst_addr, len, src_addr,
1789 			  dst_alloc, src_destroy)
1790 	vm_map_t	dst_map;
1791 	vm_map_t	src_map;
1792 	vm_offset_t	dst_addr;
1793 	vm_size_t	len;
1794 	vm_offset_t	src_addr;
1795 	boolean_t	dst_alloc;
1796 	boolean_t	src_destroy;
1797 {
1798 	register
1799 	vm_map_entry_t	src_entry;
1800 	register
1801 	vm_map_entry_t	dst_entry;
1802 	vm_map_entry_t	tmp_entry;
1803 	vm_offset_t	src_start;
1804 	vm_offset_t	src_end;
1805 	vm_offset_t	dst_start;
1806 	vm_offset_t	dst_end;
1807 	vm_offset_t	src_clip;
1808 	vm_offset_t	dst_clip;
1809 	int		result;
1810 	boolean_t	old_src_destroy;
1811 
1812 	/*
1813 	 *	XXX While we figure out why src_destroy screws up,
1814 	 *	we'll do it by explicitly vm_map_delete'ing at the end.
1815 	 */
1816 
1817 	old_src_destroy = src_destroy;
1818 	src_destroy = FALSE;
1819 
1820 	/*
1821 	 *	Compute start and end of region in both maps
1822 	 */
1823 
1824 	src_start = src_addr;
1825 	src_end = src_start + len;
1826 	dst_start = dst_addr;
1827 	dst_end = dst_start + len;
1828 
1829 	/*
1830 	 *	Check that the region can exist in both source
1831 	 *	and destination.
1832 	 */
1833 
1834 	if ((dst_end < dst_start) || (src_end < src_start))
1835 		return(KERN_NO_SPACE);
1836 
1837 	/*
1838 	 *	Lock the maps in question -- we avoid deadlock
1839 	 *	by ordering lock acquisition by map value
1840 	 */
1841 
1842 	if (src_map == dst_map) {
1843 		vm_map_lock(src_map);
1844 	}
1845 	else if ((long) src_map < (long) dst_map) {
1846 	 	vm_map_lock(src_map);
1847 		vm_map_lock(dst_map);
1848 	} else {
1849 		vm_map_lock(dst_map);
1850 	 	vm_map_lock(src_map);
1851 	}
1852 
1853 	result = KERN_SUCCESS;
1854 
1855 	/*
1856 	 *	Check protections... source must be completely readable and
1857 	 *	destination must be completely writable.  [Note that if we're
1858 	 *	allocating the destination region, we don't have to worry
1859 	 *	about protection, but instead about whether the region
1860 	 *	exists.]
1861 	 */
1862 
1863 	if (src_map->is_main_map && dst_map->is_main_map) {
1864 		if (!vm_map_check_protection(src_map, src_start, src_end,
1865 					VM_PROT_READ)) {
1866 			result = KERN_PROTECTION_FAILURE;
1867 			goto Return;
1868 		}
1869 
1870 		if (dst_alloc) {
1871 			/* XXX Consider making this a vm_map_find instead */
1872 			if ((result = vm_map_insert(dst_map, NULL,
1873 					(vm_offset_t) 0, dst_start, dst_end)) != KERN_SUCCESS)
1874 				goto Return;
1875 		}
1876 		else if (!vm_map_check_protection(dst_map, dst_start, dst_end,
1877 					VM_PROT_WRITE)) {
1878 			result = KERN_PROTECTION_FAILURE;
1879 			goto Return;
1880 		}
1881 	}
1882 
1883 	/*
1884 	 *	Find the start entries and clip.
1885 	 *
1886 	 *	Note that checking protection asserts that the
1887 	 *	lookup cannot fail.
1888 	 *
1889 	 *	Also note that we wait to do the second lookup
1890 	 *	until we have done the first clip, as the clip
1891 	 *	may affect which entry we get!
1892 	 */
1893 
1894 	(void) vm_map_lookup_entry(src_map, src_addr, &tmp_entry);
1895 	src_entry = tmp_entry;
1896 	vm_map_clip_start(src_map, src_entry, src_start);
1897 
1898 	(void) vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry);
1899 	dst_entry = tmp_entry;
1900 	vm_map_clip_start(dst_map, dst_entry, dst_start);
1901 
1902 	/*
1903 	 *	If both source and destination entries are the same,
1904 	 *	retry the first lookup, as it may have changed.
1905 	 */
1906 
1907 	if (src_entry == dst_entry) {
1908 		(void) vm_map_lookup_entry(src_map, src_addr, &tmp_entry);
1909 		src_entry = tmp_entry;
1910 	}
1911 
1912 	/*
1913 	 *	If source and destination entries are still the same,
1914 	 *	a null copy is being performed.
1915 	 */
1916 
1917 	if (src_entry == dst_entry)
1918 		goto Return;
1919 
1920 	/*
1921 	 *	Go through entries until we get to the end of the
1922 	 *	region.
1923 	 */
1924 
1925 	while (src_start < src_end) {
1926 		/*
1927 		 *	Clip the entries to the endpoint of the entire region.
1928 		 */
1929 
1930 		vm_map_clip_end(src_map, src_entry, src_end);
1931 		vm_map_clip_end(dst_map, dst_entry, dst_end);
1932 
1933 		/*
1934 		 *	Clip each entry to the endpoint of the other entry.
1935 		 */
1936 
1937 		src_clip = src_entry->start + (dst_entry->end - dst_entry->start);
1938 		vm_map_clip_end(src_map, src_entry, src_clip);
1939 
1940 		dst_clip = dst_entry->start + (src_entry->end - src_entry->start);
1941 		vm_map_clip_end(dst_map, dst_entry, dst_clip);
1942 
1943 		/*
1944 		 *	Both entries now match in size and relative endpoints.
1945 		 *
1946 		 *	If both entries refer to a VM object, we can
1947 		 *	deal with them now.
1948 		 */
1949 
1950 		if (!src_entry->is_a_map && !dst_entry->is_a_map) {
1951 			vm_map_copy_entry(src_map, dst_map, src_entry,
1952 						dst_entry);
1953 		}
1954 		else {
1955 			register vm_map_t	new_dst_map;
1956 			vm_offset_t		new_dst_start;
1957 			vm_size_t		new_size;
1958 			vm_map_t		new_src_map;
1959 			vm_offset_t		new_src_start;
1960 
1961 			/*
1962 			 *	We have to follow at least one sharing map.
1963 			 */
1964 
1965 			new_size = (dst_entry->end - dst_entry->start);
1966 
1967 			if (src_entry->is_a_map) {
1968 				new_src_map = src_entry->object.share_map;
1969 				new_src_start = src_entry->offset;
1970 			}
1971 			else {
1972 			 	new_src_map = src_map;
1973 				new_src_start = src_entry->start;
1974 				vm_map_set_recursive(&src_map->lock);
1975 			}
1976 
1977 			if (dst_entry->is_a_map) {
1978 			    	vm_offset_t	new_dst_end;
1979 
1980 				new_dst_map = dst_entry->object.share_map;
1981 				new_dst_start = dst_entry->offset;
1982 
1983 				/*
1984 				 *	Since the destination sharing entries
1985 				 *	will be merely deallocated, we can
1986 				 *	do that now, and replace the region
1987 				 *	with a null object.  [This prevents
1988 				 *	splitting the source map to match
1989 				 *	the form of the destination map.]
1990 				 *	Note that we can only do so if the
1991 				 *	source and destination do not overlap.
1992 				 */
1993 
1994 				new_dst_end = new_dst_start + new_size;
1995 
1996 				if (new_dst_map != new_src_map) {
1997 					vm_map_lock(new_dst_map);
1998 					(void) vm_map_delete(new_dst_map,
1999 							new_dst_start,
2000 							new_dst_end);
2001 					(void) vm_map_insert(new_dst_map,
2002 							NULL,
2003 							(vm_offset_t) 0,
2004 							new_dst_start,
2005 							new_dst_end);
2006 					vm_map_unlock(new_dst_map);
2007 				}
2008 			}
2009 			else {
2010 			 	new_dst_map = dst_map;
2011 				new_dst_start = dst_entry->start;
2012 				vm_map_set_recursive(&dst_map->lock);
2013 			}
2014 
2015 			/*
2016 			 *	Recursively copy the sharing map.
2017 			 */
2018 
2019 			(void) vm_map_copy(new_dst_map, new_src_map,
2020 				new_dst_start, new_size, new_src_start,
2021 				FALSE, FALSE);
2022 
2023 			if (dst_map == new_dst_map)
2024 				vm_map_clear_recursive(&dst_map->lock);
2025 			if (src_map == new_src_map)
2026 				vm_map_clear_recursive(&src_map->lock);
2027 		}
2028 
2029 		/*
2030 		 *	Update variables for next pass through the loop.
2031 		 */
2032 
2033 		src_start = src_entry->end;
2034 		src_entry = src_entry->next;
2035 		dst_start = dst_entry->end;
2036 		dst_entry = dst_entry->next;
2037 
2038 		/*
2039 		 *	If the source is to be destroyed, here is the
2040 		 *	place to do it.
2041 		 */
2042 
2043 		if (src_destroy && src_map->is_main_map &&
2044 						dst_map->is_main_map)
2045 			vm_map_entry_delete(src_map, src_entry->prev);
2046 	}
2047 
2048 	/*
2049 	 *	Update the physical maps as appropriate
2050 	 */
2051 
2052 	if (src_map->is_main_map && dst_map->is_main_map) {
2053 		if (src_destroy)
2054 			pmap_remove(src_map->pmap, src_addr, src_addr + len);
2055 	}
2056 
2057 	/*
2058 	 *	Unlock the maps
2059 	 */
2060 
2061 	Return: ;
2062 
2063 	if (old_src_destroy)
2064 		vm_map_delete(src_map, src_addr, src_addr + len);
2065 
2066 	vm_map_unlock(src_map);
2067 	if (src_map != dst_map)
2068 		vm_map_unlock(dst_map);
2069 
2070 	return(result);
2071 }
2072 
2073 /*
2074  * vmspace_fork:
2075  * Create a new process vmspace structure and vm_map
2076  * based on those of an existing process.  The new map
2077  * is based on the old map, according to the inheritance
2078  * values on the regions in that map.
2079  *
2080  * The source map must not be locked.
2081  */
2082 struct vmspace *
2083 vmspace_fork(vm1)
2084 	register struct vmspace *vm1;
2085 {
2086 	register struct vmspace *vm2;
2087 	vm_map_t	old_map = &vm1->vm_map;
2088 	vm_map_t	new_map;
2089 	vm_map_entry_t	old_entry;
2090 	vm_map_entry_t	new_entry;
2091 	pmap_t		new_pmap;
2092 
2093 	vm_map_lock(old_map);
2094 
2095 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset,
2096 	    old_map->entries_pageable);
2097 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2098 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2099 	new_pmap = &vm2->vm_pmap;		/* XXX */
2100 	new_map = &vm2->vm_map;			/* XXX */
2101 
2102 	old_entry = old_map->header.next;
2103 
2104 	while (old_entry != &old_map->header) {
2105 		if (old_entry->is_sub_map)
2106 			panic("vm_map_fork: encountered a submap");
2107 
2108 		switch (old_entry->inheritance) {
2109 		case VM_INHERIT_NONE:
2110 			break;
2111 
2112 		case VM_INHERIT_SHARE:
2113 			/*
2114 			 *	If we don't already have a sharing map:
2115 			 */
2116 
2117 			if (!old_entry->is_a_map) {
2118 			 	vm_map_t	new_share_map;
2119 				vm_map_entry_t	new_share_entry;
2120 
2121 				/*
2122 				 *	Create a new sharing map
2123 				 */
2124 
2125 				new_share_map = vm_map_create(NULL,
2126 							old_entry->start,
2127 							old_entry->end,
2128 							TRUE);
2129 				new_share_map->is_main_map = FALSE;
2130 
2131 				/*
2132 				 *	Create the only sharing entry from the
2133 				 *	old task map entry.
2134 				 */
2135 
2136 				new_share_entry =
2137 					vm_map_entry_create(new_share_map);
2138 				*new_share_entry = *old_entry;
2139 				new_share_entry->wired_count = 0;
2140 
2141 				/*
2142 				 *	Insert the entry into the new sharing
2143 				 *	map
2144 				 */
2145 
2146 				vm_map_entry_link(new_share_map,
2147 						new_share_map->header.prev,
2148 						new_share_entry);
2149 
2150 				/*
2151 				 *	Fix up the task map entry to refer
2152 				 *	to the sharing map now.
2153 				 */
2154 
2155 				old_entry->is_a_map = TRUE;
2156 				old_entry->object.share_map = new_share_map;
2157 				old_entry->offset = old_entry->start;
2158 			}
2159 
2160 			/*
2161 			 *	Clone the entry, referencing the sharing map.
2162 			 */
2163 
2164 			new_entry = vm_map_entry_create(new_map);
2165 			*new_entry = *old_entry;
2166 			new_entry->wired_count = 0;
2167 			vm_map_reference(new_entry->object.share_map);
2168 
2169 			/*
2170 			 *	Insert the entry into the new map -- we
2171 			 *	know we're inserting at the end of the new
2172 			 *	map.
2173 			 */
2174 
2175 			vm_map_entry_link(new_map, new_map->header.prev,
2176 						new_entry);
2177 
2178 			/*
2179 			 *	Update the physical map
2180 			 */
2181 
2182 			pmap_copy(new_map->pmap, old_map->pmap,
2183 				new_entry->start,
2184 				(old_entry->end - old_entry->start),
2185 				old_entry->start);
2186 			break;
2187 
2188 		case VM_INHERIT_COPY:
2189 			/*
2190 			 *	Clone the entry and link into the map.
2191 			 */
2192 
2193 			new_entry = vm_map_entry_create(new_map);
2194 			*new_entry = *old_entry;
2195 			new_entry->wired_count = 0;
2196 			new_entry->object.vm_object = NULL;
2197 			new_entry->is_a_map = FALSE;
2198 			vm_map_entry_link(new_map, new_map->header.prev,
2199 							new_entry);
2200 			if (old_entry->is_a_map) {
2201 				int	check;
2202 
2203 				check = vm_map_copy(new_map,
2204 						old_entry->object.share_map,
2205 						new_entry->start,
2206 						(vm_size_t)(new_entry->end -
2207 							new_entry->start),
2208 						old_entry->offset,
2209 						FALSE, FALSE);
2210 				if (check != KERN_SUCCESS)
2211 					printf("vm_map_fork: copy in share_map region failed\n");
2212 			}
2213 			else {
2214 				vm_map_copy_entry(old_map, new_map, old_entry,
2215 						new_entry);
2216 			}
2217 			break;
2218 		}
2219 		old_entry = old_entry->next;
2220 	}
2221 
2222 	new_map->size = old_map->size;
2223 	vm_map_unlock(old_map);
2224 
2225 	return(vm2);
2226 }
2227 
2228 /*
2229  *	vm_map_lookup:
2230  *
2231  *	Finds the VM object, offset, and
2232  *	protection for a given virtual address in the
2233  *	specified map, assuming a page fault of the
2234  *	type specified.
2235  *
2236  *	Leaves the map in question locked for read; return
2237  *	values are guaranteed until a vm_map_lookup_done
2238  *	call is performed.  Note that the map argument
2239  *	is in/out; the returned map must be used in
2240  *	the call to vm_map_lookup_done.
2241  *
2242  *	A handle (out_entry) is returned for use in
2243  *	vm_map_lookup_done, to make that fast.
2244  *
2245  *	If a lookup is requested with "write protection"
2246  *	specified, the map may be changed to perform virtual
2247  *	copying operations, although the data referenced will
2248  *	remain the same.
2249  */
2250 int
2251 vm_map_lookup(var_map, vaddr, fault_type, out_entry,
2252 				object, offset, out_prot, wired, single_use)
2253 	vm_map_t		*var_map;	/* IN/OUT */
2254 	register vm_offset_t	vaddr;
2255 	register vm_prot_t	fault_type;
2256 
2257 	vm_map_entry_t		*out_entry;	/* OUT */
2258 	vm_object_t		*object;	/* OUT */
2259 	vm_offset_t		*offset;	/* OUT */
2260 	vm_prot_t		*out_prot;	/* OUT */
2261 	boolean_t		*wired;		/* OUT */
2262 	boolean_t		*single_use;	/* OUT */
2263 {
2264 	vm_map_t			share_map;
2265 	vm_offset_t			share_offset;
2266 	register vm_map_entry_t		entry;
2267 	register vm_map_t		map = *var_map;
2268 	register vm_prot_t		prot;
2269 	register boolean_t		su;
2270 
2271 	RetryLookup: ;
2272 
2273 	/*
2274 	 *	Lookup the faulting address.
2275 	 */
2276 
2277 	vm_map_lock_read(map);
2278 
2279 #define	RETURN(why) \
2280 		{ \
2281 		vm_map_unlock_read(map); \
2282 		return(why); \
2283 		}
2284 
2285 	/*
2286 	 *	If the map has an interesting hint, try it before calling
2287 	 *	full blown lookup routine.
2288 	 */
2289 
2290 	simple_lock(&map->hint_lock);
2291 	entry = map->hint;
2292 	simple_unlock(&map->hint_lock);
2293 
2294 	*out_entry = entry;
2295 
2296 	if ((entry == &map->header) ||
2297 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2298 		vm_map_entry_t	tmp_entry;
2299 
2300 		/*
2301 		 *	Entry was either not a valid hint, or the vaddr
2302 		 *	was not contained in the entry, so do a full lookup.
2303 		 */
2304 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2305 			RETURN(KERN_INVALID_ADDRESS);
2306 
2307 		entry = tmp_entry;
2308 		*out_entry = entry;
2309 	}
2310 
2311 	/*
2312 	 *	Handle submaps.
2313 	 */
2314 
2315 	if (entry->is_sub_map) {
2316 		vm_map_t	old_map = map;
2317 
2318 		*var_map = map = entry->object.sub_map;
2319 		vm_map_unlock_read(old_map);
2320 		goto RetryLookup;
2321 	}
2322 
2323 	/*
2324 	 *	Check whether this task is allowed to have
2325 	 *	this page.
2326 	 */
2327 
2328 	prot = entry->protection;
2329 	if ((fault_type & (prot)) != fault_type)
2330 		RETURN(KERN_PROTECTION_FAILURE);
2331 
2332 	/*
2333 	 *	If this page is not pageable, we have to get
2334 	 *	it for all possible accesses.
2335 	 */
2336 
2337 	if (*wired = (entry->wired_count != 0))
2338 		prot = fault_type = entry->protection;
2339 
2340 	/*
2341 	 *	If we don't already have a VM object, track
2342 	 *	it down.
2343 	 */
2344 
2345 	if (su = !entry->is_a_map) {
2346 	 	share_map = map;
2347 		share_offset = vaddr;
2348 	}
2349 	else {
2350 		vm_map_entry_t	share_entry;
2351 
2352 		/*
2353 		 *	Compute the sharing map, and offset into it.
2354 		 */
2355 
2356 		share_map = entry->object.share_map;
2357 		share_offset = (vaddr - entry->start) + entry->offset;
2358 
2359 		/*
2360 		 *	Look for the backing store object and offset
2361 		 */
2362 
2363 		vm_map_lock_read(share_map);
2364 
2365 		if (!vm_map_lookup_entry(share_map, share_offset,
2366 					&share_entry)) {
2367 			vm_map_unlock_read(share_map);
2368 			RETURN(KERN_INVALID_ADDRESS);
2369 		}
2370 		entry = share_entry;
2371 	}
2372 
2373 	/*
2374 	 *	If the entry was copy-on-write, we either ...
2375 	 */
2376 
2377 	if (entry->needs_copy) {
2378 	    	/*
2379 		 *	If we want to write the page, we may as well
2380 		 *	handle that now since we've got the sharing
2381 		 *	map locked.
2382 		 *
2383 		 *	If we don't need to write the page, we just
2384 		 *	demote the permissions allowed.
2385 		 */
2386 
2387 		if (fault_type & VM_PROT_WRITE) {
2388 			/*
2389 			 *	Make a new object, and place it in the
2390 			 *	object chain.  Note that no new references
2391 			 *	have appeared -- one just moved from the
2392 			 *	share map to the new object.
2393 			 */
2394 
2395 			if (lockmgr(&share_map->lock, LK_EXCLUPGRADE,
2396 				    (void *)0, curproc)) {
2397 				if (share_map != map)
2398 					vm_map_unlock_read(map);
2399 				goto RetryLookup;
2400 			}
2401 
2402 			vm_object_shadow(
2403 				&entry->object.vm_object,
2404 				&entry->offset,
2405 				(vm_size_t) (entry->end - entry->start));
2406 
2407 			entry->needs_copy = FALSE;
2408 
2409 			lockmgr(&share_map->lock, LK_DOWNGRADE,
2410 				(void *)0, curproc);
2411 		}
2412 		else {
2413 			/*
2414 			 *	We're attempting to read a copy-on-write
2415 			 *	page -- don't allow writes.
2416 			 */
2417 
2418 			prot &= (~VM_PROT_WRITE);
2419 		}
2420 	}
2421 
2422 	/*
2423 	 *	Create an object if necessary.
2424 	 */
2425 	if (entry->object.vm_object == NULL) {
2426 
2427 		if (lockmgr(&share_map->lock, LK_EXCLUPGRADE,
2428 				(void *)0, curproc)) {
2429 			if (share_map != map)
2430 				vm_map_unlock_read(map);
2431 			goto RetryLookup;
2432 		}
2433 
2434 		entry->object.vm_object = vm_object_allocate(
2435 					(vm_size_t)(entry->end - entry->start));
2436 		entry->offset = 0;
2437 		lockmgr(&share_map->lock, LK_DOWNGRADE, (void *)0, curproc);
2438 	}
2439 
2440 	/*
2441 	 *	Return the object/offset from this entry.  If the entry
2442 	 *	was copy-on-write or empty, it has been fixed up.
2443 	 */
2444 
2445 	*offset = (share_offset - entry->start) + entry->offset;
2446 	*object = entry->object.vm_object;
2447 
2448 	/*
2449 	 *	Return whether this is the only map sharing this data.
2450 	 */
2451 
2452 	if (!su) {
2453 		simple_lock(&share_map->ref_lock);
2454 		su = (share_map->ref_count == 1);
2455 		simple_unlock(&share_map->ref_lock);
2456 	}
2457 
2458 	*out_prot = prot;
2459 	*single_use = su;
2460 
2461 	return(KERN_SUCCESS);
2462 
2463 #undef	RETURN
2464 }
2465 
2466 /*
2467  *	vm_map_lookup_done:
2468  *
2469  *	Releases locks acquired by a vm_map_lookup
2470  *	(according to the handle returned by that lookup).
2471  */
2472 
2473 void
2474 vm_map_lookup_done(map, entry)
2475 	register vm_map_t	map;
2476 	vm_map_entry_t		entry;
2477 {
2478 	/*
2479 	 *	If this entry references a map, unlock it first.
2480 	 */
2481 
2482 	if (entry->is_a_map)
2483 		vm_map_unlock_read(entry->object.share_map);
2484 
2485 	/*
2486 	 *	Unlock the main-level map
2487 	 */
2488 
2489 	vm_map_unlock_read(map);
2490 }
2491 
2492 /*
2493  *	Routine:	vm_map_simplify
2494  *	Purpose:
2495  *		Attempt to simplify the map representation in
2496  *		the vicinity of the given starting address.
2497  *	Note:
2498  *		This routine is intended primarily to keep the
2499  *		kernel maps more compact -- they generally don't
2500  *		benefit from the "expand a map entry" technology
2501  *		at allocation time because the adjacent entry
2502  *		is often wired down.
2503  */
2504 void
2505 vm_map_simplify(map, start)
2506 	vm_map_t	map;
2507 	vm_offset_t	start;
2508 {
2509 	vm_map_entry_t	this_entry;
2510 	vm_map_entry_t	prev_entry;
2511 
2512 	vm_map_lock(map);
2513 	if (
2514 		(vm_map_lookup_entry(map, start, &this_entry)) &&
2515 		((prev_entry = this_entry->prev) != &map->header) &&
2516 
2517 		(prev_entry->end == start) &&
2518 		(map->is_main_map) &&
2519 
2520 		(prev_entry->is_a_map == FALSE) &&
2521 		(prev_entry->is_sub_map == FALSE) &&
2522 
2523 		(this_entry->is_a_map == FALSE) &&
2524 		(this_entry->is_sub_map == FALSE) &&
2525 
2526 		(prev_entry->inheritance == this_entry->inheritance) &&
2527 		(prev_entry->protection == this_entry->protection) &&
2528 		(prev_entry->max_protection == this_entry->max_protection) &&
2529 		(prev_entry->wired_count == this_entry->wired_count) &&
2530 
2531 		(prev_entry->copy_on_write == this_entry->copy_on_write) &&
2532 		(prev_entry->needs_copy == this_entry->needs_copy) &&
2533 
2534 		(prev_entry->object.vm_object == this_entry->object.vm_object) &&
2535 		((prev_entry->offset + (prev_entry->end - prev_entry->start))
2536 		     == this_entry->offset)
2537 	) {
2538 		if (map->first_free == this_entry)
2539 			map->first_free = prev_entry;
2540 
2541 		SAVE_HINT(map, prev_entry);
2542 		vm_map_entry_unlink(map, this_entry);
2543 		prev_entry->end = this_entry->end;
2544 	 	vm_object_deallocate(this_entry->object.vm_object);
2545 		vm_map_entry_dispose(map, this_entry);
2546 	}
2547 	vm_map_unlock(map);
2548 }
2549 
2550 /*
2551  *	vm_map_print:	[ debug ]
2552  */
2553 void
2554 vm_map_print(map, full)
2555 	register vm_map_t	map;
2556 	boolean_t		full;
2557 {
2558 	register vm_map_entry_t	entry;
2559 	extern int indent;
2560 
2561 	iprintf("%s map 0x%x: pmap=0x%x,ref=%d,nentries=%d,version=%d\n",
2562 		(map->is_main_map ? "Task" : "Share"),
2563  		(int) map, (int) (map->pmap), map->ref_count, map->nentries,
2564 		map->timestamp);
2565 
2566 	if (!full && indent)
2567 		return;
2568 
2569 	indent += 2;
2570 	for (entry = map->header.next; entry != &map->header;
2571 				entry = entry->next) {
2572 		iprintf("map entry 0x%x: start=0x%x, end=0x%x, ",
2573 			(int) entry, (int) entry->start, (int) entry->end);
2574 		if (map->is_main_map) {
2575 		     	static char *inheritance_name[4] =
2576 				{ "share", "copy", "none", "donate_copy"};
2577 			printf("prot=%x/%x/%s, ",
2578 				entry->protection,
2579 				entry->max_protection,
2580 				inheritance_name[entry->inheritance]);
2581 			if (entry->wired_count != 0)
2582 				printf("wired, ");
2583 		}
2584 
2585 		if (entry->is_a_map || entry->is_sub_map) {
2586 		 	printf("share=0x%x, offset=0x%x\n",
2587 				(int) entry->object.share_map,
2588 				(int) entry->offset);
2589 			if ((entry->prev == &map->header) ||
2590 			    (!entry->prev->is_a_map) ||
2591 			    (entry->prev->object.share_map !=
2592 			     entry->object.share_map)) {
2593 				indent += 2;
2594 				vm_map_print(entry->object.share_map, full);
2595 				indent -= 2;
2596 			}
2597 
2598 		}
2599 		else {
2600 			printf("object=0x%x, offset=0x%x",
2601 				(int) entry->object.vm_object,
2602 				(int) entry->offset);
2603 			if (entry->copy_on_write)
2604 				printf(", copy (%s)",
2605 				       entry->needs_copy ? "needed" : "done");
2606 			printf("\n");
2607 
2608 			if ((entry->prev == &map->header) ||
2609 			    (entry->prev->is_a_map) ||
2610 			    (entry->prev->object.vm_object !=
2611 			     entry->object.vm_object)) {
2612 				indent += 2;
2613 				vm_object_print(entry->object.vm_object, full);
2614 				indent -= 2;
2615 			}
2616 		}
2617 	}
2618 	indent -= 2;
2619 }
2620