xref: /original-bsd/sys/vm/vm_object.c (revision fac0c393)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * %sccs.include.redist.c%
9  *
10  *	@(#)vm_object.c	8.6 (Berkeley) 01/09/95
11  *
12  *
13  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
14  * All rights reserved.
15  *
16  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
17  *
18  * Permission to use, copy, modify and distribute this software and
19  * its documentation is hereby granted, provided that both the copyright
20  * notice and this permission notice appear in all copies of the
21  * software, derivative works or modified versions, and any portions
22  * thereof, and that both notices appear in supporting documentation.
23  *
24  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
25  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
26  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
27  *
28  * Carnegie Mellon requests users of this software to return to
29  *
30  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
31  *  School of Computer Science
32  *  Carnegie Mellon University
33  *  Pittsburgh PA 15213-3890
34  *
35  * any improvements or extensions that they make and grant Carnegie the
36  * rights to redistribute these changes.
37  */
38 
39 /*
40  *	Virtual memory object module.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_page.h>
49 
50 /*
51  *	Virtual memory objects maintain the actual data
52  *	associated with allocated virtual memory.  A given
53  *	page of memory exists within exactly one object.
54  *
55  *	An object is only deallocated when all "references"
56  *	are given up.  Only one "reference" to a given
57  *	region of an object should be writeable.
58  *
59  *	Associated with each object is a list of all resident
60  *	memory pages belonging to that object; this list is
61  *	maintained by the "vm_page" module, and locked by the object's
62  *	lock.
63  *
64  *	Each object also records a "pager" routine which is
65  *	used to retrieve (and store) pages to the proper backing
66  *	storage.  In addition, objects may be backed by other
67  *	objects from which they were virtual-copied.
68  *
69  *	The only items within the object structure which are
70  *	modified after time of creation are:
71  *		reference count		locked by object's lock
72  *		pager routine		locked by object's lock
73  *
74  */
75 
76 struct vm_object	kernel_object_store;
77 struct vm_object	kmem_object_store;
78 
79 #define	VM_OBJECT_HASH_COUNT	157
80 
81 int	vm_cache_max = 100;	/* can patch if necessary */
82 struct	vm_object_hash_head vm_object_hashtable[VM_OBJECT_HASH_COUNT];
83 
84 long	object_collapses = 0;
85 long	object_bypasses  = 0;
86 
87 static void _vm_object_allocate __P((vm_size_t, vm_object_t));
88 
89 /*
90  *	vm_object_init:
91  *
92  *	Initialize the VM objects module.
93  */
94 void
95 vm_object_init(size)
96 	vm_size_t	size;
97 {
98 	register int	i;
99 
100 	TAILQ_INIT(&vm_object_cached_list);
101 	TAILQ_INIT(&vm_object_list);
102 	vm_object_count = 0;
103 	simple_lock_init(&vm_cache_lock);
104 	simple_lock_init(&vm_object_list_lock);
105 
106 	for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
107 		TAILQ_INIT(&vm_object_hashtable[i]);
108 
109 	kernel_object = &kernel_object_store;
110 	_vm_object_allocate(size, kernel_object);
111 
112 	kmem_object = &kmem_object_store;
113 	_vm_object_allocate(VM_KMEM_SIZE + VM_MBUF_SIZE, kmem_object);
114 }
115 
116 /*
117  *	vm_object_allocate:
118  *
119  *	Returns a new object with the given size.
120  */
121 
122 vm_object_t
123 vm_object_allocate(size)
124 	vm_size_t	size;
125 {
126 	register vm_object_t	result;
127 
128 	result = (vm_object_t)
129 		malloc((u_long)sizeof *result, M_VMOBJ, M_WAITOK);
130 
131 	_vm_object_allocate(size, result);
132 
133 	return(result);
134 }
135 
136 static void
137 _vm_object_allocate(size, object)
138 	vm_size_t		size;
139 	register vm_object_t	object;
140 {
141 	TAILQ_INIT(&object->memq);
142 	vm_object_lock_init(object);
143 	object->ref_count = 1;
144 	object->resident_page_count = 0;
145 	object->size = size;
146 	object->flags = OBJ_INTERNAL;	/* vm_allocate_with_pager will reset */
147 	object->paging_in_progress = 0;
148 	object->copy = NULL;
149 
150 	/*
151 	 *	Object starts out read-write, with no pager.
152 	 */
153 
154 	object->pager = NULL;
155 	object->paging_offset = 0;
156 	object->shadow = NULL;
157 	object->shadow_offset = (vm_offset_t) 0;
158 
159 	simple_lock(&vm_object_list_lock);
160 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
161 	vm_object_count++;
162 	cnt.v_nzfod += atop(size);
163 	simple_unlock(&vm_object_list_lock);
164 }
165 
166 /*
167  *	vm_object_reference:
168  *
169  *	Gets another reference to the given object.
170  */
171 void
172 vm_object_reference(object)
173 	register vm_object_t	object;
174 {
175 	if (object == NULL)
176 		return;
177 
178 	vm_object_lock(object);
179 	object->ref_count++;
180 	vm_object_unlock(object);
181 }
182 
183 /*
184  *	vm_object_deallocate:
185  *
186  *	Release a reference to the specified object,
187  *	gained either through a vm_object_allocate
188  *	or a vm_object_reference call.  When all references
189  *	are gone, storage associated with this object
190  *	may be relinquished.
191  *
192  *	No object may be locked.
193  */
194 void
195 vm_object_deallocate(object)
196 	register vm_object_t	object;
197 {
198 	vm_object_t	temp;
199 
200 	while (object != NULL) {
201 
202 		/*
203 		 *	The cache holds a reference (uncounted) to
204 		 *	the object; we must lock it before removing
205 		 *	the object.
206 		 */
207 
208 		vm_object_cache_lock();
209 
210 		/*
211 		 *	Lose the reference
212 		 */
213 		vm_object_lock(object);
214 		if (--(object->ref_count) != 0) {
215 
216 			/*
217 			 *	If there are still references, then
218 			 *	we are done.
219 			 */
220 			vm_object_unlock(object);
221 			vm_object_cache_unlock();
222 			return;
223 		}
224 
225 		/*
226 		 *	See if this object can persist.  If so, enter
227 		 *	it in the cache, then deactivate all of its
228 		 *	pages.
229 		 */
230 
231 		if (object->flags & OBJ_CANPERSIST) {
232 
233 			TAILQ_INSERT_TAIL(&vm_object_cached_list, object,
234 				cached_list);
235 			vm_object_cached++;
236 			vm_object_cache_unlock();
237 
238 			vm_object_deactivate_pages(object);
239 			vm_object_unlock(object);
240 
241 			vm_object_cache_trim();
242 			return;
243 		}
244 
245 		/*
246 		 *	Make sure no one can look us up now.
247 		 */
248 		vm_object_remove(object->pager);
249 		vm_object_cache_unlock();
250 
251 		temp = object->shadow;
252 		vm_object_terminate(object);
253 			/* unlocks and deallocates object */
254 		object = temp;
255 	}
256 }
257 
258 
259 /*
260  *	vm_object_terminate actually destroys the specified object, freeing
261  *	up all previously used resources.
262  *
263  *	The object must be locked.
264  */
265 void
266 vm_object_terminate(object)
267 	register vm_object_t	object;
268 {
269 	register vm_page_t	p;
270 	vm_object_t		shadow_object;
271 
272 	/*
273 	 *	Detach the object from its shadow if we are the shadow's
274 	 *	copy.
275 	 */
276 	if ((shadow_object = object->shadow) != NULL) {
277 		vm_object_lock(shadow_object);
278 		if (shadow_object->copy == object)
279 			shadow_object->copy = NULL;
280 #if 0
281 		else if (shadow_object->copy != NULL)
282 			panic("vm_object_terminate: copy/shadow inconsistency");
283 #endif
284 		vm_object_unlock(shadow_object);
285 	}
286 
287 	/*
288 	 * Wait until the pageout daemon is through with the object.
289 	 */
290 	while (object->paging_in_progress) {
291 		vm_object_sleep(object, object, FALSE);
292 		vm_object_lock(object);
293 	}
294 
295 	/*
296 	 * If not an internal object clean all the pages, removing them
297 	 * from paging queues as we go.
298 	 *
299 	 * XXX need to do something in the event of a cleaning error.
300 	 */
301 	if ((object->flags & OBJ_INTERNAL) == 0) {
302 		(void) vm_object_page_clean(object, 0, 0, TRUE, TRUE);
303 		vm_object_unlock(object);
304 	}
305 
306 	/*
307 	 * Now free the pages.
308 	 * For internal objects, this also removes them from paging queues.
309 	 */
310 	while ((p = object->memq.tqh_first) != NULL) {
311 		VM_PAGE_CHECK(p);
312 		vm_page_lock_queues();
313 		vm_page_free(p);
314 		cnt.v_pfree++;
315 		vm_page_unlock_queues();
316 	}
317 	if ((object->flags & OBJ_INTERNAL) == 0)
318 		vm_object_unlock(object);
319 
320 	/*
321 	 * Let the pager know object is dead.
322 	 */
323 	if (object->pager != NULL)
324 		vm_pager_deallocate(object->pager);
325 
326 	simple_lock(&vm_object_list_lock);
327 	TAILQ_REMOVE(&vm_object_list, object, object_list);
328 	vm_object_count--;
329 	simple_unlock(&vm_object_list_lock);
330 
331 	/*
332 	 * Free the space for the object.
333 	 */
334 	free((caddr_t)object, M_VMOBJ);
335 }
336 
337 /*
338  *	vm_object_page_clean
339  *
340  *	Clean all dirty pages in the specified range of object.
341  *	If syncio is TRUE, page cleaning is done synchronously.
342  *	If de_queue is TRUE, pages are removed from any paging queue
343  *	they were on, otherwise they are left on whatever queue they
344  *	were on before the cleaning operation began.
345  *
346  *	Odd semantics: if start == end, we clean everything.
347  *
348  *	The object must be locked.
349  *
350  *	Returns TRUE if all was well, FALSE if there was a pager error
351  *	somewhere.  We attempt to clean (and dequeue) all pages regardless
352  *	of where an error occurs.
353  */
354 boolean_t
355 vm_object_page_clean(object, start, end, syncio, de_queue)
356 	register vm_object_t	object;
357 	register vm_offset_t	start;
358 	register vm_offset_t	end;
359 	boolean_t		syncio;
360 	boolean_t		de_queue;
361 {
362 	register vm_page_t	p;
363 	int onqueue;
364 	boolean_t noerror = TRUE;
365 
366 	if (object == NULL)
367 		return (TRUE);
368 
369 	/*
370 	 * If it is an internal object and there is no pager, attempt to
371 	 * allocate one.  Note that vm_object_collapse may relocate one
372 	 * from a collapsed object so we must recheck afterward.
373 	 */
374 	if ((object->flags & OBJ_INTERNAL) && object->pager == NULL) {
375 		vm_object_collapse(object);
376 		if (object->pager == NULL) {
377 			vm_pager_t pager;
378 
379 			vm_object_unlock(object);
380 			pager = vm_pager_allocate(PG_DFLT, (caddr_t)0,
381 						  object->size, VM_PROT_ALL,
382 						  (vm_offset_t)0);
383 			if (pager)
384 				vm_object_setpager(object, pager, 0, FALSE);
385 			vm_object_lock(object);
386 		}
387 	}
388 	if (object->pager == NULL)
389 		return (FALSE);
390 
391 again:
392 	/*
393 	 * Wait until the pageout daemon is through with the object.
394 	 */
395 	while (object->paging_in_progress) {
396 		vm_object_sleep(object, object, FALSE);
397 		vm_object_lock(object);
398 	}
399 	/*
400 	 * Loop through the object page list cleaning as necessary.
401 	 */
402 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next) {
403 		if ((start == end || p->offset >= start && p->offset < end) &&
404 		    !(p->flags & PG_FICTITIOUS)) {
405 			if ((p->flags & PG_CLEAN) &&
406 			    pmap_is_modified(VM_PAGE_TO_PHYS(p)))
407 				p->flags &= ~PG_CLEAN;
408 			/*
409 			 * Remove the page from any paging queue.
410 			 * This needs to be done if either we have been
411 			 * explicitly asked to do so or it is about to
412 			 * be cleaned (see comment below).
413 			 */
414 			if (de_queue || !(p->flags & PG_CLEAN)) {
415 				vm_page_lock_queues();
416 				if (p->flags & PG_ACTIVE) {
417 					TAILQ_REMOVE(&vm_page_queue_active,
418 						     p, pageq);
419 					p->flags &= ~PG_ACTIVE;
420 					cnt.v_active_count--;
421 					onqueue = 1;
422 				} else if (p->flags & PG_INACTIVE) {
423 					TAILQ_REMOVE(&vm_page_queue_inactive,
424 						     p, pageq);
425 					p->flags &= ~PG_INACTIVE;
426 					cnt.v_inactive_count--;
427 					onqueue = -1;
428 				} else
429 					onqueue = 0;
430 				vm_page_unlock_queues();
431 			}
432 			/*
433 			 * To ensure the state of the page doesn't change
434 			 * during the clean operation we do two things.
435 			 * First we set the busy bit and write-protect all
436 			 * mappings to ensure that write accesses to the
437 			 * page block (in vm_fault).  Second, we remove
438 			 * the page from any paging queue to foil the
439 			 * pageout daemon (vm_pageout_scan).
440 			 */
441 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_READ);
442 			if (!(p->flags & PG_CLEAN)) {
443 				p->flags |= PG_BUSY;
444 				object->paging_in_progress++;
445 				vm_object_unlock(object);
446 				/*
447 				 * XXX if put fails we mark the page as
448 				 * clean to avoid an infinite loop.
449 				 * Will loose changes to the page.
450 				 */
451 				if (vm_pager_put(object->pager, p, syncio)) {
452 					printf("%s: pager_put error\n",
453 					       "vm_object_page_clean");
454 					p->flags |= PG_CLEAN;
455 					noerror = FALSE;
456 				}
457 				vm_object_lock(object);
458 				object->paging_in_progress--;
459 				if (!de_queue && onqueue) {
460 					vm_page_lock_queues();
461 					if (onqueue > 0)
462 						vm_page_activate(p);
463 					else
464 						vm_page_deactivate(p);
465 					vm_page_unlock_queues();
466 				}
467 				p->flags &= ~PG_BUSY;
468 				PAGE_WAKEUP(p);
469 				goto again;
470 			}
471 		}
472 	}
473 	return (noerror);
474 }
475 
476 /*
477  *	vm_object_deactivate_pages
478  *
479  *	Deactivate all pages in the specified object.  (Keep its pages
480  *	in memory even though it is no longer referenced.)
481  *
482  *	The object must be locked.
483  */
484 void
485 vm_object_deactivate_pages(object)
486 	register vm_object_t	object;
487 {
488 	register vm_page_t	p, next;
489 
490 	for (p = object->memq.tqh_first; p != NULL; p = next) {
491 		next = p->listq.tqe_next;
492 		vm_page_lock_queues();
493 		vm_page_deactivate(p);
494 		vm_page_unlock_queues();
495 	}
496 }
497 
498 /*
499  *	Trim the object cache to size.
500  */
501 void
502 vm_object_cache_trim()
503 {
504 	register vm_object_t	object;
505 
506 	vm_object_cache_lock();
507 	while (vm_object_cached > vm_cache_max) {
508 		object = vm_object_cached_list.tqh_first;
509 		vm_object_cache_unlock();
510 
511 		if (object != vm_object_lookup(object->pager))
512 			panic("vm_object_deactivate: I'm sooo confused.");
513 
514 		pager_cache(object, FALSE);
515 
516 		vm_object_cache_lock();
517 	}
518 	vm_object_cache_unlock();
519 }
520 
521 /*
522  *	vm_object_pmap_copy:
523  *
524  *	Makes all physical pages in the specified
525  *	object range copy-on-write.  No writeable
526  *	references to these pages should remain.
527  *
528  *	The object must *not* be locked.
529  */
530 void
531 vm_object_pmap_copy(object, start, end)
532 	register vm_object_t	object;
533 	register vm_offset_t	start;
534 	register vm_offset_t	end;
535 {
536 	register vm_page_t	p;
537 
538 	if (object == NULL)
539 		return;
540 
541 	vm_object_lock(object);
542 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next) {
543 		if ((start <= p->offset) && (p->offset < end)) {
544 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_READ);
545 			p->flags |= PG_COPYONWRITE;
546 		}
547 	}
548 	vm_object_unlock(object);
549 }
550 
551 /*
552  *	vm_object_pmap_remove:
553  *
554  *	Removes all physical pages in the specified
555  *	object range from all physical maps.
556  *
557  *	The object must *not* be locked.
558  */
559 void
560 vm_object_pmap_remove(object, start, end)
561 	register vm_object_t	object;
562 	register vm_offset_t	start;
563 	register vm_offset_t	end;
564 {
565 	register vm_page_t	p;
566 
567 	if (object == NULL)
568 		return;
569 
570 	vm_object_lock(object);
571 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next)
572 		if ((start <= p->offset) && (p->offset < end))
573 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
574 	vm_object_unlock(object);
575 }
576 
577 /*
578  *	vm_object_copy:
579  *
580  *	Create a new object which is a copy of an existing
581  *	object, and mark all of the pages in the existing
582  *	object 'copy-on-write'.  The new object has one reference.
583  *	Returns the new object.
584  *
585  *	May defer the copy until later if the object is not backed
586  *	up by a non-default pager.
587  */
588 void
589 vm_object_copy(src_object, src_offset, size,
590 		    dst_object, dst_offset, src_needs_copy)
591 	register vm_object_t	src_object;
592 	vm_offset_t		src_offset;
593 	vm_size_t		size;
594 	vm_object_t		*dst_object;	/* OUT */
595 	vm_offset_t		*dst_offset;	/* OUT */
596 	boolean_t		*src_needs_copy;	/* OUT */
597 {
598 	register vm_object_t	new_copy;
599 	register vm_object_t	old_copy;
600 	vm_offset_t		new_start, new_end;
601 
602 	register vm_page_t	p;
603 
604 	if (src_object == NULL) {
605 		/*
606 		 *	Nothing to copy
607 		 */
608 		*dst_object = NULL;
609 		*dst_offset = 0;
610 		*src_needs_copy = FALSE;
611 		return;
612 	}
613 
614 	/*
615 	 *	If the object's pager is null_pager or the
616 	 *	default pager, we don't have to make a copy
617 	 *	of it.  Instead, we set the needs copy flag and
618 	 *	make a shadow later.
619 	 */
620 
621 	vm_object_lock(src_object);
622 	if (src_object->pager == NULL ||
623 	    (src_object->flags & OBJ_INTERNAL)) {
624 
625 		/*
626 		 *	Make another reference to the object
627 		 */
628 		src_object->ref_count++;
629 
630 		/*
631 		 *	Mark all of the pages copy-on-write.
632 		 */
633 		for (p = src_object->memq.tqh_first; p; p = p->listq.tqe_next)
634 			if (src_offset <= p->offset &&
635 			    p->offset < src_offset + size)
636 				p->flags |= PG_COPYONWRITE;
637 		vm_object_unlock(src_object);
638 
639 		*dst_object = src_object;
640 		*dst_offset = src_offset;
641 
642 		/*
643 		 *	Must make a shadow when write is desired
644 		 */
645 		*src_needs_copy = TRUE;
646 		return;
647 	}
648 
649 	/*
650 	 *	Try to collapse the object before copying it.
651 	 */
652 	vm_object_collapse(src_object);
653 
654 	/*
655 	 *	If the object has a pager, the pager wants to
656 	 *	see all of the changes.  We need a copy-object
657 	 *	for the changed pages.
658 	 *
659 	 *	If there is a copy-object, and it is empty,
660 	 *	no changes have been made to the object since the
661 	 *	copy-object was made.  We can use the same copy-
662 	 *	object.
663 	 */
664 
665     Retry1:
666 	old_copy = src_object->copy;
667 	if (old_copy != NULL) {
668 		/*
669 		 *	Try to get the locks (out of order)
670 		 */
671 		if (!vm_object_lock_try(old_copy)) {
672 			vm_object_unlock(src_object);
673 
674 			/* should spin a bit here... */
675 			vm_object_lock(src_object);
676 			goto Retry1;
677 		}
678 
679 		if (old_copy->resident_page_count == 0 &&
680 		    old_copy->pager == NULL) {
681 			/*
682 			 *	Return another reference to
683 			 *	the existing copy-object.
684 			 */
685 			old_copy->ref_count++;
686 			vm_object_unlock(old_copy);
687 			vm_object_unlock(src_object);
688 			*dst_object = old_copy;
689 			*dst_offset = src_offset;
690 			*src_needs_copy = FALSE;
691 			return;
692 		}
693 		vm_object_unlock(old_copy);
694 	}
695 	vm_object_unlock(src_object);
696 
697 	/*
698 	 *	If the object has a pager, the pager wants
699 	 *	to see all of the changes.  We must make
700 	 *	a copy-object and put the changed pages there.
701 	 *
702 	 *	The copy-object is always made large enough to
703 	 *	completely shadow the original object, since
704 	 *	it may have several users who want to shadow
705 	 *	the original object at different points.
706 	 */
707 
708 	new_copy = vm_object_allocate(src_object->size);
709 
710     Retry2:
711 	vm_object_lock(src_object);
712 	/*
713 	 *	Copy object may have changed while we were unlocked
714 	 */
715 	old_copy = src_object->copy;
716 	if (old_copy != NULL) {
717 		/*
718 		 *	Try to get the locks (out of order)
719 		 */
720 		if (!vm_object_lock_try(old_copy)) {
721 			vm_object_unlock(src_object);
722 			goto Retry2;
723 		}
724 
725 		/*
726 		 *	Consistency check
727 		 */
728 		if (old_copy->shadow != src_object ||
729 		    old_copy->shadow_offset != (vm_offset_t) 0)
730 			panic("vm_object_copy: copy/shadow inconsistency");
731 
732 		/*
733 		 *	Make the old copy-object shadow the new one.
734 		 *	It will receive no more pages from the original
735 		 *	object.
736 		 */
737 
738 		src_object->ref_count--;	/* remove ref. from old_copy */
739 		old_copy->shadow = new_copy;
740 		new_copy->ref_count++;		/* locking not needed - we
741 						   have the only pointer */
742 		vm_object_unlock(old_copy);	/* done with old_copy */
743 	}
744 
745 	new_start = (vm_offset_t) 0;	/* always shadow original at 0 */
746 	new_end   = (vm_offset_t) new_copy->size; /* for the whole object */
747 
748 	/*
749 	 *	Point the new copy at the existing object.
750 	 */
751 
752 	new_copy->shadow = src_object;
753 	new_copy->shadow_offset = new_start;
754 	src_object->ref_count++;
755 	src_object->copy = new_copy;
756 
757 	/*
758 	 *	Mark all the affected pages of the existing object
759 	 *	copy-on-write.
760 	 */
761 	for (p = src_object->memq.tqh_first; p != NULL; p = p->listq.tqe_next)
762 		if ((new_start <= p->offset) && (p->offset < new_end))
763 			p->flags |= PG_COPYONWRITE;
764 
765 	vm_object_unlock(src_object);
766 
767 	*dst_object = new_copy;
768 	*dst_offset = src_offset - new_start;
769 	*src_needs_copy = FALSE;
770 }
771 
772 /*
773  *	vm_object_shadow:
774  *
775  *	Create a new object which is backed by the
776  *	specified existing object range.  The source
777  *	object reference is deallocated.
778  *
779  *	The new object and offset into that object
780  *	are returned in the source parameters.
781  */
782 
783 void
784 vm_object_shadow(object, offset, length)
785 	vm_object_t	*object;	/* IN/OUT */
786 	vm_offset_t	*offset;	/* IN/OUT */
787 	vm_size_t	length;
788 {
789 	register vm_object_t	source;
790 	register vm_object_t	result;
791 
792 	source = *object;
793 
794 	/*
795 	 *	Allocate a new object with the given length
796 	 */
797 
798 	if ((result = vm_object_allocate(length)) == NULL)
799 		panic("vm_object_shadow: no object for shadowing");
800 
801 	/*
802 	 *	The new object shadows the source object, adding
803 	 *	a reference to it.  Our caller changes his reference
804 	 *	to point to the new object, removing a reference to
805 	 *	the source object.  Net result: no change of reference
806 	 *	count.
807 	 */
808 	result->shadow = source;
809 
810 	/*
811 	 *	Store the offset into the source object,
812 	 *	and fix up the offset into the new object.
813 	 */
814 
815 	result->shadow_offset = *offset;
816 
817 	/*
818 	 *	Return the new things
819 	 */
820 
821 	*offset = 0;
822 	*object = result;
823 }
824 
825 /*
826  *	Set the specified object's pager to the specified pager.
827  */
828 
829 void
830 vm_object_setpager(object, pager, paging_offset,
831 			read_only)
832 	vm_object_t	object;
833 	vm_pager_t	pager;
834 	vm_offset_t	paging_offset;
835 	boolean_t	read_only;
836 {
837 #ifdef	lint
838 	read_only++;	/* No longer used */
839 #endif
840 
841 	vm_object_lock(object);			/* XXX ? */
842 	object->pager = pager;
843 	object->paging_offset = paging_offset;
844 	vm_object_unlock(object);			/* XXX ? */
845 }
846 
847 /*
848  *	vm_object_hash hashes the pager/id pair.
849  */
850 
851 #define vm_object_hash(pager) \
852 	(((unsigned long)pager)%VM_OBJECT_HASH_COUNT)
853 
854 /*
855  *	vm_object_lookup looks in the object cache for an object with the
856  *	specified pager and paging id.
857  */
858 
859 vm_object_t
860 vm_object_lookup(pager)
861 	vm_pager_t	pager;
862 {
863 	register vm_object_hash_entry_t	entry;
864 	vm_object_t			object;
865 
866 	vm_object_cache_lock();
867 
868 	for (entry = vm_object_hashtable[vm_object_hash(pager)].tqh_first;
869 	     entry != NULL;
870 	     entry = entry->hash_links.tqe_next) {
871 		object = entry->object;
872 		if (object->pager == pager) {
873 			vm_object_lock(object);
874 			if (object->ref_count == 0) {
875 				TAILQ_REMOVE(&vm_object_cached_list, object,
876 					cached_list);
877 				vm_object_cached--;
878 			}
879 			object->ref_count++;
880 			vm_object_unlock(object);
881 			vm_object_cache_unlock();
882 			return(object);
883 		}
884 	}
885 
886 	vm_object_cache_unlock();
887 	return(NULL);
888 }
889 
890 /*
891  *	vm_object_enter enters the specified object/pager/id into
892  *	the hash table.
893  */
894 
895 void
896 vm_object_enter(object, pager)
897 	vm_object_t	object;
898 	vm_pager_t	pager;
899 {
900 	struct vm_object_hash_head	*bucket;
901 	register vm_object_hash_entry_t	entry;
902 
903 	/*
904 	 *	We don't cache null objects, and we can't cache
905 	 *	objects with the null pager.
906 	 */
907 
908 	if (object == NULL)
909 		return;
910 	if (pager == NULL)
911 		return;
912 
913 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
914 	entry = (vm_object_hash_entry_t)
915 		malloc((u_long)sizeof *entry, M_VMOBJHASH, M_WAITOK);
916 	entry->object = object;
917 	object->flags |= OBJ_CANPERSIST;
918 
919 	vm_object_cache_lock();
920 	TAILQ_INSERT_TAIL(bucket, entry, hash_links);
921 	vm_object_cache_unlock();
922 }
923 
924 /*
925  *	vm_object_remove:
926  *
927  *	Remove the pager from the hash table.
928  *	Note:  This assumes that the object cache
929  *	is locked.  XXX this should be fixed
930  *	by reorganizing vm_object_deallocate.
931  */
932 void
933 vm_object_remove(pager)
934 	register vm_pager_t	pager;
935 {
936 	struct vm_object_hash_head	*bucket;
937 	register vm_object_hash_entry_t	entry;
938 	register vm_object_t		object;
939 
940 	bucket = &vm_object_hashtable[vm_object_hash(pager)];
941 
942 	for (entry = bucket->tqh_first;
943 	     entry != NULL;
944 	     entry = entry->hash_links.tqe_next) {
945 		object = entry->object;
946 		if (object->pager == pager) {
947 			TAILQ_REMOVE(bucket, entry, hash_links);
948 			free((caddr_t)entry, M_VMOBJHASH);
949 			break;
950 		}
951 	}
952 }
953 
954 /*
955  *	vm_object_cache_clear removes all objects from the cache.
956  *
957  */
958 void
959 vm_object_cache_clear()
960 {
961 	register vm_object_t	object;
962 
963 	/*
964 	 *	Remove each object in the cache by scanning down the
965 	 *	list of cached objects.
966 	 */
967 	vm_object_cache_lock();
968 	while ((object = vm_object_cached_list.tqh_first) != NULL) {
969 		vm_object_cache_unlock();
970 
971 		/*
972 		 * Note: it is important that we use vm_object_lookup
973 		 * to gain a reference, and not vm_object_reference, because
974 		 * the logic for removing an object from the cache lies in
975 		 * lookup.
976 		 */
977 		if (object != vm_object_lookup(object->pager))
978 			panic("vm_object_cache_clear: I'm sooo confused.");
979 		pager_cache(object, FALSE);
980 
981 		vm_object_cache_lock();
982 	}
983 	vm_object_cache_unlock();
984 }
985 
986 boolean_t	vm_object_collapse_allowed = TRUE;
987 /*
988  *	vm_object_collapse:
989  *
990  *	Collapse an object with the object backing it.
991  *	Pages in the backing object are moved into the
992  *	parent, and the backing object is deallocated.
993  *
994  *	Requires that the object be locked and the page
995  *	queues be unlocked.
996  *
997  */
998 void
999 vm_object_collapse(object)
1000 	register vm_object_t	object;
1001 
1002 {
1003 	register vm_object_t	backing_object;
1004 	register vm_offset_t	backing_offset;
1005 	register vm_size_t	size;
1006 	register vm_offset_t	new_offset;
1007 	register vm_page_t	p, pp;
1008 
1009 	if (!vm_object_collapse_allowed)
1010 		return;
1011 
1012 	while (TRUE) {
1013 		/*
1014 		 *	Verify that the conditions are right for collapse:
1015 		 *
1016 		 *	The object exists and no pages in it are currently
1017 		 *	being paged out (or have ever been paged out).
1018 		 */
1019 		if (object == NULL ||
1020 		    object->paging_in_progress != 0 ||
1021 		    object->pager != NULL)
1022 			return;
1023 
1024 		/*
1025 		 *		There is a backing object, and
1026 		 */
1027 
1028 		if ((backing_object = object->shadow) == NULL)
1029 			return;
1030 
1031 		vm_object_lock(backing_object);
1032 		/*
1033 		 *	...
1034 		 *		The backing object is not read_only,
1035 		 *		and no pages in the backing object are
1036 		 *		currently being paged out.
1037 		 *		The backing object is internal.
1038 		 */
1039 
1040 		if ((backing_object->flags & OBJ_INTERNAL) == 0 ||
1041 		    backing_object->paging_in_progress != 0) {
1042 			vm_object_unlock(backing_object);
1043 			return;
1044 		}
1045 
1046 		/*
1047 		 *	The backing object can't be a copy-object:
1048 		 *	the shadow_offset for the copy-object must stay
1049 		 *	as 0.  Furthermore (for the 'we have all the
1050 		 *	pages' case), if we bypass backing_object and
1051 		 *	just shadow the next object in the chain, old
1052 		 *	pages from that object would then have to be copied
1053 		 *	BOTH into the (former) backing_object and into the
1054 		 *	parent object.
1055 		 */
1056 		if (backing_object->shadow != NULL &&
1057 		    backing_object->shadow->copy != NULL) {
1058 			vm_object_unlock(backing_object);
1059 			return;
1060 		}
1061 
1062 		/*
1063 		 *	We know that we can either collapse the backing
1064 		 *	object (if the parent is the only reference to
1065 		 *	it) or (perhaps) remove the parent's reference
1066 		 *	to it.
1067 		 */
1068 
1069 		backing_offset = object->shadow_offset;
1070 		size = object->size;
1071 
1072 		/*
1073 		 *	If there is exactly one reference to the backing
1074 		 *	object, we can collapse it into the parent.
1075 		 */
1076 
1077 		if (backing_object->ref_count == 1) {
1078 
1079 			/*
1080 			 *	We can collapse the backing object.
1081 			 *
1082 			 *	Move all in-memory pages from backing_object
1083 			 *	to the parent.  Pages that have been paged out
1084 			 *	will be overwritten by any of the parent's
1085 			 *	pages that shadow them.
1086 			 */
1087 
1088 			while ((p = backing_object->memq.tqh_first) != NULL) {
1089 				new_offset = (p->offset - backing_offset);
1090 
1091 				/*
1092 				 *	If the parent has a page here, or if
1093 				 *	this page falls outside the parent,
1094 				 *	dispose of it.
1095 				 *
1096 				 *	Otherwise, move it as planned.
1097 				 */
1098 
1099 				if (p->offset < backing_offset ||
1100 				    new_offset >= size) {
1101 					vm_page_lock_queues();
1102 					vm_page_free(p);
1103 					vm_page_unlock_queues();
1104 				} else {
1105 				    pp = vm_page_lookup(object, new_offset);
1106 				    if (pp != NULL && !(pp->flags & PG_FAKE)) {
1107 					vm_page_lock_queues();
1108 					vm_page_free(p);
1109 					vm_page_unlock_queues();
1110 				    }
1111 				    else {
1112 					if (pp) {
1113 					    /* may be someone waiting for it */
1114 					    PAGE_WAKEUP(pp);
1115 					    vm_page_lock_queues();
1116 					    vm_page_free(pp);
1117 					    vm_page_unlock_queues();
1118 					}
1119 					vm_page_rename(p, object, new_offset);
1120 				    }
1121 				}
1122 			}
1123 
1124 			/*
1125 			 *	Move the pager from backing_object to object.
1126 			 *
1127 			 *	XXX We're only using part of the paging space
1128 			 *	for keeps now... we ought to discard the
1129 			 *	unused portion.
1130 			 */
1131 
1132 			if (backing_object->pager) {
1133 				object->pager = backing_object->pager;
1134 				object->paging_offset = backing_offset +
1135 					backing_object->paging_offset;
1136 				backing_object->pager = NULL;
1137 			}
1138 
1139 			/*
1140 			 *	Object now shadows whatever backing_object did.
1141 			 *	Note that the reference to backing_object->shadow
1142 			 *	moves from within backing_object to within object.
1143 			 */
1144 
1145 			object->shadow = backing_object->shadow;
1146 			object->shadow_offset += backing_object->shadow_offset;
1147 			if (object->shadow != NULL &&
1148 			    object->shadow->copy != NULL) {
1149 				panic("vm_object_collapse: we collapsed a copy-object!");
1150 			}
1151 			/*
1152 			 *	Discard backing_object.
1153 			 *
1154 			 *	Since the backing object has no pages, no
1155 			 *	pager left, and no object references within it,
1156 			 *	all that is necessary is to dispose of it.
1157 			 */
1158 
1159 			vm_object_unlock(backing_object);
1160 
1161 			simple_lock(&vm_object_list_lock);
1162 			TAILQ_REMOVE(&vm_object_list, backing_object,
1163 			    object_list);
1164 			vm_object_count--;
1165 			simple_unlock(&vm_object_list_lock);
1166 
1167 			free((caddr_t)backing_object, M_VMOBJ);
1168 
1169 			object_collapses++;
1170 		}
1171 		else {
1172 			/*
1173 			 *	If all of the pages in the backing object are
1174 			 *	shadowed by the parent object, the parent
1175 			 *	object no longer has to shadow the backing
1176 			 *	object; it can shadow the next one in the
1177 			 *	chain.
1178 			 *
1179 			 *	The backing object must not be paged out - we'd
1180 			 *	have to check all of the paged-out pages, as
1181 			 *	well.
1182 			 */
1183 
1184 			if (backing_object->pager != NULL) {
1185 				vm_object_unlock(backing_object);
1186 				return;
1187 			}
1188 
1189 			/*
1190 			 *	Should have a check for a 'small' number
1191 			 *	of pages here.
1192 			 */
1193 
1194 			for (p = backing_object->memq.tqh_first;
1195 			     p != NULL;
1196 			     p = p->listq.tqe_next) {
1197 				new_offset = (p->offset - backing_offset);
1198 
1199 				/*
1200 				 *	If the parent has a page here, or if
1201 				 *	this page falls outside the parent,
1202 				 *	keep going.
1203 				 *
1204 				 *	Otherwise, the backing_object must be
1205 				 *	left in the chain.
1206 				 */
1207 
1208 				if (p->offset >= backing_offset &&
1209 				    new_offset < size &&
1210 				    ((pp = vm_page_lookup(object, new_offset))
1211 				      == NULL ||
1212 				     (pp->flags & PG_FAKE))) {
1213 					/*
1214 					 *	Page still needed.
1215 					 *	Can't go any further.
1216 					 */
1217 					vm_object_unlock(backing_object);
1218 					return;
1219 				}
1220 			}
1221 
1222 			/*
1223 			 *	Make the parent shadow the next object
1224 			 *	in the chain.  Deallocating backing_object
1225 			 *	will not remove it, since its reference
1226 			 *	count is at least 2.
1227 			 */
1228 
1229 			object->shadow = backing_object->shadow;
1230 			vm_object_reference(object->shadow);
1231 			object->shadow_offset += backing_object->shadow_offset;
1232 
1233 			/*
1234 			 *	Backing object might have had a copy pointer
1235 			 *	to us.  If it did, clear it.
1236 			 */
1237 			if (backing_object->copy == object) {
1238 				backing_object->copy = NULL;
1239 			}
1240 
1241 			/*	Drop the reference count on backing_object.
1242 			 *	Since its ref_count was at least 2, it
1243 			 *	will not vanish; so we don't need to call
1244 			 *	vm_object_deallocate.
1245 			 */
1246 			backing_object->ref_count--;
1247 			vm_object_unlock(backing_object);
1248 
1249 			object_bypasses ++;
1250 
1251 		}
1252 
1253 		/*
1254 		 *	Try again with this object's new backing object.
1255 		 */
1256 	}
1257 }
1258 
1259 /*
1260  *	vm_object_page_remove: [internal]
1261  *
1262  *	Removes all physical pages in the specified
1263  *	object range from the object's list of pages.
1264  *
1265  *	The object must be locked.
1266  */
1267 void
1268 vm_object_page_remove(object, start, end)
1269 	register vm_object_t	object;
1270 	register vm_offset_t	start;
1271 	register vm_offset_t	end;
1272 {
1273 	register vm_page_t	p, next;
1274 
1275 	if (object == NULL)
1276 		return;
1277 
1278 	for (p = object->memq.tqh_first; p != NULL; p = next) {
1279 		next = p->listq.tqe_next;
1280 		if ((start <= p->offset) && (p->offset < end)) {
1281 			pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
1282 			vm_page_lock_queues();
1283 			vm_page_free(p);
1284 			vm_page_unlock_queues();
1285 		}
1286 	}
1287 }
1288 
1289 /*
1290  *	Routine:	vm_object_coalesce
1291  *	Function:	Coalesces two objects backing up adjoining
1292  *			regions of memory into a single object.
1293  *
1294  *	returns TRUE if objects were combined.
1295  *
1296  *	NOTE:	Only works at the moment if the second object is NULL -
1297  *		if it's not, which object do we lock first?
1298  *
1299  *	Parameters:
1300  *		prev_object	First object to coalesce
1301  *		prev_offset	Offset into prev_object
1302  *		next_object	Second object into coalesce
1303  *		next_offset	Offset into next_object
1304  *
1305  *		prev_size	Size of reference to prev_object
1306  *		next_size	Size of reference to next_object
1307  *
1308  *	Conditions:
1309  *	The object must *not* be locked.
1310  */
1311 boolean_t
1312 vm_object_coalesce(prev_object, next_object,
1313 			prev_offset, next_offset,
1314 			prev_size, next_size)
1315 
1316 	register vm_object_t	prev_object;
1317 	vm_object_t	next_object;
1318 	vm_offset_t	prev_offset, next_offset;
1319 	vm_size_t	prev_size, next_size;
1320 {
1321 	vm_size_t	newsize;
1322 
1323 #ifdef	lint
1324 	next_offset++;
1325 #endif
1326 
1327 	if (next_object != NULL) {
1328 		return(FALSE);
1329 	}
1330 
1331 	if (prev_object == NULL) {
1332 		return(TRUE);
1333 	}
1334 
1335 	vm_object_lock(prev_object);
1336 
1337 	/*
1338 	 *	Try to collapse the object first
1339 	 */
1340 	vm_object_collapse(prev_object);
1341 
1342 	/*
1343 	 *	Can't coalesce if:
1344 	 *	. more than one reference
1345 	 *	. paged out
1346 	 *	. shadows another object
1347 	 *	. has a copy elsewhere
1348 	 *	(any of which mean that the pages not mapped to
1349 	 *	prev_entry may be in use anyway)
1350 	 */
1351 
1352 	if (prev_object->ref_count > 1 ||
1353 		prev_object->pager != NULL ||
1354 		prev_object->shadow != NULL ||
1355 		prev_object->copy != NULL) {
1356 		vm_object_unlock(prev_object);
1357 		return(FALSE);
1358 	}
1359 
1360 	/*
1361 	 *	Remove any pages that may still be in the object from
1362 	 *	a previous deallocation.
1363 	 */
1364 
1365 	vm_object_page_remove(prev_object,
1366 			prev_offset + prev_size,
1367 			prev_offset + prev_size + next_size);
1368 
1369 	/*
1370 	 *	Extend the object if necessary.
1371 	 */
1372 	newsize = prev_offset + prev_size + next_size;
1373 	if (newsize > prev_object->size)
1374 		prev_object->size = newsize;
1375 
1376 	vm_object_unlock(prev_object);
1377 	return(TRUE);
1378 }
1379 
1380 /*
1381  *	vm_object_print:	[ debug ]
1382  */
1383 void
1384 vm_object_print(object, full)
1385 	vm_object_t	object;
1386 	boolean_t	full;
1387 {
1388 	register vm_page_t	p;
1389 	extern indent;
1390 
1391 	register int count;
1392 
1393 	if (object == NULL)
1394 		return;
1395 
1396 	iprintf("Object 0x%x: size=0x%x, res=%d, ref=%d, ",
1397 		(int) object, (int) object->size,
1398 		object->resident_page_count, object->ref_count);
1399 	printf("pager=0x%x+0x%x, shadow=(0x%x)+0x%x\n",
1400 	       (int) object->pager, (int) object->paging_offset,
1401 	       (int) object->shadow, (int) object->shadow_offset);
1402 	printf("cache: next=0x%x, prev=0x%x\n",
1403 	       object->cached_list.tqe_next, object->cached_list.tqe_prev);
1404 
1405 	if (!full)
1406 		return;
1407 
1408 	indent += 2;
1409 	count = 0;
1410 	for (p = object->memq.tqh_first; p != NULL; p = p->listq.tqe_next) {
1411 		if (count == 0)
1412 			iprintf("memory:=");
1413 		else if (count == 6) {
1414 			printf("\n");
1415 			iprintf(" ...");
1416 			count = 0;
1417 		} else
1418 			printf(",");
1419 		count++;
1420 
1421 		printf("(off=0x%x,page=0x%x)", p->offset, VM_PAGE_TO_PHYS(p));
1422 	}
1423 	if (count != 0)
1424 		printf("\n");
1425 	indent -= 2;
1426 }
1427