xref: /original-bsd/sys/vm/vm_object.c (revision 5b874092)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_object.c	8.2 (Berkeley) 12/30/93
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Virtual memory object module.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_page.h>
49 
50 /*
51  *	Virtual memory objects maintain the actual data
52  *	associated with allocated virtual memory.  A given
53  *	page of memory exists within exactly one object.
54  *
55  *	An object is only deallocated when all "references"
56  *	are given up.  Only one "reference" to a given
57  *	region of an object should be writeable.
58  *
59  *	Associated with each object is a list of all resident
60  *	memory pages belonging to that object; this list is
61  *	maintained by the "vm_page" module, and locked by the object's
62  *	lock.
63  *
64  *	Each object also records a "pager" routine which is
65  *	used to retrieve (and store) pages to the proper backing
66  *	storage.  In addition, objects may be backed by other
67  *	objects from which they were virtual-copied.
68  *
69  *	The only items within the object structure which are
70  *	modified after time of creation are:
71  *		reference count		locked by object's lock
72  *		pager routine		locked by object's lock
73  *
74  */
75 
76 struct vm_object	kernel_object_store;
77 struct vm_object	kmem_object_store;
78 
79 #define	VM_OBJECT_HASH_COUNT	157
80 
81 int	vm_cache_max = 100;	/* can patch if necessary */
82 struct	vm_object_hash_head vm_object_hashtable[VM_OBJECT_HASH_COUNT];
83 
84 long	object_collapses = 0;
85 long	object_bypasses  = 0;
86 
87 static void _vm_object_allocate __P((vm_size_t, vm_object_t));
88 
89 /*
90  *	vm_object_init:
91  *
92  *	Initialize the VM objects module.
93  */
94 void vm_object_init(size)
95 	vm_size_t	size;
96 {
97 	register int	i;
98 
99 	TAILQ_INIT(&vm_object_cached_list);
100 	TAILQ_INIT(&vm_object_list);
101 	vm_object_count = 0;
102 	simple_lock_init(&vm_cache_lock);
103 	simple_lock_init(&vm_object_list_lock);
104 
105 	for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
106 		TAILQ_INIT(&vm_object_hashtable[i]);
107 
108 	kernel_object = &kernel_object_store;
109 	_vm_object_allocate(size, kernel_object);
110 
111 	kmem_object = &kmem_object_store;
112 	_vm_object_allocate(VM_KMEM_SIZE + VM_MBUF_SIZE, kmem_object);
113 }
114 
115 /*
116  *	vm_object_allocate:
117  *
118  *	Returns a new object with the given size.
119  */
120 
121 vm_object_t vm_object_allocate(size)
122 	vm_size_t	size;
123 {
124 	register vm_object_t	result;
125 
126 	result = (vm_object_t)
127 		malloc((u_long)sizeof *result, M_VMOBJ, M_WAITOK);
128 
129 	_vm_object_allocate(size, result);
130 
131 	return(result);
132 }
133 
134 static void
135 _vm_object_allocate(size, object)
136 	vm_size_t		size;
137 	register vm_object_t	object;
138 {
139 	TAILQ_INIT(&object->memq);
140 	vm_object_lock_init(object);
141 	object->ref_count = 1;
142 	object->resident_page_count = 0;
143 	object->size = size;
144 	object->flags = OBJ_INTERNAL;	/* vm_allocate_with_pager will reset */
145 	object->paging_in_progress = 0;
146 	object->copy = NULL;
147 
148 	/*
149 	 *	Object starts out read-write, with no pager.
150 	 */
151 
152 	object->pager = NULL;
153 	object->paging_offset = 0;
154 	object->shadow = NULL;
155 	object->shadow_offset = (vm_offset_t) 0;
156 
157 	simple_lock(&vm_object_list_lock);
158 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
159 	vm_object_count++;
160 	simple_unlock(&vm_object_list_lock);
161 }
162 
163 /*
164  *	vm_object_reference:
165  *
166  *	Gets another reference to the given object.
167  */
168 void vm_object_reference(object)
169 	register vm_object_t	object;
170 {
171 	if (object == NULL)
172 		return;
173 
174 	vm_object_lock(object);
175 	object->ref_count++;
176 	vm_object_unlock(object);
177 }
178 
179 /*
180  *	vm_object_deallocate:
181  *
182  *	Release a reference to the specified object,
183  *	gained either through a vm_object_allocate
184  *	or a vm_object_reference call.  When all references
185  *	are gone, storage associated with this object
186  *	may be relinquished.
187  *
188  *	No object may be locked.
189  */
190 void vm_object_deallocate(object)
191 	register vm_object_t	object;
192 {
193 	vm_object_t	temp;
194 
195 	while (object != NULL) {
196 
197 		/*
198 		 *	The cache holds a reference (uncounted) to
199 		 *	the object; we must lock it before removing
200 		 *	the object.
201 		 */
202 
203 		vm_object_cache_lock();
204 
205 		/*
206 		 *	Lose the reference
207 		 */
208 		vm_object_lock(object);
209 		if (--(object->ref_count) != 0) {
210 
211 			/*
212 			 *	If there are still references, then
213 			 *	we are done.
214 			 */
215 			vm_object_unlock(object);
216 			vm_object_cache_unlock();
217 			return;
218 		}
219 
220 		/*
221 		 *	See if this object can persist.  If so, enter
222 		 *	it in the cache, then deactivate all of its
223 		 *	pages.
224 		 */
225 
226 		if (object->flags & OBJ_CANPERSIST) {
227 
228 			TAILQ_INSERT_TAIL(&vm_object_cached_list, object,
229 				cached_list);
230 			vm_object_cached++;
231 			vm_object_cache_unlock();
232 
233 			vm_object_deactivate_pages(object);
234 			vm_object_unlock(object);
235 
236 			vm_object_cache_trim();
237 			return;
238 		}
239 
240 		/*
241 		 *	Make sure no one can look us up now.
242 		 */
243 		vm_object_remove(object->pager);
244 		vm_object_cache_unlock();
245 
246 		temp = object->shadow;
247 		vm_object_terminate(object);
248 			/* unlocks and deallocates object */
249 		object = temp;
250 	}
251 }
252 
253 
254 /*
255  *	vm_object_terminate actually destroys the specified object, freeing
256  *	up all previously used resources.
257  *
258  *	The object must be locked.
259  */
260 void vm_object_terminate(object)
261 	register vm_object_t	object;
262 {
263 	register vm_page_t	p;
264 	vm_object_t		shadow_object;
265 
266 	/*
267 	 *	Detach the object from its shadow if we are the shadow's
268 	 *	copy.
269 	 */
270 	if ((shadow_object = object->shadow) != NULL) {
271 		vm_object_lock(shadow_object);
272 		if (shadow_object->copy == object)
273 			shadow_object->copy = NULL;
274 #if 0
275 		else if (shadow_object->copy != NULL)
276 			panic("vm_object_terminate: copy/shadow inconsistency");
277 #endif
278 		vm_object_unlock(shadow_object);
279 	}
280 
281 	/*
282 	 * Wait until the pageout daemon is through with the object.
283 	 */
284 	while (object->paging_in_progress) {
285 		vm_object_sleep((int)object, object, FALSE);
286 		vm_object_lock(object);
287 	}
288 
289 	/*
290 	 * If not an internal object clean all the pages, removing them
291 	 * from paging queues as we go.
292 	 */
293 	if ((object->flags & OBJ_INTERNAL) == 0) {
294 		vm_object_page_clean(object, 0, 0, TRUE);
295 		vm_object_unlock(object);
296 	}
297 
298 	/*
299 	 * Now free the pages.
300 	 * For internal objects, this also removes them from paging queues.
301 	 */
302 	while ((p = object->memq.tqh_first) != NULL) {
303 		VM_PAGE_CHECK(p);
304 		vm_page_lock_queues();
305 		vm_page_free(p);
306 		vm_page_unlock_queues();
307 	}
308 	if ((object->flags & OBJ_INTERNAL) == 0)
309 		vm_object_unlock(object);
310 
311 	/*
312 	 * Let the pager know object is dead.
313 	 */
314 	if (object->pager != NULL)
315 		vm_pager_deallocate(object->pager);
316 
317 	simple_lock(&vm_object_list_lock);
318 	TAILQ_REMOVE(&vm_object_list, object, object_list);
319 	vm_object_count--;
320 	simple_unlock(&vm_object_list_lock);
321 
322 	/*
323 	 * Free the space for the object.
324 	 */
325 	free((caddr_t)object, M_VMOBJ);
326 }
327 
328 /*
329  *	vm_object_page_clean
330  *
331  *	Clean all dirty pages in the specified range of object.
332  *	If de_queue is TRUE, pages are removed from any paging queue
333  *	they were on, otherwise they are left on whatever queue they
334  *	were on before the cleaning operation began.
335  *
336  *	Odd semantics: if start == end, we clean everything.
337  *
338  *	The object must be locked.
339  */
340 void
341 vm_object_page_clean(object, start, end, de_queue)
342 	register vm_object_t	object;
343 	register vm_offset_t	start;
344 	register vm_offset_t	end;
345 	boolean_t		de_queue;
346 {
347 	register vm_page_t	p;
348 	int onqueue;
349 
350 	if (object->pager == NULL)
351 		return;
352 
353 again:
354 	/*
355 	 * Wait until the pageout daemon is through with the object.
356 	 */
357 	while (object->paging_in_progress) {
358 		vm_object_sleep((int)object, object, FALSE);
359 		vm_object_lock(object);
360 	}
361 	/*
362 	 * Loop through the object page list cleaning as necessary.
363 	 */
364 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next) {
365 		if (start == end ||
366 		    p->offset >= start && p->offset < end) {
367 			if ((p->flags & PG_CLEAN) &&
368 			    pmap_is_modified(VM_PAGE_TO_PHYS(p)))
369 				p->flags &= ~PG_CLEAN;
370 			/*
371 			 * Remove the page from any paging queue.
372 			 * This needs to be done if either we have been
373 			 * explicitly asked to do so or it is about to
374 			 * be cleaned (see comment below).
375 			 */
376 			if (de_queue || !(p->flags & PG_CLEAN)) {
377 				vm_page_lock_queues();
378 				if (p->flags & PG_ACTIVE) {
379 					TAILQ_REMOVE(&vm_page_queue_active,
380 						     p, pageq);
381 					p->flags &= ~PG_ACTIVE;
382 					cnt.v_active_count--;
383 					onqueue = 1;
384 				} else if (p->flags & PG_INACTIVE) {
385 					TAILQ_REMOVE(&vm_page_queue_inactive,
386 						     p, pageq);
387 					p->flags &= ~PG_INACTIVE;
388 					cnt.v_inactive_count--;
389 					onqueue = -1;
390 				} else
391 					onqueue = 0;
392 				vm_page_unlock_queues();
393 			}
394 			/*
395 			 * To ensure the state of the page doesn't change
396 			 * during the clean operation we do two things.
397 			 * First we set the busy bit and invalidate all
398 			 * mappings to ensure that thread accesses to the
399 			 * page block (in vm_fault).  Second, we remove
400 			 * the page from any paging queue to foil the
401 			 * pageout daemon (vm_pageout_scan).
402 			 */
403 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
404 			if (!(p->flags & PG_CLEAN)) {
405 				p->flags |= PG_BUSY;
406 				object->paging_in_progress++;
407 				vm_object_unlock(object);
408 				(void) vm_pager_put(object->pager, p, TRUE);
409 				vm_object_lock(object);
410 				object->paging_in_progress--;
411 				if (!de_queue && onqueue) {
412 					vm_page_lock_queues();
413 					if (onqueue > 0)
414 						vm_page_activate(p);
415 					else
416 						vm_page_deactivate(p);
417 					vm_page_unlock_queues();
418 				}
419 				p->flags &= ~PG_BUSY;
420 				PAGE_WAKEUP(p);
421 				goto again;
422 			}
423 		}
424 	}
425 }
426 
427 /*
428  *	vm_object_deactivate_pages
429  *
430  *	Deactivate all pages in the specified object.  (Keep its pages
431  *	in memory even though it is no longer referenced.)
432  *
433  *	The object must be locked.
434  */
435 void
436 vm_object_deactivate_pages(object)
437 	register vm_object_t	object;
438 {
439 	register vm_page_t	p, next;
440 
441 	for (p = object->memq.tqh_first; p != NULL; p = next) {
442 		next = p->listq.tqe_next;
443 		vm_page_lock_queues();
444 		vm_page_deactivate(p);
445 		vm_page_unlock_queues();
446 	}
447 }
448 
449 /*
450  *	Trim the object cache to size.
451  */
452 void
453 vm_object_cache_trim()
454 {
455 	register vm_object_t	object;
456 
457 	vm_object_cache_lock();
458 	while (vm_object_cached > vm_cache_max) {
459 		object = vm_object_cached_list.tqh_first;
460 		vm_object_cache_unlock();
461 
462 		if (object != vm_object_lookup(object->pager))
463 			panic("vm_object_deactivate: I'm sooo confused.");
464 
465 		pager_cache(object, FALSE);
466 
467 		vm_object_cache_lock();
468 	}
469 	vm_object_cache_unlock();
470 }
471 
472 
473 /*
474  *	vm_object_shutdown()
475  *
476  *	Shut down the object system.  Unfortunately, while we
477  *	may be trying to do this, init is happily waiting for
478  *	processes to exit, and therefore will be causing some objects
479  *	to be deallocated.  To handle this, we gain a fake reference
480  *	to all objects we release paging areas for.  This will prevent
481  *	a duplicate deallocation.  This routine is probably full of
482  *	race conditions!
483  */
484 
485 void vm_object_shutdown()
486 {
487 	register vm_object_t	object;
488 
489 	/*
490 	 *	Clean up the object cache *before* we screw up the reference
491 	 *	counts on all of the objects.
492 	 */
493 
494 	vm_object_cache_clear();
495 
496 	printf("free paging spaces: ");
497 
498 	/*
499 	 *	First we gain a reference to each object so that
500 	 *	no one else will deallocate them.
501 	 */
502 
503 	simple_lock(&vm_object_list_lock);
504 	for (object = vm_object_list.tqh_first;
505 	     object != NULL;
506 	     object = object->object_list.tqe_next)
507 		vm_object_reference(object);
508 	simple_unlock(&vm_object_list_lock);
509 
510 	/*
511 	 *	Now we deallocate all the paging areas.  We don't need
512 	 *	to lock anything because we've reduced to a single
513 	 *	processor while shutting down.	This also assumes that
514 	 *	no new objects are being created.
515 	 */
516 
517 	for (object = vm_object_list.tqh_first;
518 	     object != NULL;
519 	     object = object->object_list.tqe_next) {
520 		if (object->pager != NULL)
521 			vm_pager_deallocate(object->pager);
522 		printf(".");
523 	}
524 	printf("done.\n");
525 }
526 
527 /*
528  *	vm_object_pmap_copy:
529  *
530  *	Makes all physical pages in the specified
531  *	object range copy-on-write.  No writeable
532  *	references to these pages should remain.
533  *
534  *	The object must *not* be locked.
535  */
536 void vm_object_pmap_copy(object, start, end)
537 	register vm_object_t	object;
538 	register vm_offset_t	start;
539 	register vm_offset_t	end;
540 {
541 	register vm_page_t	p;
542 
543 	if (object == NULL)
544 		return;
545 
546 	vm_object_lock(object);
547 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next) {
548 		if ((start <= p->offset) && (p->offset < end)) {
549 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_READ);
550 			p->flags |= PG_COPYONWRITE;
551 		}
552 	}
553 	vm_object_unlock(object);
554 }
555 
556 /*
557  *	vm_object_pmap_remove:
558  *
559  *	Removes all physical pages in the specified
560  *	object range from all physical maps.
561  *
562  *	The object must *not* be locked.
563  */
564 void vm_object_pmap_remove(object, start, end)
565 	register vm_object_t	object;
566 	register vm_offset_t	start;
567 	register vm_offset_t	end;
568 {
569 	register vm_page_t	p;
570 
571 	if (object == NULL)
572 		return;
573 
574 	vm_object_lock(object);
575 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next)
576 		if ((start <= p->offset) && (p->offset < end))
577 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
578 	vm_object_unlock(object);
579 }
580 
581 /*
582  *	vm_object_copy:
583  *
584  *	Create a new object which is a copy of an existing
585  *	object, and mark all of the pages in the existing
586  *	object 'copy-on-write'.  The new object has one reference.
587  *	Returns the new object.
588  *
589  *	May defer the copy until later if the object is not backed
590  *	up by a non-default pager.
591  */
592 void vm_object_copy(src_object, src_offset, size,
593 		    dst_object, dst_offset, src_needs_copy)
594 	register vm_object_t	src_object;
595 	vm_offset_t		src_offset;
596 	vm_size_t		size;
597 	vm_object_t		*dst_object;	/* OUT */
598 	vm_offset_t		*dst_offset;	/* OUT */
599 	boolean_t		*src_needs_copy;	/* OUT */
600 {
601 	register vm_object_t	new_copy;
602 	register vm_object_t	old_copy;
603 	vm_offset_t		new_start, new_end;
604 
605 	register vm_page_t	p;
606 
607 	if (src_object == NULL) {
608 		/*
609 		 *	Nothing to copy
610 		 */
611 		*dst_object = NULL;
612 		*dst_offset = 0;
613 		*src_needs_copy = FALSE;
614 		return;
615 	}
616 
617 	/*
618 	 *	If the object's pager is null_pager or the
619 	 *	default pager, we don't have to make a copy
620 	 *	of it.  Instead, we set the needs copy flag and
621 	 *	make a shadow later.
622 	 */
623 
624 	vm_object_lock(src_object);
625 	if (src_object->pager == NULL ||
626 	    (src_object->flags & OBJ_INTERNAL)) {
627 
628 		/*
629 		 *	Make another reference to the object
630 		 */
631 		src_object->ref_count++;
632 
633 		/*
634 		 *	Mark all of the pages copy-on-write.
635 		 */
636 		for (p = src_object->memq.tqh_first; p; p = p->listq.tqe_next)
637 			if (src_offset <= p->offset &&
638 			    p->offset < src_offset + size)
639 				p->flags |= PG_COPYONWRITE;
640 		vm_object_unlock(src_object);
641 
642 		*dst_object = src_object;
643 		*dst_offset = src_offset;
644 
645 		/*
646 		 *	Must make a shadow when write is desired
647 		 */
648 		*src_needs_copy = TRUE;
649 		return;
650 	}
651 
652 	/*
653 	 *	Try to collapse the object before copying it.
654 	 */
655 	vm_object_collapse(src_object);
656 
657 	/*
658 	 *	If the object has a pager, the pager wants to
659 	 *	see all of the changes.  We need a copy-object
660 	 *	for the changed pages.
661 	 *
662 	 *	If there is a copy-object, and it is empty,
663 	 *	no changes have been made to the object since the
664 	 *	copy-object was made.  We can use the same copy-
665 	 *	object.
666 	 */
667 
668     Retry1:
669 	old_copy = src_object->copy;
670 	if (old_copy != NULL) {
671 		/*
672 		 *	Try to get the locks (out of order)
673 		 */
674 		if (!vm_object_lock_try(old_copy)) {
675 			vm_object_unlock(src_object);
676 
677 			/* should spin a bit here... */
678 			vm_object_lock(src_object);
679 			goto Retry1;
680 		}
681 
682 		if (old_copy->resident_page_count == 0 &&
683 		    old_copy->pager == NULL) {
684 			/*
685 			 *	Return another reference to
686 			 *	the existing copy-object.
687 			 */
688 			old_copy->ref_count++;
689 			vm_object_unlock(old_copy);
690 			vm_object_unlock(src_object);
691 			*dst_object = old_copy;
692 			*dst_offset = src_offset;
693 			*src_needs_copy = FALSE;
694 			return;
695 		}
696 		vm_object_unlock(old_copy);
697 	}
698 	vm_object_unlock(src_object);
699 
700 	/*
701 	 *	If the object has a pager, the pager wants
702 	 *	to see all of the changes.  We must make
703 	 *	a copy-object and put the changed pages there.
704 	 *
705 	 *	The copy-object is always made large enough to
706 	 *	completely shadow the original object, since
707 	 *	it may have several users who want to shadow
708 	 *	the original object at different points.
709 	 */
710 
711 	new_copy = vm_object_allocate(src_object->size);
712 
713     Retry2:
714 	vm_object_lock(src_object);
715 	/*
716 	 *	Copy object may have changed while we were unlocked
717 	 */
718 	old_copy = src_object->copy;
719 	if (old_copy != NULL) {
720 		/*
721 		 *	Try to get the locks (out of order)
722 		 */
723 		if (!vm_object_lock_try(old_copy)) {
724 			vm_object_unlock(src_object);
725 			goto Retry2;
726 		}
727 
728 		/*
729 		 *	Consistency check
730 		 */
731 		if (old_copy->shadow != src_object ||
732 		    old_copy->shadow_offset != (vm_offset_t) 0)
733 			panic("vm_object_copy: copy/shadow inconsistency");
734 
735 		/*
736 		 *	Make the old copy-object shadow the new one.
737 		 *	It will receive no more pages from the original
738 		 *	object.
739 		 */
740 
741 		src_object->ref_count--;	/* remove ref. from old_copy */
742 		old_copy->shadow = new_copy;
743 		new_copy->ref_count++;		/* locking not needed - we
744 						   have the only pointer */
745 		vm_object_unlock(old_copy);	/* done with old_copy */
746 	}
747 
748 	new_start = (vm_offset_t) 0;	/* always shadow original at 0 */
749 	new_end   = (vm_offset_t) new_copy->size; /* for the whole object */
750 
751 	/*
752 	 *	Point the new copy at the existing object.
753 	 */
754 
755 	new_copy->shadow = src_object;
756 	new_copy->shadow_offset = new_start;
757 	src_object->ref_count++;
758 	src_object->copy = new_copy;
759 
760 	/*
761 	 *	Mark all the affected pages of the existing object
762 	 *	copy-on-write.
763 	 */
764 	for (p = src_object->memq.tqh_first; p != NULL; p = p->listq.tqe_next)
765 		if ((new_start <= p->offset) && (p->offset < new_end))
766 			p->flags |= PG_COPYONWRITE;
767 
768 	vm_object_unlock(src_object);
769 
770 	*dst_object = new_copy;
771 	*dst_offset = src_offset - new_start;
772 	*src_needs_copy = FALSE;
773 }
774 
775 /*
776  *	vm_object_shadow:
777  *
778  *	Create a new object which is backed by the
779  *	specified existing object range.  The source
780  *	object reference is deallocated.
781  *
782  *	The new object and offset into that object
783  *	are returned in the source parameters.
784  */
785 
786 void vm_object_shadow(object, offset, length)
787 	vm_object_t	*object;	/* IN/OUT */
788 	vm_offset_t	*offset;	/* IN/OUT */
789 	vm_size_t	length;
790 {
791 	register vm_object_t	source;
792 	register vm_object_t	result;
793 
794 	source = *object;
795 
796 	/*
797 	 *	Allocate a new object with the given length
798 	 */
799 
800 	if ((result = vm_object_allocate(length)) == NULL)
801 		panic("vm_object_shadow: no object for shadowing");
802 
803 	/*
804 	 *	The new object shadows the source object, adding
805 	 *	a reference to it.  Our caller changes his reference
806 	 *	to point to the new object, removing a reference to
807 	 *	the source object.  Net result: no change of reference
808 	 *	count.
809 	 */
810 	result->shadow = source;
811 
812 	/*
813 	 *	Store the offset into the source object,
814 	 *	and fix up the offset into the new object.
815 	 */
816 
817 	result->shadow_offset = *offset;
818 
819 	/*
820 	 *	Return the new things
821 	 */
822 
823 	*offset = 0;
824 	*object = result;
825 }
826 
827 /*
828  *	Set the specified object's pager to the specified pager.
829  */
830 
831 void vm_object_setpager(object, pager, paging_offset,
832 			read_only)
833 	vm_object_t	object;
834 	vm_pager_t	pager;
835 	vm_offset_t	paging_offset;
836 	boolean_t	read_only;
837 {
838 #ifdef	lint
839 	read_only++;	/* No longer used */
840 #endif
841 
842 	vm_object_lock(object);			/* XXX ? */
843 	object->pager = pager;
844 	object->paging_offset = paging_offset;
845 	vm_object_unlock(object);			/* XXX ? */
846 }
847 
848 /*
849  *	vm_object_hash hashes the pager/id pair.
850  */
851 
852 #define vm_object_hash(pager) \
853 	(((unsigned)pager)%VM_OBJECT_HASH_COUNT)
854 
855 /*
856  *	vm_object_lookup looks in the object cache for an object with the
857  *	specified pager and paging id.
858  */
859 
860 vm_object_t vm_object_lookup(pager)
861 	vm_pager_t	pager;
862 {
863 	register vm_object_hash_entry_t	entry;
864 	vm_object_t			object;
865 
866 	vm_object_cache_lock();
867 
868 	for (entry = vm_object_hashtable[vm_object_hash(pager)].tqh_first;
869 	     entry != NULL;
870 	     entry = entry->hash_links.tqe_next) {
871 		object = entry->object;
872 		if (object->pager == pager) {
873 			vm_object_lock(object);
874 			if (object->ref_count == 0) {
875 				TAILQ_REMOVE(&vm_object_cached_list, object,
876 					cached_list);
877 				vm_object_cached--;
878 			}
879 			object->ref_count++;
880 			vm_object_unlock(object);
881 			vm_object_cache_unlock();
882 			return(object);
883 		}
884 	}
885 
886 	vm_object_cache_unlock();
887 	return(NULL);
888 }
889 
890 /*
891  *	vm_object_enter enters the specified object/pager/id into
892  *	the hash table.
893  */
894 
895 void vm_object_enter(object, pager)
896 	vm_object_t	object;
897 	vm_pager_t	pager;
898 {
899 	struct vm_object_hash_head	*bucket;
900 	register vm_object_hash_entry_t	entry;
901 
902 	/*
903 	 *	We don't cache null objects, and we can't cache
904 	 *	objects with the null pager.
905 	 */
906 
907 	if (object == NULL)
908 		return;
909 	if (pager == NULL)
910 		return;
911 
912 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
913 	entry = (vm_object_hash_entry_t)
914 		malloc((u_long)sizeof *entry, M_VMOBJHASH, M_WAITOK);
915 	entry->object = object;
916 	object->flags |= OBJ_CANPERSIST;
917 
918 	vm_object_cache_lock();
919 	TAILQ_INSERT_TAIL(bucket, entry, hash_links);
920 	vm_object_cache_unlock();
921 }
922 
923 /*
924  *	vm_object_remove:
925  *
926  *	Remove the pager from the hash table.
927  *	Note:  This assumes that the object cache
928  *	is locked.  XXX this should be fixed
929  *	by reorganizing vm_object_deallocate.
930  */
931 void
932 vm_object_remove(pager)
933 	register vm_pager_t	pager;
934 {
935 	struct vm_object_hash_head	*bucket;
936 	register vm_object_hash_entry_t	entry;
937 	register vm_object_t		object;
938 
939 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
940 
941 	for (entry = bucket->tqh_first;
942 	     entry != NULL;
943 	     entry = entry->hash_links.tqe_next) {
944 		object = entry->object;
945 		if (object->pager == pager) {
946 			TAILQ_REMOVE(bucket, entry, hash_links);
947 			free((caddr_t)entry, M_VMOBJHASH);
948 			break;
949 		}
950 	}
951 }
952 
953 /*
954  *	vm_object_cache_clear removes all objects from the cache.
955  *
956  */
957 
958 void vm_object_cache_clear()
959 {
960 	register vm_object_t	object;
961 
962 	/*
963 	 *	Remove each object in the cache by scanning down the
964 	 *	list of cached objects.
965 	 */
966 	vm_object_cache_lock();
967 	while ((object = vm_object_cached_list.tqh_first) != NULL) {
968 		vm_object_cache_unlock();
969 
970 		/*
971 		 * Note: it is important that we use vm_object_lookup
972 		 * to gain a reference, and not vm_object_reference, because
973 		 * the logic for removing an object from the cache lies in
974 		 * lookup.
975 		 */
976 		if (object != vm_object_lookup(object->pager))
977 			panic("vm_object_cache_clear: I'm sooo confused.");
978 		pager_cache(object, FALSE);
979 
980 		vm_object_cache_lock();
981 	}
982 	vm_object_cache_unlock();
983 }
984 
985 boolean_t	vm_object_collapse_allowed = TRUE;
986 /*
987  *	vm_object_collapse:
988  *
989  *	Collapse an object with the object backing it.
990  *	Pages in the backing object are moved into the
991  *	parent, and the backing object is deallocated.
992  *
993  *	Requires that the object be locked and the page
994  *	queues be unlocked.
995  *
996  */
997 void vm_object_collapse(object)
998 	register vm_object_t	object;
999 
1000 {
1001 	register vm_object_t	backing_object;
1002 	register vm_offset_t	backing_offset;
1003 	register vm_size_t	size;
1004 	register vm_offset_t	new_offset;
1005 	register vm_page_t	p, pp;
1006 
1007 	if (!vm_object_collapse_allowed)
1008 		return;
1009 
1010 	while (TRUE) {
1011 		/*
1012 		 *	Verify that the conditions are right for collapse:
1013 		 *
1014 		 *	The object exists and no pages in it are currently
1015 		 *	being paged out (or have ever been paged out).
1016 		 */
1017 		if (object == NULL ||
1018 		    object->paging_in_progress != 0 ||
1019 		    object->pager != NULL)
1020 			return;
1021 
1022 		/*
1023 		 *		There is a backing object, and
1024 		 */
1025 
1026 		if ((backing_object = object->shadow) == NULL)
1027 			return;
1028 
1029 		vm_object_lock(backing_object);
1030 		/*
1031 		 *	...
1032 		 *		The backing object is not read_only,
1033 		 *		and no pages in the backing object are
1034 		 *		currently being paged out.
1035 		 *		The backing object is internal.
1036 		 */
1037 
1038 		if ((backing_object->flags & OBJ_INTERNAL) == 0 ||
1039 		    backing_object->paging_in_progress != 0) {
1040 			vm_object_unlock(backing_object);
1041 			return;
1042 		}
1043 
1044 		/*
1045 		 *	The backing object can't be a copy-object:
1046 		 *	the shadow_offset for the copy-object must stay
1047 		 *	as 0.  Furthermore (for the 'we have all the
1048 		 *	pages' case), if we bypass backing_object and
1049 		 *	just shadow the next object in the chain, old
1050 		 *	pages from that object would then have to be copied
1051 		 *	BOTH into the (former) backing_object and into the
1052 		 *	parent object.
1053 		 */
1054 		if (backing_object->shadow != NULL &&
1055 		    backing_object->shadow->copy != NULL) {
1056 			vm_object_unlock(backing_object);
1057 			return;
1058 		}
1059 
1060 		/*
1061 		 *	We know that we can either collapse the backing
1062 		 *	object (if the parent is the only reference to
1063 		 *	it) or (perhaps) remove the parent's reference
1064 		 *	to it.
1065 		 */
1066 
1067 		backing_offset = object->shadow_offset;
1068 		size = object->size;
1069 
1070 		/*
1071 		 *	If there is exactly one reference to the backing
1072 		 *	object, we can collapse it into the parent.
1073 		 */
1074 
1075 		if (backing_object->ref_count == 1) {
1076 
1077 			/*
1078 			 *	We can collapse the backing object.
1079 			 *
1080 			 *	Move all in-memory pages from backing_object
1081 			 *	to the parent.  Pages that have been paged out
1082 			 *	will be overwritten by any of the parent's
1083 			 *	pages that shadow them.
1084 			 */
1085 
1086 			while ((p = backing_object->memq.tqh_first) != NULL) {
1087 
1088 				new_offset = (p->offset - backing_offset);
1089 
1090 				/*
1091 				 *	If the parent has a page here, or if
1092 				 *	this page falls outside the parent,
1093 				 *	dispose of it.
1094 				 *
1095 				 *	Otherwise, move it as planned.
1096 				 */
1097 
1098 				if (p->offset < backing_offset ||
1099 				    new_offset >= size) {
1100 					vm_page_lock_queues();
1101 					vm_page_free(p);
1102 					vm_page_unlock_queues();
1103 				} else {
1104 				    pp = vm_page_lookup(object, new_offset);
1105 				    if (pp != NULL && !(pp->flags & PG_FAKE)) {
1106 					vm_page_lock_queues();
1107 					vm_page_free(p);
1108 					vm_page_unlock_queues();
1109 				    }
1110 				    else {
1111 					if (pp) {
1112 					    /* may be someone waiting for it */
1113 					    PAGE_WAKEUP(pp);
1114 					    vm_page_lock_queues();
1115 					    vm_page_free(pp);
1116 					    vm_page_unlock_queues();
1117 					}
1118 					vm_page_rename(p, object, new_offset);
1119 				    }
1120 				}
1121 			}
1122 
1123 			/*
1124 			 *	Move the pager from backing_object to object.
1125 			 *
1126 			 *	XXX We're only using part of the paging space
1127 			 *	for keeps now... we ought to discard the
1128 			 *	unused portion.
1129 			 */
1130 
1131 			object->pager = backing_object->pager;
1132 			object->paging_offset += backing_offset;
1133 
1134 			backing_object->pager = NULL;
1135 
1136 			/*
1137 			 *	Object now shadows whatever backing_object did.
1138 			 *	Note that the reference to backing_object->shadow
1139 			 *	moves from within backing_object to within object.
1140 			 */
1141 
1142 			object->shadow = backing_object->shadow;
1143 			object->shadow_offset += backing_object->shadow_offset;
1144 			if (object->shadow != NULL &&
1145 			    object->shadow->copy != NULL) {
1146 				panic("vm_object_collapse: we collapsed a copy-object!");
1147 			}
1148 			/*
1149 			 *	Discard backing_object.
1150 			 *
1151 			 *	Since the backing object has no pages, no
1152 			 *	pager left, and no object references within it,
1153 			 *	all that is necessary is to dispose of it.
1154 			 */
1155 
1156 			vm_object_unlock(backing_object);
1157 
1158 			simple_lock(&vm_object_list_lock);
1159 			TAILQ_REMOVE(&vm_object_list, backing_object,
1160 			    object_list);
1161 			vm_object_count--;
1162 			simple_unlock(&vm_object_list_lock);
1163 
1164 			free((caddr_t)backing_object, M_VMOBJ);
1165 
1166 			object_collapses++;
1167 		}
1168 		else {
1169 			/*
1170 			 *	If all of the pages in the backing object are
1171 			 *	shadowed by the parent object, the parent
1172 			 *	object no longer has to shadow the backing
1173 			 *	object; it can shadow the next one in the
1174 			 *	chain.
1175 			 *
1176 			 *	The backing object must not be paged out - we'd
1177 			 *	have to check all of the paged-out pages, as
1178 			 *	well.
1179 			 */
1180 
1181 			if (backing_object->pager != NULL) {
1182 				vm_object_unlock(backing_object);
1183 				return;
1184 			}
1185 
1186 			/*
1187 			 *	Should have a check for a 'small' number
1188 			 *	of pages here.
1189 			 */
1190 
1191 			for (p = backing_object->memq.tqh_first;
1192 			     p != NULL;
1193 			     p = p->listq.tqe_next) {
1194 				new_offset = (p->offset - backing_offset);
1195 
1196 				/*
1197 				 *	If the parent has a page here, or if
1198 				 *	this page falls outside the parent,
1199 				 *	keep going.
1200 				 *
1201 				 *	Otherwise, the backing_object must be
1202 				 *	left in the chain.
1203 				 */
1204 
1205 				if (p->offset >= backing_offset &&
1206 				    new_offset <= size &&
1207 				    ((pp = vm_page_lookup(object, new_offset))
1208 				      == NULL ||
1209 				     (pp->flags & PG_FAKE))) {
1210 					/*
1211 					 *	Page still needed.
1212 					 *	Can't go any further.
1213 					 */
1214 					vm_object_unlock(backing_object);
1215 					return;
1216 				}
1217 			}
1218 
1219 			/*
1220 			 *	Make the parent shadow the next object
1221 			 *	in the chain.  Deallocating backing_object
1222 			 *	will not remove it, since its reference
1223 			 *	count is at least 2.
1224 			 */
1225 
1226 			vm_object_reference(object->shadow = backing_object->shadow);
1227 			object->shadow_offset += backing_object->shadow_offset;
1228 
1229 			/*	Drop the reference count on backing_object.
1230 			 *	Since its ref_count was at least 2, it
1231 			 *	will not vanish; so we don't need to call
1232 			 *	vm_object_deallocate.
1233 			 */
1234 			backing_object->ref_count--;
1235 			vm_object_unlock(backing_object);
1236 
1237 			object_bypasses ++;
1238 
1239 		}
1240 
1241 		/*
1242 		 *	Try again with this object's new backing object.
1243 		 */
1244 	}
1245 }
1246 
1247 /*
1248  *	vm_object_page_remove: [internal]
1249  *
1250  *	Removes all physical pages in the specified
1251  *	object range from the object's list of pages.
1252  *
1253  *	The object must be locked.
1254  */
1255 void vm_object_page_remove(object, start, end)
1256 	register vm_object_t	object;
1257 	register vm_offset_t	start;
1258 	register vm_offset_t	end;
1259 {
1260 	register vm_page_t	p, next;
1261 
1262 	if (object == NULL)
1263 		return;
1264 
1265 	for (p = object->memq.tqh_first; p != NULL; p = next) {
1266 		next = p->listq.tqe_next;
1267 		if ((start <= p->offset) && (p->offset < end)) {
1268 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
1269 			vm_page_lock_queues();
1270 			vm_page_free(p);
1271 			vm_page_unlock_queues();
1272 		}
1273 	}
1274 }
1275 
1276 /*
1277  *	Routine:	vm_object_coalesce
1278  *	Function:	Coalesces two objects backing up adjoining
1279  *			regions of memory into a single object.
1280  *
1281  *	returns TRUE if objects were combined.
1282  *
1283  *	NOTE:	Only works at the moment if the second object is NULL -
1284  *		if it's not, which object do we lock first?
1285  *
1286  *	Parameters:
1287  *		prev_object	First object to coalesce
1288  *		prev_offset	Offset into prev_object
1289  *		next_object	Second object into coalesce
1290  *		next_offset	Offset into next_object
1291  *
1292  *		prev_size	Size of reference to prev_object
1293  *		next_size	Size of reference to next_object
1294  *
1295  *	Conditions:
1296  *	The object must *not* be locked.
1297  */
1298 boolean_t vm_object_coalesce(prev_object, next_object,
1299 			prev_offset, next_offset,
1300 			prev_size, next_size)
1301 
1302 	register vm_object_t	prev_object;
1303 	vm_object_t	next_object;
1304 	vm_offset_t	prev_offset, next_offset;
1305 	vm_size_t	prev_size, next_size;
1306 {
1307 	vm_size_t	newsize;
1308 
1309 #ifdef	lint
1310 	next_offset++;
1311 #endif
1312 
1313 	if (next_object != NULL) {
1314 		return(FALSE);
1315 	}
1316 
1317 	if (prev_object == NULL) {
1318 		return(TRUE);
1319 	}
1320 
1321 	vm_object_lock(prev_object);
1322 
1323 	/*
1324 	 *	Try to collapse the object first
1325 	 */
1326 	vm_object_collapse(prev_object);
1327 
1328 	/*
1329 	 *	Can't coalesce if:
1330 	 *	. more than one reference
1331 	 *	. paged out
1332 	 *	. shadows another object
1333 	 *	. has a copy elsewhere
1334 	 *	(any of which mean that the pages not mapped to
1335 	 *	prev_entry may be in use anyway)
1336 	 */
1337 
1338 	if (prev_object->ref_count > 1 ||
1339 		prev_object->pager != NULL ||
1340 		prev_object->shadow != NULL ||
1341 		prev_object->copy != NULL) {
1342 		vm_object_unlock(prev_object);
1343 		return(FALSE);
1344 	}
1345 
1346 	/*
1347 	 *	Remove any pages that may still be in the object from
1348 	 *	a previous deallocation.
1349 	 */
1350 
1351 	vm_object_page_remove(prev_object,
1352 			prev_offset + prev_size,
1353 			prev_offset + prev_size + next_size);
1354 
1355 	/*
1356 	 *	Extend the object if necessary.
1357 	 */
1358 	newsize = prev_offset + prev_size + next_size;
1359 	if (newsize > prev_object->size)
1360 		prev_object->size = newsize;
1361 
1362 	vm_object_unlock(prev_object);
1363 	return(TRUE);
1364 }
1365 
1366 /*
1367  *	vm_object_print:	[ debug ]
1368  */
1369 void vm_object_print(object, full)
1370 	vm_object_t	object;
1371 	boolean_t	full;
1372 {
1373 	register vm_page_t	p;
1374 	extern indent;
1375 
1376 	register int count;
1377 
1378 	if (object == NULL)
1379 		return;
1380 
1381 	iprintf("Object 0x%x: size=0x%x, res=%d, ref=%d, ",
1382 		(int) object, (int) object->size,
1383 		object->resident_page_count, object->ref_count);
1384 	printf("pager=0x%x+0x%x, shadow=(0x%x)+0x%x\n",
1385 	       (int) object->pager, (int) object->paging_offset,
1386 	       (int) object->shadow, (int) object->shadow_offset);
1387 	printf("cache: next=0x%x, prev=0x%x\n",
1388 	       object->cached_list.tqe_next, object->cached_list.tqe_prev);
1389 
1390 	if (!full)
1391 		return;
1392 
1393 	indent += 2;
1394 	count = 0;
1395 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next) {
1396 		if (count == 0)
1397 			iprintf("memory:=");
1398 		else if (count == 6) {
1399 			printf("\n");
1400 			iprintf(" ...");
1401 			count = 0;
1402 		} else
1403 			printf(",");
1404 		count++;
1405 
1406 		printf("(off=0x%x,page=0x%x)", p->offset, VM_PAGE_TO_PHYS(p));
1407 	}
1408 	if (count != 0)
1409 		printf("\n");
1410 	indent -= 2;
1411 }
1412