xref: /original-bsd/sys/vm/vm_object.c (revision e59fb703)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_object.c	7.9 (Berkeley) 11/20/91
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Virtual memory object module.
41  */
42 
43 #include "param.h"
44 #include "malloc.h"
45 
46 #include "vm.h"
47 #include "vm_page.h"
48 
49 /*
50  *	Virtual memory objects maintain the actual data
51  *	associated with allocated virtual memory.  A given
52  *	page of memory exists within exactly one object.
53  *
54  *	An object is only deallocated when all "references"
55  *	are given up.  Only one "reference" to a given
56  *	region of an object should be writeable.
57  *
58  *	Associated with each object is a list of all resident
59  *	memory pages belonging to that object; this list is
60  *	maintained by the "vm_page" module, and locked by the object's
61  *	lock.
62  *
63  *	Each object also records a "pager" routine which is
64  *	used to retrieve (and store) pages to the proper backing
65  *	storage.  In addition, objects may be backed by other
66  *	objects from which they were virtual-copied.
67  *
68  *	The only items within the object structure which are
69  *	modified after time of creation are:
70  *		reference count		locked by object's lock
71  *		pager routine		locked by object's lock
72  *
73  */
74 
75 struct vm_object	kernel_object_store;
76 struct vm_object	kmem_object_store;
77 
78 #define	VM_OBJECT_HASH_COUNT	157
79 
80 int		vm_cache_max = 100;	/* can patch if necessary */
81 queue_head_t	vm_object_hashtable[VM_OBJECT_HASH_COUNT];
82 
83 long	object_collapses = 0;
84 long	object_bypasses  = 0;
85 
86 /*
87  *	vm_object_init:
88  *
89  *	Initialize the VM objects module.
90  */
91 void vm_object_init(size)
92 	vm_size_t	size;
93 {
94 	register int	i;
95 
96 	queue_init(&vm_object_cached_list);
97 	queue_init(&vm_object_list);
98 	vm_object_count = 0;
99 	simple_lock_init(&vm_cache_lock);
100 	simple_lock_init(&vm_object_list_lock);
101 
102 	for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
103 		queue_init(&vm_object_hashtable[i]);
104 
105 	kernel_object = &kernel_object_store;
106 	_vm_object_allocate(size, kernel_object);
107 
108 	kmem_object = &kmem_object_store;
109 	_vm_object_allocate(VM_KMEM_SIZE + VM_MBUF_SIZE, kmem_object);
110 }
111 
112 /*
113  *	vm_object_allocate:
114  *
115  *	Returns a new object with the given size.
116  */
117 
118 vm_object_t vm_object_allocate(size)
119 	vm_size_t	size;
120 {
121 	register vm_object_t	result;
122 
123 	result = (vm_object_t)
124 		malloc((u_long)sizeof *result, M_VMOBJ, M_WAITOK);
125 
126 	_vm_object_allocate(size, result);
127 
128 	return(result);
129 }
130 
131 _vm_object_allocate(size, object)
132 	vm_size_t		size;
133 	register vm_object_t	object;
134 {
135 	queue_init(&object->memq);
136 	vm_object_lock_init(object);
137 	object->ref_count = 1;
138 	object->resident_page_count = 0;
139 	object->size = size;
140 	object->flags = OBJ_INTERNAL;	/* vm_allocate_with_pager will reset */
141 	object->paging_in_progress = 0;
142 	object->copy = NULL;
143 
144 	/*
145 	 *	Object starts out read-write, with no pager.
146 	 */
147 
148 	object->pager = NULL;
149 	object->paging_offset = 0;
150 	object->shadow = NULL;
151 	object->shadow_offset = (vm_offset_t) 0;
152 
153 	simple_lock(&vm_object_list_lock);
154 	queue_enter(&vm_object_list, object, vm_object_t, object_list);
155 	vm_object_count++;
156 	simple_unlock(&vm_object_list_lock);
157 }
158 
159 /*
160  *	vm_object_reference:
161  *
162  *	Gets another reference to the given object.
163  */
164 void vm_object_reference(object)
165 	register vm_object_t	object;
166 {
167 	if (object == NULL)
168 		return;
169 
170 	vm_object_lock(object);
171 	object->ref_count++;
172 	vm_object_unlock(object);
173 }
174 
175 /*
176  *	vm_object_deallocate:
177  *
178  *	Release a reference to the specified object,
179  *	gained either through a vm_object_allocate
180  *	or a vm_object_reference call.  When all references
181  *	are gone, storage associated with this object
182  *	may be relinquished.
183  *
184  *	No object may be locked.
185  */
186 void vm_object_deallocate(object)
187 	register vm_object_t	object;
188 {
189 	vm_object_t	temp;
190 
191 	while (object != NULL) {
192 
193 		/*
194 		 *	The cache holds a reference (uncounted) to
195 		 *	the object; we must lock it before removing
196 		 *	the object.
197 		 */
198 
199 		vm_object_cache_lock();
200 
201 		/*
202 		 *	Lose the reference
203 		 */
204 		vm_object_lock(object);
205 		if (--(object->ref_count) != 0) {
206 
207 			/*
208 			 *	If there are still references, then
209 			 *	we are done.
210 			 */
211 			vm_object_unlock(object);
212 			vm_object_cache_unlock();
213 			return;
214 		}
215 
216 		/*
217 		 *	See if this object can persist.  If so, enter
218 		 *	it in the cache, then deactivate all of its
219 		 *	pages.
220 		 */
221 
222 		if (object->flags & OBJ_CANPERSIST) {
223 
224 			queue_enter(&vm_object_cached_list, object,
225 				vm_object_t, cached_list);
226 			vm_object_cached++;
227 			vm_object_cache_unlock();
228 
229 			vm_object_deactivate_pages(object);
230 			vm_object_unlock(object);
231 
232 			vm_object_cache_trim();
233 			return;
234 		}
235 
236 		/*
237 		 *	Make sure no one can look us up now.
238 		 */
239 		vm_object_remove(object->pager);
240 		vm_object_cache_unlock();
241 
242 		temp = object->shadow;
243 		vm_object_terminate(object);
244 			/* unlocks and deallocates object */
245 		object = temp;
246 	}
247 }
248 
249 
250 /*
251  *	vm_object_terminate actually destroys the specified object, freeing
252  *	up all previously used resources.
253  *
254  *	The object must be locked.
255  */
256 void vm_object_terminate(object)
257 	register vm_object_t	object;
258 {
259 	register vm_page_t	p;
260 	vm_object_t		shadow_object;
261 
262 	/*
263 	 *	Detach the object from its shadow if we are the shadow's
264 	 *	copy.
265 	 */
266 	if ((shadow_object = object->shadow) != NULL) {
267 		vm_object_lock(shadow_object);
268 		if (shadow_object->copy == object)
269 			shadow_object->copy = NULL;
270 #if 0
271 		else if (shadow_object->copy != NULL)
272 			panic("vm_object_terminate: copy/shadow inconsistency");
273 #endif
274 		vm_object_unlock(shadow_object);
275 	}
276 
277 	/*
278 	 * Wait until the pageout daemon is through with the object.
279 	 */
280 	while (object->paging_in_progress) {
281 		vm_object_sleep((int)object, object, FALSE);
282 		vm_object_lock(object);
283 	}
284 
285 	/*
286 	 * If not an internal object clean all the pages, removing them
287 	 * from paging queues as we go.
288 	 */
289 	if ((object->flags & OBJ_INTERNAL) == 0) {
290 		vm_object_page_clean(object, 0, 0, TRUE);
291 		vm_object_unlock(object);
292 	}
293 
294 	/*
295 	 * Now free the pages.
296 	 * For internal objects, this also removes them from paging queues.
297 	 */
298 	while (!queue_empty(&object->memq)) {
299 		p = (vm_page_t) queue_first(&object->memq);
300 		VM_PAGE_CHECK(p);
301 		vm_page_lock_queues();
302 		vm_page_free(p);
303 		vm_page_unlock_queues();
304 	}
305 	if ((object->flags & OBJ_INTERNAL) == 0)
306 		vm_object_unlock(object);
307 
308 	/*
309 	 * Let the pager know object is dead.
310 	 */
311 	if (object->pager != NULL)
312 		vm_pager_deallocate(object->pager);
313 
314 	simple_lock(&vm_object_list_lock);
315 	queue_remove(&vm_object_list, object, vm_object_t, object_list);
316 	vm_object_count--;
317 	simple_unlock(&vm_object_list_lock);
318 
319 	/*
320 	 * Free the space for the object.
321 	 */
322 	free((caddr_t)object, M_VMOBJ);
323 }
324 
325 /*
326  *	vm_object_page_clean
327  *
328  *	Clean all dirty pages in the specified range of object.
329  *	If dequeue is TRUE, pages are removed from any paging queue
330  *	they were on, otherwise they are left on whatever queue they
331  *	were on before the cleaning operation began.
332  *
333  *	Odd semantics: if start == end, we clean everything.
334  *
335  *	The object must be locked.
336  */
337 vm_object_page_clean(object, start, end, dequeue)
338 	register vm_object_t	object;
339 	register vm_offset_t	start;
340 	register vm_offset_t	end;
341 	boolean_t		dequeue;
342 {
343 	register vm_page_t	p;
344 	int onqueue;
345 
346 	if (object->pager == NULL)
347 		return;
348 
349 again:
350 	/*
351 	 * Wait until the pageout daemon is through with the object.
352 	 */
353 	while (object->paging_in_progress) {
354 		vm_object_sleep((int)object, object, FALSE);
355 		vm_object_lock(object);
356 	}
357 	/*
358 	 * Loop through the object page list cleaning as necessary.
359 	 */
360 	p = (vm_page_t) queue_first(&object->memq);
361 	while (!queue_end(&object->memq, (queue_entry_t) p)) {
362 		if (start == end ||
363 		    p->offset >= start && p->offset < end) {
364 			if (p->clean && pmap_is_modified(VM_PAGE_TO_PHYS(p)))
365 				p->clean = FALSE;
366 			/*
367 			 * Remove the page from any paging queue.
368 			 * This needs to be done if either we have been
369 			 * explicitly asked to do so or it is about to
370 			 * be cleaned (see comment below).
371 			 */
372 			if (dequeue || !p->clean) {
373 				vm_page_lock_queues();
374 				if (p->active) {
375 					queue_remove(&vm_page_queue_active,
376 						     p, vm_page_t, pageq);
377 					p->active = FALSE;
378 					cnt.v_active_count--;
379 					onqueue = 1;
380 				} else if (p->inactive) {
381 					queue_remove(&vm_page_queue_inactive,
382 						     p, vm_page_t, pageq);
383 					p->inactive = FALSE;
384 					cnt.v_inactive_count--;
385 					onqueue = -1;
386 				} else
387 					onqueue = 0;
388 				vm_page_unlock_queues();
389 			}
390 			/*
391 			 * To ensure the state of the page doesn't change
392 			 * during the clean operation we do two things.
393 			 * First we set the busy bit and invalidate all
394 			 * mappings to ensure that thread accesses to the
395 			 * page block (in vm_fault).  Second, we remove
396 			 * the page from any paging queue to foil the
397 			 * pageout daemon (vm_pageout_scan).
398 			 */
399 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
400 			if (!p->clean) {
401 				p->busy = TRUE;
402 				object->paging_in_progress++;
403 				vm_object_unlock(object);
404 				(void) vm_pager_put(object->pager, p, TRUE);
405 				vm_object_lock(object);
406 				object->paging_in_progress--;
407 				if (!dequeue && onqueue) {
408 					vm_page_lock_queues();
409 					if (onqueue > 0)
410 						vm_page_activate(p);
411 					else
412 						vm_page_deactivate(p);
413 					vm_page_unlock_queues();
414 				}
415 				p->busy = FALSE;
416 				PAGE_WAKEUP(p);
417 				goto again;
418 			}
419 		}
420 		p = (vm_page_t) queue_next(&p->listq);
421 	}
422 }
423 
424 /*
425  *	vm_object_deactivate_pages
426  *
427  *	Deactivate all pages in the specified object.  (Keep its pages
428  *	in memory even though it is no longer referenced.)
429  *
430  *	The object must be locked.
431  */
432 vm_object_deactivate_pages(object)
433 	register vm_object_t	object;
434 {
435 	register vm_page_t	p, next;
436 
437 	p = (vm_page_t) queue_first(&object->memq);
438 	while (!queue_end(&object->memq, (queue_entry_t) p)) {
439 		next = (vm_page_t) queue_next(&p->listq);
440 		vm_page_lock_queues();
441 		vm_page_deactivate(p);
442 		vm_page_unlock_queues();
443 		p = next;
444 	}
445 }
446 
447 /*
448  *	Trim the object cache to size.
449  */
450 vm_object_cache_trim()
451 {
452 	register vm_object_t	object;
453 
454 	vm_object_cache_lock();
455 	while (vm_object_cached > vm_cache_max) {
456 		object = (vm_object_t) queue_first(&vm_object_cached_list);
457 		vm_object_cache_unlock();
458 
459 		if (object != vm_object_lookup(object->pager))
460 			panic("vm_object_deactivate: I'm sooo confused.");
461 
462 		pager_cache(object, FALSE);
463 
464 		vm_object_cache_lock();
465 	}
466 	vm_object_cache_unlock();
467 }
468 
469 
470 /*
471  *	vm_object_shutdown()
472  *
473  *	Shut down the object system.  Unfortunately, while we
474  *	may be trying to do this, init is happily waiting for
475  *	processes to exit, and therefore will be causing some objects
476  *	to be deallocated.  To handle this, we gain a fake reference
477  *	to all objects we release paging areas for.  This will prevent
478  *	a duplicate deallocation.  This routine is probably full of
479  *	race conditions!
480  */
481 
482 void vm_object_shutdown()
483 {
484 	register vm_object_t	object;
485 
486 	/*
487 	 *	Clean up the object cache *before* we screw up the reference
488 	 *	counts on all of the objects.
489 	 */
490 
491 	vm_object_cache_clear();
492 
493 	printf("free paging spaces: ");
494 
495 	/*
496 	 *	First we gain a reference to each object so that
497 	 *	no one else will deallocate them.
498 	 */
499 
500 	simple_lock(&vm_object_list_lock);
501 	object = (vm_object_t) queue_first(&vm_object_list);
502 	while (!queue_end(&vm_object_list, (queue_entry_t) object)) {
503 		vm_object_reference(object);
504 		object = (vm_object_t) queue_next(&object->object_list);
505 	}
506 	simple_unlock(&vm_object_list_lock);
507 
508 	/*
509 	 *	Now we deallocate all the paging areas.  We don't need
510 	 *	to lock anything because we've reduced to a single
511 	 *	processor while shutting down.	This also assumes that
512 	 *	no new objects are being created.
513 	 */
514 
515 	object = (vm_object_t) queue_first(&vm_object_list);
516 	while (!queue_end(&vm_object_list, (queue_entry_t) object)) {
517 		if (object->pager != NULL)
518 			vm_pager_deallocate(object->pager);
519 		object = (vm_object_t) queue_next(&object->object_list);
520 		printf(".");
521 	}
522 	printf("done.\n");
523 }
524 
525 /*
526  *	vm_object_pmap_copy:
527  *
528  *	Makes all physical pages in the specified
529  *	object range copy-on-write.  No writeable
530  *	references to these pages should remain.
531  *
532  *	The object must *not* be locked.
533  */
534 void vm_object_pmap_copy(object, start, end)
535 	register vm_object_t	object;
536 	register vm_offset_t	start;
537 	register vm_offset_t	end;
538 {
539 	register vm_page_t	p;
540 
541 	if (object == NULL)
542 		return;
543 
544 	vm_object_lock(object);
545 	p = (vm_page_t) queue_first(&object->memq);
546 	while (!queue_end(&object->memq, (queue_entry_t) p)) {
547 		if ((start <= p->offset) && (p->offset < end)) {
548 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_READ);
549 			p->copy_on_write = TRUE;
550 		}
551 		p = (vm_page_t) queue_next(&p->listq);
552 	}
553 	vm_object_unlock(object);
554 }
555 
556 /*
557  *	vm_object_pmap_remove:
558  *
559  *	Removes all physical pages in the specified
560  *	object range from all physical maps.
561  *
562  *	The object must *not* be locked.
563  */
564 void vm_object_pmap_remove(object, start, end)
565 	register vm_object_t	object;
566 	register vm_offset_t	start;
567 	register vm_offset_t	end;
568 {
569 	register vm_page_t	p;
570 
571 	if (object == NULL)
572 		return;
573 
574 	vm_object_lock(object);
575 	p = (vm_page_t) queue_first(&object->memq);
576 	while (!queue_end(&object->memq, (queue_entry_t) p)) {
577 		if ((start <= p->offset) && (p->offset < end))
578 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
579 		p = (vm_page_t) queue_next(&p->listq);
580 	}
581 	vm_object_unlock(object);
582 }
583 
584 /*
585  *	vm_object_copy:
586  *
587  *	Create a new object which is a copy of an existing
588  *	object, and mark all of the pages in the existing
589  *	object 'copy-on-write'.  The new object has one reference.
590  *	Returns the new object.
591  *
592  *	May defer the copy until later if the object is not backed
593  *	up by a non-default pager.
594  */
595 void vm_object_copy(src_object, src_offset, size,
596 		    dst_object, dst_offset, src_needs_copy)
597 	register vm_object_t	src_object;
598 	vm_offset_t		src_offset;
599 	vm_size_t		size;
600 	vm_object_t		*dst_object;	/* OUT */
601 	vm_offset_t		*dst_offset;	/* OUT */
602 	boolean_t		*src_needs_copy;	/* OUT */
603 {
604 	register vm_object_t	new_copy;
605 	register vm_object_t	old_copy;
606 	vm_offset_t		new_start, new_end;
607 
608 	register vm_page_t	p;
609 
610 	if (src_object == NULL) {
611 		/*
612 		 *	Nothing to copy
613 		 */
614 		*dst_object = NULL;
615 		*dst_offset = 0;
616 		*src_needs_copy = FALSE;
617 		return;
618 	}
619 
620 	/*
621 	 *	If the object's pager is null_pager or the
622 	 *	default pager, we don't have to make a copy
623 	 *	of it.  Instead, we set the needs copy flag and
624 	 *	make a shadow later.
625 	 */
626 
627 	vm_object_lock(src_object);
628 	if (src_object->pager == NULL ||
629 	    (src_object->flags & OBJ_INTERNAL)) {
630 
631 		/*
632 		 *	Make another reference to the object
633 		 */
634 		src_object->ref_count++;
635 
636 		/*
637 		 *	Mark all of the pages copy-on-write.
638 		 */
639 		for (p = (vm_page_t) queue_first(&src_object->memq);
640 		     !queue_end(&src_object->memq, (queue_entry_t)p);
641 		     p = (vm_page_t) queue_next(&p->listq)) {
642 			if (src_offset <= p->offset &&
643 			    p->offset < src_offset + size)
644 				p->copy_on_write = TRUE;
645 		}
646 		vm_object_unlock(src_object);
647 
648 		*dst_object = src_object;
649 		*dst_offset = src_offset;
650 
651 		/*
652 		 *	Must make a shadow when write is desired
653 		 */
654 		*src_needs_copy = TRUE;
655 		return;
656 	}
657 
658 	/*
659 	 *	Try to collapse the object before copying it.
660 	 */
661 	vm_object_collapse(src_object);
662 
663 	/*
664 	 *	If the object has a pager, the pager wants to
665 	 *	see all of the changes.  We need a copy-object
666 	 *	for the changed pages.
667 	 *
668 	 *	If there is a copy-object, and it is empty,
669 	 *	no changes have been made to the object since the
670 	 *	copy-object was made.  We can use the same copy-
671 	 *	object.
672 	 */
673 
674     Retry1:
675 	old_copy = src_object->copy;
676 	if (old_copy != NULL) {
677 		/*
678 		 *	Try to get the locks (out of order)
679 		 */
680 		if (!vm_object_lock_try(old_copy)) {
681 			vm_object_unlock(src_object);
682 
683 			/* should spin a bit here... */
684 			vm_object_lock(src_object);
685 			goto Retry1;
686 		}
687 
688 		if (old_copy->resident_page_count == 0 &&
689 		    old_copy->pager == NULL) {
690 			/*
691 			 *	Return another reference to
692 			 *	the existing copy-object.
693 			 */
694 			old_copy->ref_count++;
695 			vm_object_unlock(old_copy);
696 			vm_object_unlock(src_object);
697 			*dst_object = old_copy;
698 			*dst_offset = src_offset;
699 			*src_needs_copy = FALSE;
700 			return;
701 		}
702 		vm_object_unlock(old_copy);
703 	}
704 	vm_object_unlock(src_object);
705 
706 	/*
707 	 *	If the object has a pager, the pager wants
708 	 *	to see all of the changes.  We must make
709 	 *	a copy-object and put the changed pages there.
710 	 *
711 	 *	The copy-object is always made large enough to
712 	 *	completely shadow the original object, since
713 	 *	it may have several users who want to shadow
714 	 *	the original object at different points.
715 	 */
716 
717 	new_copy = vm_object_allocate(src_object->size);
718 
719     Retry2:
720 	vm_object_lock(src_object);
721 	/*
722 	 *	Copy object may have changed while we were unlocked
723 	 */
724 	old_copy = src_object->copy;
725 	if (old_copy != NULL) {
726 		/*
727 		 *	Try to get the locks (out of order)
728 		 */
729 		if (!vm_object_lock_try(old_copy)) {
730 			vm_object_unlock(src_object);
731 			goto Retry2;
732 		}
733 
734 		/*
735 		 *	Consistency check
736 		 */
737 		if (old_copy->shadow != src_object ||
738 		    old_copy->shadow_offset != (vm_offset_t) 0)
739 			panic("vm_object_copy: copy/shadow inconsistency");
740 
741 		/*
742 		 *	Make the old copy-object shadow the new one.
743 		 *	It will receive no more pages from the original
744 		 *	object.
745 		 */
746 
747 		src_object->ref_count--;	/* remove ref. from old_copy */
748 		old_copy->shadow = new_copy;
749 		new_copy->ref_count++;		/* locking not needed - we
750 						   have the only pointer */
751 		vm_object_unlock(old_copy);	/* done with old_copy */
752 	}
753 
754 	new_start = (vm_offset_t) 0;	/* always shadow original at 0 */
755 	new_end   = (vm_offset_t) new_copy->size; /* for the whole object */
756 
757 	/*
758 	 *	Point the new copy at the existing object.
759 	 */
760 
761 	new_copy->shadow = src_object;
762 	new_copy->shadow_offset = new_start;
763 	src_object->ref_count++;
764 	src_object->copy = new_copy;
765 
766 	/*
767 	 *	Mark all the affected pages of the existing object
768 	 *	copy-on-write.
769 	 */
770 	p = (vm_page_t) queue_first(&src_object->memq);
771 	while (!queue_end(&src_object->memq, (queue_entry_t) p)) {
772 		if ((new_start <= p->offset) && (p->offset < new_end))
773 			p->copy_on_write = TRUE;
774 		p = (vm_page_t) queue_next(&p->listq);
775 	}
776 
777 	vm_object_unlock(src_object);
778 
779 	*dst_object = new_copy;
780 	*dst_offset = src_offset - new_start;
781 	*src_needs_copy = FALSE;
782 }
783 
784 /*
785  *	vm_object_shadow:
786  *
787  *	Create a new object which is backed by the
788  *	specified existing object range.  The source
789  *	object reference is deallocated.
790  *
791  *	The new object and offset into that object
792  *	are returned in the source parameters.
793  */
794 
795 void vm_object_shadow(object, offset, length)
796 	vm_object_t	*object;	/* IN/OUT */
797 	vm_offset_t	*offset;	/* IN/OUT */
798 	vm_size_t	length;
799 {
800 	register vm_object_t	source;
801 	register vm_object_t	result;
802 
803 	source = *object;
804 
805 	/*
806 	 *	Allocate a new object with the given length
807 	 */
808 
809 	if ((result = vm_object_allocate(length)) == NULL)
810 		panic("vm_object_shadow: no object for shadowing");
811 
812 	/*
813 	 *	The new object shadows the source object, adding
814 	 *	a reference to it.  Our caller changes his reference
815 	 *	to point to the new object, removing a reference to
816 	 *	the source object.  Net result: no change of reference
817 	 *	count.
818 	 */
819 	result->shadow = source;
820 
821 	/*
822 	 *	Store the offset into the source object,
823 	 *	and fix up the offset into the new object.
824 	 */
825 
826 	result->shadow_offset = *offset;
827 
828 	/*
829 	 *	Return the new things
830 	 */
831 
832 	*offset = 0;
833 	*object = result;
834 }
835 
836 /*
837  *	Set the specified object's pager to the specified pager.
838  */
839 
840 void vm_object_setpager(object, pager, paging_offset,
841 			read_only)
842 	vm_object_t	object;
843 	vm_pager_t	pager;
844 	vm_offset_t	paging_offset;
845 	boolean_t	read_only;
846 {
847 #ifdef	lint
848 	read_only++;	/* No longer used */
849 #endif	lint
850 
851 	vm_object_lock(object);			/* XXX ? */
852 	object->pager = pager;
853 	object->paging_offset = paging_offset;
854 	vm_object_unlock(object);			/* XXX ? */
855 }
856 
857 /*
858  *	vm_object_hash hashes the pager/id pair.
859  */
860 
861 #define vm_object_hash(pager) \
862 	(((unsigned)pager)%VM_OBJECT_HASH_COUNT)
863 
864 /*
865  *	vm_object_lookup looks in the object cache for an object with the
866  *	specified pager and paging id.
867  */
868 
869 vm_object_t vm_object_lookup(pager)
870 	vm_pager_t	pager;
871 {
872 	register queue_t		bucket;
873 	register vm_object_hash_entry_t	entry;
874 	vm_object_t			object;
875 
876 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
877 
878 	vm_object_cache_lock();
879 
880 	entry = (vm_object_hash_entry_t) queue_first(bucket);
881 	while (!queue_end(bucket, (queue_entry_t) entry)) {
882 		object = entry->object;
883 		if (object->pager == pager) {
884 			vm_object_lock(object);
885 			if (object->ref_count == 0) {
886 				queue_remove(&vm_object_cached_list, object,
887 						vm_object_t, cached_list);
888 				vm_object_cached--;
889 			}
890 			object->ref_count++;
891 			vm_object_unlock(object);
892 			vm_object_cache_unlock();
893 			return(object);
894 		}
895 		entry = (vm_object_hash_entry_t) queue_next(&entry->hash_links);
896 	}
897 
898 	vm_object_cache_unlock();
899 	return(NULL);
900 }
901 
902 /*
903  *	vm_object_enter enters the specified object/pager/id into
904  *	the hash table.
905  */
906 
907 void vm_object_enter(object, pager)
908 	vm_object_t	object;
909 	vm_pager_t	pager;
910 {
911 	register queue_t		bucket;
912 	register vm_object_hash_entry_t	entry;
913 
914 	/*
915 	 *	We don't cache null objects, and we can't cache
916 	 *	objects with the null pager.
917 	 */
918 
919 	if (object == NULL)
920 		return;
921 	if (pager == NULL)
922 		return;
923 
924 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
925 	entry = (vm_object_hash_entry_t)
926 		malloc((u_long)sizeof *entry, M_VMOBJHASH, M_WAITOK);
927 	entry->object = object;
928 	object->flags |= OBJ_CANPERSIST;
929 
930 	vm_object_cache_lock();
931 	queue_enter(bucket, entry, vm_object_hash_entry_t, hash_links);
932 	vm_object_cache_unlock();
933 }
934 
935 /*
936  *	vm_object_remove:
937  *
938  *	Remove the pager from the hash table.
939  *	Note:  This assumes that the object cache
940  *	is locked.  XXX this should be fixed
941  *	by reorganizing vm_object_deallocate.
942  */
943 vm_object_remove(pager)
944 	register vm_pager_t	pager;
945 {
946 	register queue_t		bucket;
947 	register vm_object_hash_entry_t	entry;
948 	register vm_object_t		object;
949 
950 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
951 
952 	entry = (vm_object_hash_entry_t) queue_first(bucket);
953 	while (!queue_end(bucket, (queue_entry_t) entry)) {
954 		object = entry->object;
955 		if (object->pager == pager) {
956 			queue_remove(bucket, entry, vm_object_hash_entry_t,
957 					hash_links);
958 			free((caddr_t)entry, M_VMOBJHASH);
959 			break;
960 		}
961 		entry = (vm_object_hash_entry_t) queue_next(&entry->hash_links);
962 	}
963 }
964 
965 /*
966  *	vm_object_cache_clear removes all objects from the cache.
967  *
968  */
969 
970 void vm_object_cache_clear()
971 {
972 	register vm_object_t	object;
973 
974 	/*
975 	 *	Remove each object in the cache by scanning down the
976 	 *	list of cached objects.
977 	 */
978 	vm_object_cache_lock();
979 	while (!queue_empty(&vm_object_cached_list)) {
980 		object = (vm_object_t) queue_first(&vm_object_cached_list);
981 		vm_object_cache_unlock();
982 
983 		/*
984 		 * Note: it is important that we use vm_object_lookup
985 		 * to gain a reference, and not vm_object_reference, because
986 		 * the logic for removing an object from the cache lies in
987 		 * lookup.
988 		 */
989 		if (object != vm_object_lookup(object->pager))
990 			panic("vm_object_cache_clear: I'm sooo confused.");
991 		pager_cache(object, FALSE);
992 
993 		vm_object_cache_lock();
994 	}
995 	vm_object_cache_unlock();
996 }
997 
998 boolean_t	vm_object_collapse_allowed = TRUE;
999 /*
1000  *	vm_object_collapse:
1001  *
1002  *	Collapse an object with the object backing it.
1003  *	Pages in the backing object are moved into the
1004  *	parent, and the backing object is deallocated.
1005  *
1006  *	Requires that the object be locked and the page
1007  *	queues be unlocked.
1008  *
1009  */
1010 void vm_object_collapse(object)
1011 	register vm_object_t	object;
1012 
1013 {
1014 	register vm_object_t	backing_object;
1015 	register vm_offset_t	backing_offset;
1016 	register vm_size_t	size;
1017 	register vm_offset_t	new_offset;
1018 	register vm_page_t	p, pp;
1019 
1020 	if (!vm_object_collapse_allowed)
1021 		return;
1022 
1023 	while (TRUE) {
1024 		/*
1025 		 *	Verify that the conditions are right for collapse:
1026 		 *
1027 		 *	The object exists and no pages in it are currently
1028 		 *	being paged out (or have ever been paged out).
1029 		 */
1030 		if (object == NULL ||
1031 		    object->paging_in_progress != 0 ||
1032 		    object->pager != NULL)
1033 			return;
1034 
1035 		/*
1036 		 *		There is a backing object, and
1037 		 */
1038 
1039 		if ((backing_object = object->shadow) == NULL)
1040 			return;
1041 
1042 		vm_object_lock(backing_object);
1043 		/*
1044 		 *	...
1045 		 *		The backing object is not read_only,
1046 		 *		and no pages in the backing object are
1047 		 *		currently being paged out.
1048 		 *		The backing object is internal.
1049 		 */
1050 
1051 		if ((backing_object->flags & OBJ_INTERNAL) == 0 ||
1052 		    backing_object->paging_in_progress != 0) {
1053 			vm_object_unlock(backing_object);
1054 			return;
1055 		}
1056 
1057 		/*
1058 		 *	The backing object can't be a copy-object:
1059 		 *	the shadow_offset for the copy-object must stay
1060 		 *	as 0.  Furthermore (for the 'we have all the
1061 		 *	pages' case), if we bypass backing_object and
1062 		 *	just shadow the next object in the chain, old
1063 		 *	pages from that object would then have to be copied
1064 		 *	BOTH into the (former) backing_object and into the
1065 		 *	parent object.
1066 		 */
1067 		if (backing_object->shadow != NULL &&
1068 		    backing_object->shadow->copy != NULL) {
1069 			vm_object_unlock(backing_object);
1070 			return;
1071 		}
1072 
1073 		/*
1074 		 *	We know that we can either collapse the backing
1075 		 *	object (if the parent is the only reference to
1076 		 *	it) or (perhaps) remove the parent's reference
1077 		 *	to it.
1078 		 */
1079 
1080 		backing_offset = object->shadow_offset;
1081 		size = object->size;
1082 
1083 		/*
1084 		 *	If there is exactly one reference to the backing
1085 		 *	object, we can collapse it into the parent.
1086 		 */
1087 
1088 		if (backing_object->ref_count == 1) {
1089 
1090 			/*
1091 			 *	We can collapse the backing object.
1092 			 *
1093 			 *	Move all in-memory pages from backing_object
1094 			 *	to the parent.  Pages that have been paged out
1095 			 *	will be overwritten by any of the parent's
1096 			 *	pages that shadow them.
1097 			 */
1098 
1099 			while (!queue_empty(&backing_object->memq)) {
1100 
1101 				p = (vm_page_t)
1102 					queue_first(&backing_object->memq);
1103 
1104 				new_offset = (p->offset - backing_offset);
1105 
1106 				/*
1107 				 *	If the parent has a page here, or if
1108 				 *	this page falls outside the parent,
1109 				 *	dispose of it.
1110 				 *
1111 				 *	Otherwise, move it as planned.
1112 				 */
1113 
1114 				if (p->offset < backing_offset ||
1115 				    new_offset >= size) {
1116 					vm_page_lock_queues();
1117 					vm_page_free(p);
1118 					vm_page_unlock_queues();
1119 				} else {
1120 				    pp = vm_page_lookup(object, new_offset);
1121 				    if (pp != NULL && !pp->fake) {
1122 					vm_page_lock_queues();
1123 					vm_page_free(p);
1124 					vm_page_unlock_queues();
1125 				    }
1126 				    else {
1127 					if (pp) {
1128 					    /* may be someone waiting for it */
1129 					    PAGE_WAKEUP(pp);
1130 					    vm_page_lock_queues();
1131 					    vm_page_free(pp);
1132 					    vm_page_unlock_queues();
1133 					}
1134 					vm_page_rename(p, object, new_offset);
1135 				    }
1136 				}
1137 			}
1138 
1139 			/*
1140 			 *	Move the pager from backing_object to object.
1141 			 *
1142 			 *	XXX We're only using part of the paging space
1143 			 *	for keeps now... we ought to discard the
1144 			 *	unused portion.
1145 			 */
1146 
1147 			object->pager = backing_object->pager;
1148 			object->paging_offset += backing_offset;
1149 
1150 			backing_object->pager = NULL;
1151 
1152 			/*
1153 			 *	Object now shadows whatever backing_object did.
1154 			 *	Note that the reference to backing_object->shadow
1155 			 *	moves from within backing_object to within object.
1156 			 */
1157 
1158 			object->shadow = backing_object->shadow;
1159 			object->shadow_offset += backing_object->shadow_offset;
1160 			if (object->shadow != NULL &&
1161 			    object->shadow->copy != NULL) {
1162 				panic("vm_object_collapse: we collapsed a copy-object!");
1163 			}
1164 			/*
1165 			 *	Discard backing_object.
1166 			 *
1167 			 *	Since the backing object has no pages, no
1168 			 *	pager left, and no object references within it,
1169 			 *	all that is necessary is to dispose of it.
1170 			 */
1171 
1172 			vm_object_unlock(backing_object);
1173 
1174 			simple_lock(&vm_object_list_lock);
1175 			queue_remove(&vm_object_list, backing_object,
1176 						vm_object_t, object_list);
1177 			vm_object_count--;
1178 			simple_unlock(&vm_object_list_lock);
1179 
1180 			free((caddr_t)backing_object, M_VMOBJ);
1181 
1182 			object_collapses++;
1183 		}
1184 		else {
1185 			/*
1186 			 *	If all of the pages in the backing object are
1187 			 *	shadowed by the parent object, the parent
1188 			 *	object no longer has to shadow the backing
1189 			 *	object; it can shadow the next one in the
1190 			 *	chain.
1191 			 *
1192 			 *	The backing object must not be paged out - we'd
1193 			 *	have to check all of the paged-out pages, as
1194 			 *	well.
1195 			 */
1196 
1197 			if (backing_object->pager != NULL) {
1198 				vm_object_unlock(backing_object);
1199 				return;
1200 			}
1201 
1202 			/*
1203 			 *	Should have a check for a 'small' number
1204 			 *	of pages here.
1205 			 */
1206 
1207 			p = (vm_page_t) queue_first(&backing_object->memq);
1208 			while (!queue_end(&backing_object->memq,
1209 					  (queue_entry_t) p)) {
1210 
1211 				new_offset = (p->offset - backing_offset);
1212 
1213 				/*
1214 				 *	If the parent has a page here, or if
1215 				 *	this page falls outside the parent,
1216 				 *	keep going.
1217 				 *
1218 				 *	Otherwise, the backing_object must be
1219 				 *	left in the chain.
1220 				 */
1221 
1222 				if (p->offset >= backing_offset &&
1223 				    new_offset <= size &&
1224 				    ((pp = vm_page_lookup(object, new_offset))
1225 				      == NULL ||
1226 				     pp->fake)) {
1227 					/*
1228 					 *	Page still needed.
1229 					 *	Can't go any further.
1230 					 */
1231 					vm_object_unlock(backing_object);
1232 					return;
1233 				}
1234 				p = (vm_page_t) queue_next(&p->listq);
1235 			}
1236 
1237 			/*
1238 			 *	Make the parent shadow the next object
1239 			 *	in the chain.  Deallocating backing_object
1240 			 *	will not remove it, since its reference
1241 			 *	count is at least 2.
1242 			 */
1243 
1244 			vm_object_reference(object->shadow = backing_object->shadow);
1245 			object->shadow_offset += backing_object->shadow_offset;
1246 
1247 			/*	Drop the reference count on backing_object.
1248 			 *	Since its ref_count was at least 2, it
1249 			 *	will not vanish; so we don't need to call
1250 			 *	vm_object_deallocate.
1251 			 */
1252 			backing_object->ref_count--;
1253 			vm_object_unlock(backing_object);
1254 
1255 			object_bypasses ++;
1256 
1257 		}
1258 
1259 		/*
1260 		 *	Try again with this object's new backing object.
1261 		 */
1262 	}
1263 }
1264 
1265 /*
1266  *	vm_object_page_remove: [internal]
1267  *
1268  *	Removes all physical pages in the specified
1269  *	object range from the object's list of pages.
1270  *
1271  *	The object must be locked.
1272  */
1273 void vm_object_page_remove(object, start, end)
1274 	register vm_object_t	object;
1275 	register vm_offset_t	start;
1276 	register vm_offset_t	end;
1277 {
1278 	register vm_page_t	p, next;
1279 
1280 	if (object == NULL)
1281 		return;
1282 
1283 	p = (vm_page_t) queue_first(&object->memq);
1284 	while (!queue_end(&object->memq, (queue_entry_t) p)) {
1285 		next = (vm_page_t) queue_next(&p->listq);
1286 		if ((start <= p->offset) && (p->offset < end)) {
1287 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
1288 			vm_page_lock_queues();
1289 			vm_page_free(p);
1290 			vm_page_unlock_queues();
1291 		}
1292 		p = next;
1293 	}
1294 }
1295 
1296 /*
1297  *	Routine:	vm_object_coalesce
1298  *	Function:	Coalesces two objects backing up adjoining
1299  *			regions of memory into a single object.
1300  *
1301  *	returns TRUE if objects were combined.
1302  *
1303  *	NOTE:	Only works at the moment if the second object is NULL -
1304  *		if it's not, which object do we lock first?
1305  *
1306  *	Parameters:
1307  *		prev_object	First object to coalesce
1308  *		prev_offset	Offset into prev_object
1309  *		next_object	Second object into coalesce
1310  *		next_offset	Offset into next_object
1311  *
1312  *		prev_size	Size of reference to prev_object
1313  *		next_size	Size of reference to next_object
1314  *
1315  *	Conditions:
1316  *	The object must *not* be locked.
1317  */
1318 boolean_t vm_object_coalesce(prev_object, next_object,
1319 			prev_offset, next_offset,
1320 			prev_size, next_size)
1321 
1322 	register vm_object_t	prev_object;
1323 	vm_object_t	next_object;
1324 	vm_offset_t	prev_offset, next_offset;
1325 	vm_size_t	prev_size, next_size;
1326 {
1327 	vm_size_t	newsize;
1328 
1329 #ifdef	lint
1330 	next_offset++;
1331 #endif	lint
1332 
1333 	if (next_object != NULL) {
1334 		return(FALSE);
1335 	}
1336 
1337 	if (prev_object == NULL) {
1338 		return(TRUE);
1339 	}
1340 
1341 	vm_object_lock(prev_object);
1342 
1343 	/*
1344 	 *	Try to collapse the object first
1345 	 */
1346 	vm_object_collapse(prev_object);
1347 
1348 	/*
1349 	 *	Can't coalesce if:
1350 	 *	. more than one reference
1351 	 *	. paged out
1352 	 *	. shadows another object
1353 	 *	. has a copy elsewhere
1354 	 *	(any of which mean that the pages not mapped to
1355 	 *	prev_entry may be in use anyway)
1356 	 */
1357 
1358 	if (prev_object->ref_count > 1 ||
1359 		prev_object->pager != NULL ||
1360 		prev_object->shadow != NULL ||
1361 		prev_object->copy != NULL) {
1362 		vm_object_unlock(prev_object);
1363 		return(FALSE);
1364 	}
1365 
1366 	/*
1367 	 *	Remove any pages that may still be in the object from
1368 	 *	a previous deallocation.
1369 	 */
1370 
1371 	vm_object_page_remove(prev_object,
1372 			prev_offset + prev_size,
1373 			prev_offset + prev_size + next_size);
1374 
1375 	/*
1376 	 *	Extend the object if necessary.
1377 	 */
1378 	newsize = prev_offset + prev_size + next_size;
1379 	if (newsize > prev_object->size)
1380 		prev_object->size = newsize;
1381 
1382 	vm_object_unlock(prev_object);
1383 	return(TRUE);
1384 }
1385 
1386 /*
1387  *	vm_object_print:	[ debug ]
1388  */
1389 void vm_object_print(object, full)
1390 	vm_object_t	object;
1391 	boolean_t	full;
1392 {
1393 	register vm_page_t	p;
1394 	extern indent;
1395 
1396 	register int count;
1397 
1398 	if (object == NULL)
1399 		return;
1400 
1401 	iprintf("Object 0x%x: size=0x%x, res=%d, ref=%d, ",
1402 		(int) object, (int) object->size,
1403 		object->resident_page_count, object->ref_count);
1404 	printf("pager=0x%x+0x%x, shadow=(0x%x)+0x%x\n",
1405 	       (int) object->pager, (int) object->paging_offset,
1406 	       (int) object->shadow, (int) object->shadow_offset);
1407 	printf("cache: next=0x%x, prev=0x%x\n",
1408 	       object->cached_list.next, object->cached_list.prev);
1409 
1410 	if (!full)
1411 		return;
1412 
1413 	indent += 2;
1414 	count = 0;
1415 	p = (vm_page_t) queue_first(&object->memq);
1416 	while (!queue_end(&object->memq, (queue_entry_t) p)) {
1417 		if (count == 0)
1418 			iprintf("memory:=");
1419 		else if (count == 6) {
1420 			printf("\n");
1421 			iprintf(" ...");
1422 			count = 0;
1423 		} else
1424 			printf(",");
1425 		count++;
1426 
1427 		printf("(off=0x%x,page=0x%x)", p->offset, VM_PAGE_TO_PHYS(p));
1428 		p = (vm_page_t) queue_next(&p->listq);
1429 	}
1430 	if (count != 0)
1431 		printf("\n");
1432 	indent -= 2;
1433 }
1434