xref: /original-bsd/sys/vm/vm_page.c (revision dd262573)
1 /*
2  * Copyright (c) 1985, Avadis Tevanian, Jr., Michael Wayne Young
3  * Copyright (c) 1987 Carnegie-Mellon University
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * The CMU software License Agreement specifies the terms and conditions
11  * for use and redistribution.
12  *
13  *	@(#)vm_page.c	7.1 (Berkeley) 12/05/90
14  */
15 
16 /*
17  *	Resident memory management module.
18  */
19 
20 #include "types.h"
21 #include "../vm/vm_param.h"
22 #include "../vm/vm_map.h"
23 #include "../vm/vm_page.h"
24 #include "../vm/vm_prot.h"
25 #include "../vm/vm_statistics.h"
26 #include "../vm/vm_pageout.h"
27 #include "../vm/pmap.h"
28 
29 /*
30  *	Associated with page of user-allocatable memory is a
31  *	page structure.
32  */
33 
34 queue_head_t	*vm_page_buckets;		/* Array of buckets */
35 int		vm_page_bucket_count = 0;	/* How big is array? */
36 int		vm_page_hash_mask;		/* Mask for hash function */
37 simple_lock_data_t	bucket_lock;		/* lock for all buckets XXX */
38 
39 vm_size_t	page_size  = 4096;
40 vm_size_t	page_mask  = 4095;
41 int		page_shift = 12;
42 
43 queue_head_t	vm_page_queue_free;
44 queue_head_t	vm_page_queue_active;
45 queue_head_t	vm_page_queue_inactive;
46 simple_lock_data_t	vm_page_queue_lock;
47 simple_lock_data_t	vm_page_queue_free_lock;
48 
49 vm_page_t	vm_page_array;
50 long		first_page;
51 long		last_page;
52 vm_offset_t	first_phys_addr;
53 vm_offset_t	last_phys_addr;
54 
55 int	vm_page_free_count;
56 int	vm_page_active_count;
57 int	vm_page_inactive_count;
58 int	vm_page_wire_count;
59 int	vm_page_laundry_count;
60 
61 int	vm_page_free_target = 0;
62 int	vm_page_free_min = 0;
63 int	vm_page_inactive_target = 0;
64 int	vm_page_free_reserved = 0;
65 
66 /*
67  *	vm_set_page_size:
68  *
69  *	Sets the page size, perhaps based upon the memory
70  *	size.  Must be called before any use of page-size
71  *	dependent functions.
72  *
73  *	Sets page_shift and page_mask from page_size.
74  */
75 void vm_set_page_size()
76 {
77 	page_mask = page_size - 1;
78 
79 	if ((page_mask & page_size) != 0)
80 		panic("vm_set_page_size: page size not a power of two");
81 
82 	for (page_shift = 0; ; page_shift++)
83 		if ((1 << page_shift) == page_size)
84 			break;
85 }
86 
87 
88 /*
89  *	vm_page_startup:
90  *
91  *	Initializes the resident memory module.
92  *
93  *	Allocates memory for the page cells, and
94  *	for the object/offset-to-page hash table headers.
95  *	Each page cell is initialized and placed on the free list.
96  */
97 vm_offset_t vm_page_startup(start, end, vaddr)
98 	register vm_offset_t	start;
99 	vm_offset_t	end;
100 	register vm_offset_t	vaddr;
101 {
102 	register vm_offset_t	mapped;
103 	register vm_page_t	m;
104 	register queue_t	bucket;
105 	vm_size_t		npages;
106 	register vm_offset_t	new_start;
107 	int			i;
108 	vm_offset_t		pa;
109 
110 	extern	vm_offset_t	kentry_data;
111 	extern	vm_size_t	kentry_data_size;
112 
113 
114 	/*
115 	 *	Initialize the locks
116 	 */
117 
118 	simple_lock_init(&vm_page_queue_free_lock);
119 	simple_lock_init(&vm_page_queue_lock);
120 
121 	/*
122 	 *	Initialize the queue headers for the free queue,
123 	 *	the active queue and the inactive queue.
124 	 */
125 
126 	queue_init(&vm_page_queue_free);
127 	queue_init(&vm_page_queue_active);
128 	queue_init(&vm_page_queue_inactive);
129 
130 	/*
131 	 *	Allocate (and initialize) the hash table buckets.
132 	 *
133 	 *	The number of buckets MUST BE a power of 2, and
134 	 *	the actual value is the next power of 2 greater
135 	 *	than the number of physical pages in the system.
136 	 *
137 	 *	Note:
138 	 *		This computation can be tweaked if desired.
139 	 */
140 
141 	vm_page_buckets = (queue_t) vaddr;
142 	bucket = vm_page_buckets;
143 	if (vm_page_bucket_count == 0) {
144 		vm_page_bucket_count = 1;
145 		while (vm_page_bucket_count < atop(end - start))
146 			vm_page_bucket_count <<= 1;
147 	}
148 
149 	vm_page_hash_mask = vm_page_bucket_count - 1;
150 
151 	/*
152 	 *	Validate these addresses.
153 	 */
154 
155 	new_start = round_page(((queue_t)start) + vm_page_bucket_count);
156 	mapped = vaddr;
157 	vaddr = pmap_map(mapped, start, new_start,
158 			VM_PROT_READ|VM_PROT_WRITE);
159 	start = new_start;
160 	blkclr((caddr_t) mapped, vaddr - mapped);
161 	mapped = vaddr;
162 
163 	for (i = vm_page_bucket_count; i--;) {
164 		queue_init(bucket);
165 		bucket++;
166 	}
167 
168 	simple_lock_init(&bucket_lock);
169 
170 	/*
171 	 *	round (or truncate) the addresses to our page size.
172 	 */
173 
174 	end = trunc_page(end);
175 
176 	/*
177 	 *	Pre-allocate maps and map entries that cannot be dynamically
178 	 *	allocated via malloc().  The maps include the kernel_map and
179 	 *	kmem_map which must be initialized before malloc() will
180 	 *	work (obviously).  Also could include pager maps which would
181 	 *	be allocated before kmeminit.
182 	 *
183 	 *	Allow some kernel map entries... this should be plenty
184 	 *	since people shouldn't be cluttering up the kernel
185 	 *	map (they should use their own maps).
186 	 */
187 
188 	kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
189 			   MAX_KMAPENT * sizeof(struct vm_map_entry);
190 	kentry_data_size = round_page(kentry_data_size);
191 	kentry_data = (vm_offset_t) vaddr;
192 	vaddr += kentry_data_size;
193 
194 	/*
195 	 *	Validate these zone addresses.
196 	 */
197 
198 	new_start = start + (vaddr - mapped);
199 	pmap_map(mapped, start, new_start, VM_PROT_READ|VM_PROT_WRITE);
200 	blkclr((caddr_t) mapped, (vaddr - mapped));
201 	mapped = vaddr;
202 	start = new_start;
203 
204 	/*
205  	 *	Compute the number of pages of memory that will be
206 	 *	available for use (taking into account the overhead
207 	 *	of a page structure per page).
208 	 */
209 
210 	vm_page_free_count = npages =
211 		(end - start)/(PAGE_SIZE + sizeof(struct vm_page));
212 
213 	/*
214 	 *	Initialize the mem entry structures now, and
215 	 *	put them in the free queue.
216 	 */
217 
218 	m = vm_page_array = (vm_page_t) vaddr;
219 	first_page = start;
220 	first_page += npages*sizeof(struct vm_page);
221 	first_page = atop(round_page(first_page));
222 	last_page  = first_page + npages - 1;
223 
224 	first_phys_addr = ptoa(first_page);
225 	last_phys_addr  = ptoa(last_page) + PAGE_MASK;
226 
227 	/*
228 	 *	Validate these addresses.
229 	 */
230 
231 	new_start = start + (round_page(m + npages) - mapped);
232 	mapped = pmap_map(mapped, start, new_start,
233 			VM_PROT_READ|VM_PROT_WRITE);
234 	start = new_start;
235 
236 	/*
237 	 *	Clear all of the page structures
238 	 */
239 	blkclr((caddr_t)m, npages * sizeof(*m));
240 
241 	pa = first_phys_addr;
242 	while (npages--) {
243 		m->copy_on_write = FALSE;
244 		m->wanted = FALSE;
245 		m->inactive = FALSE;
246 		m->active = FALSE;
247 		m->busy = FALSE;
248 		m->object = VM_OBJECT_NULL;
249 		m->phys_addr = pa;
250 		queue_enter(&vm_page_queue_free, m, vm_page_t, pageq);
251 		m++;
252 		pa += PAGE_SIZE;
253 	}
254 
255 	/*
256 	 *	Initialize vm_pages_needed lock here - don't wait for pageout
257 	 *	daemon	XXX
258 	 */
259 	simple_lock_init(&vm_pages_needed_lock);
260 
261 	return(mapped);
262 }
263 
264 /*
265  *	vm_page_hash:
266  *
267  *	Distributes the object/offset key pair among hash buckets.
268  *
269  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
270  */
271 #define vm_page_hash(object, offset) \
272 	(((unsigned)object+(unsigned)atop(offset))&vm_page_hash_mask)
273 
274 /*
275  *	vm_page_insert:		[ internal use only ]
276  *
277  *	Inserts the given mem entry into the object/object-page
278  *	table and object list.
279  *
280  *	The object and page must be locked.
281  */
282 
283 void vm_page_insert(mem, object, offset)
284 	register vm_page_t	mem;
285 	register vm_object_t	object;
286 	register vm_offset_t	offset;
287 {
288 	register queue_t	bucket;
289 	int			spl;
290 
291 	VM_PAGE_CHECK(mem);
292 
293 	if (mem->tabled)
294 		panic("vm_page_insert: already inserted");
295 
296 	/*
297 	 *	Record the object/offset pair in this page
298 	 */
299 
300 	mem->object = object;
301 	mem->offset = offset;
302 
303 	/*
304 	 *	Insert it into the object_object/offset hash table
305 	 */
306 
307 	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
308 	spl = splimp();
309 	simple_lock(&bucket_lock);
310 	queue_enter(bucket, mem, vm_page_t, hashq);
311 	simple_unlock(&bucket_lock);
312 	(void) splx(spl);
313 
314 	/*
315 	 *	Now link into the object's list of backed pages.
316 	 */
317 
318 	queue_enter(&object->memq, mem, vm_page_t, listq);
319 	mem->tabled = TRUE;
320 
321 	/*
322 	 *	And show that the object has one more resident
323 	 *	page.
324 	 */
325 
326 	object->resident_page_count++;
327 }
328 
329 /*
330  *	vm_page_remove:		[ internal use only ]
331  *
332  *	Removes the given mem entry from the object/offset-page
333  *	table and the object page list.
334  *
335  *	The object and page must be locked.
336  */
337 
338 void vm_page_remove(mem)
339 	register vm_page_t	mem;
340 {
341 	register queue_t	bucket;
342 	int			spl;
343 
344 	VM_PAGE_CHECK(mem);
345 
346 	if (!mem->tabled)
347 		return;
348 
349 	/*
350 	 *	Remove from the object_object/offset hash table
351 	 */
352 
353 	bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
354 	spl = splimp();
355 	simple_lock(&bucket_lock);
356 	queue_remove(bucket, mem, vm_page_t, hashq);
357 	simple_unlock(&bucket_lock);
358 	(void) splx(spl);
359 
360 	/*
361 	 *	Now remove from the object's list of backed pages.
362 	 */
363 
364 	queue_remove(&mem->object->memq, mem, vm_page_t, listq);
365 
366 	/*
367 	 *	And show that the object has one fewer resident
368 	 *	page.
369 	 */
370 
371 	mem->object->resident_page_count--;
372 
373 	mem->tabled = FALSE;
374 }
375 
376 /*
377  *	vm_page_lookup:
378  *
379  *	Returns the page associated with the object/offset
380  *	pair specified; if none is found, VM_PAGE_NULL is returned.
381  *
382  *	The object must be locked.  No side effects.
383  */
384 
385 vm_page_t vm_page_lookup(object, offset)
386 	register vm_object_t	object;
387 	register vm_offset_t	offset;
388 {
389 	register vm_page_t	mem;
390 	register queue_t	bucket;
391 	int			spl;
392 
393 	/*
394 	 *	Search the hash table for this object/offset pair
395 	 */
396 
397 	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
398 
399 	spl = splimp();
400 	simple_lock(&bucket_lock);
401 	mem = (vm_page_t) queue_first(bucket);
402 	while (!queue_end(bucket, (queue_entry_t) mem)) {
403 		VM_PAGE_CHECK(mem);
404 		if ((mem->object == object) && (mem->offset == offset)) {
405 			simple_unlock(&bucket_lock);
406 			splx(spl);
407 			return(mem);
408 		}
409 		mem = (vm_page_t) queue_next(&mem->hashq);
410 	}
411 
412 	simple_unlock(&bucket_lock);
413 	splx(spl);
414 	return(VM_PAGE_NULL);
415 }
416 
417 /*
418  *	vm_page_rename:
419  *
420  *	Move the given memory entry from its
421  *	current object to the specified target object/offset.
422  *
423  *	The object must be locked.
424  */
425 void vm_page_rename(mem, new_object, new_offset)
426 	register vm_page_t	mem;
427 	register vm_object_t	new_object;
428 	vm_offset_t		new_offset;
429 {
430 	if (mem->object == new_object)
431 		return;
432 
433 	vm_page_lock_queues();	/* keep page from moving out from
434 				   under pageout daemon */
435     	vm_page_remove(mem);
436 	vm_page_insert(mem, new_object, new_offset);
437 	vm_page_unlock_queues();
438 }
439 
440 void		vm_page_init(mem, object, offset)
441 	vm_page_t	mem;
442 	vm_object_t	object;
443 	vm_offset_t	offset;
444 {
445 #define	vm_page_init(mem, object, offset)  {\
446 		(mem)->busy = TRUE; \
447 		(mem)->tabled = FALSE; \
448 		vm_page_insert((mem), (object), (offset)); \
449 		(mem)->absent = FALSE; \
450 		(mem)->fictitious = FALSE; \
451 		(mem)->page_lock = VM_PROT_NONE; \
452 		(mem)->unlock_request = VM_PROT_NONE; \
453 		(mem)->laundry = FALSE; \
454 		(mem)->active = FALSE; \
455 		(mem)->inactive = FALSE; \
456 		(mem)->wire_count = 0; \
457 		(mem)->clean = TRUE; \
458 		(mem)->copy_on_write = FALSE; \
459 		(mem)->fake = TRUE; \
460 	}
461 
462 	vm_page_init(mem, object, offset);
463 }
464 
465 /*
466  *	vm_page_alloc:
467  *
468  *	Allocate and return a memory cell associated
469  *	with this VM object/offset pair.
470  *
471  *	Object must be locked.
472  */
473 vm_page_t vm_page_alloc(object, offset)
474 	vm_object_t	object;
475 	vm_offset_t	offset;
476 {
477 	register vm_page_t	mem;
478 	int		spl;
479 
480 	spl = splimp();				/* XXX */
481 	simple_lock(&vm_page_queue_free_lock);
482 	if (queue_empty(&vm_page_queue_free)) {
483 		simple_unlock(&vm_page_queue_free_lock);
484 		splx(spl);
485 		return(VM_PAGE_NULL);
486 	}
487 
488 	queue_remove_first(&vm_page_queue_free, mem, vm_page_t, pageq);
489 
490 	vm_page_free_count--;
491 	simple_unlock(&vm_page_queue_free_lock);
492 	splx(spl);
493 
494 	vm_page_init(mem, object, offset);
495 
496 	/*
497 	 *	Decide if we should poke the pageout daemon.
498 	 *	We do this if the free count is less than the low
499 	 *	water mark, or if the free count is less than the high
500 	 *	water mark (but above the low water mark) and the inactive
501 	 *	count is less than its target.
502 	 *
503 	 *	We don't have the counts locked ... if they change a little,
504 	 *	it doesn't really matter.
505 	 */
506 
507 	if ((vm_page_free_count < vm_page_free_min) ||
508 			((vm_page_free_count < vm_page_free_target) &&
509 			(vm_page_inactive_count < vm_page_inactive_target)))
510 		thread_wakeup(&vm_pages_needed);
511 	return(mem);
512 }
513 
514 /*
515  *	vm_page_free:
516  *
517  *	Returns the given page to the free list,
518  *	disassociating it with any VM object.
519  *
520  *	Object and page must be locked prior to entry.
521  */
522 void vm_page_free(mem)
523 	register vm_page_t	mem;
524 {
525 	vm_page_remove(mem);
526 	if (mem->active) {
527 		queue_remove(&vm_page_queue_active, mem, vm_page_t, pageq);
528 		mem->active = FALSE;
529 		vm_page_active_count--;
530 	}
531 
532 	if (mem->inactive) {
533 		queue_remove(&vm_page_queue_inactive, mem, vm_page_t, pageq);
534 		mem->inactive = FALSE;
535 		vm_page_inactive_count--;
536 	}
537 
538 	if (!mem->fictitious) {
539 		int	spl;
540 
541 		spl = splimp();
542 		simple_lock(&vm_page_queue_free_lock);
543 		queue_enter(&vm_page_queue_free, mem, vm_page_t, pageq);
544 
545 		vm_page_free_count++;
546 		simple_unlock(&vm_page_queue_free_lock);
547 		splx(spl);
548 	}
549 }
550 
551 /*
552  *	vm_page_wire:
553  *
554  *	Mark this page as wired down by yet
555  *	another map, removing it from paging queues
556  *	as necessary.
557  *
558  *	The page queues must be locked.
559  */
560 void vm_page_wire(mem)
561 	register vm_page_t	mem;
562 {
563 	VM_PAGE_CHECK(mem);
564 
565 	if (mem->wire_count == 0) {
566 		if (mem->active) {
567 			queue_remove(&vm_page_queue_active, mem, vm_page_t,
568 						pageq);
569 			vm_page_active_count--;
570 			mem->active = FALSE;
571 		}
572 		if (mem->inactive) {
573 			queue_remove(&vm_page_queue_inactive, mem, vm_page_t,
574 						pageq);
575 			vm_page_inactive_count--;
576 			mem->inactive = FALSE;
577 		}
578 		vm_page_wire_count++;
579 	}
580 	mem->wire_count++;
581 }
582 
583 /*
584  *	vm_page_unwire:
585  *
586  *	Release one wiring of this page, potentially
587  *	enabling it to be paged again.
588  *
589  *	The page queues must be locked.
590  */
591 void vm_page_unwire(mem)
592 	register vm_page_t	mem;
593 {
594 	VM_PAGE_CHECK(mem);
595 
596 	mem->wire_count--;
597 	if (mem->wire_count == 0) {
598 		queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq);
599 		vm_page_active_count++;
600 		mem->active = TRUE;
601 		vm_page_wire_count--;
602 	}
603 }
604 
605 /*
606  *	vm_page_deactivate:
607  *
608  *	Returns the given page to the inactive list,
609  *	indicating that no physical maps have access
610  *	to this page.  [Used by the physical mapping system.]
611  *
612  *	The page queues must be locked.
613  */
614 void vm_page_deactivate(m)
615 	register vm_page_t	m;
616 {
617 	VM_PAGE_CHECK(m);
618 
619 	/*
620 	 *	Only move active pages -- ignore locked or already
621 	 *	inactive ones.
622 	 */
623 
624 	if (m->active) {
625 		pmap_clear_reference(VM_PAGE_TO_PHYS(m));
626 		queue_remove(&vm_page_queue_active, m, vm_page_t, pageq);
627 		queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq);
628 		m->active = FALSE;
629 		m->inactive = TRUE;
630 		vm_page_active_count--;
631 		vm_page_inactive_count++;
632 		if (pmap_is_modified(VM_PAGE_TO_PHYS(m)))
633 			m->clean = FALSE;
634 		m->laundry = !m->clean;
635 	}
636 }
637 
638 /*
639  *	vm_page_activate:
640  *
641  *	Put the specified page on the active list (if appropriate).
642  *
643  *	The page queues must be locked.
644  */
645 
646 void vm_page_activate(m)
647 	register vm_page_t	m;
648 {
649 	VM_PAGE_CHECK(m);
650 
651 	if (m->inactive) {
652 		queue_remove(&vm_page_queue_inactive, m, vm_page_t,
653 						pageq);
654 		vm_page_inactive_count--;
655 		m->inactive = FALSE;
656 	}
657 	if (m->wire_count == 0) {
658 		if (m->active)
659 			panic("vm_page_activate: already active");
660 
661 		queue_enter(&vm_page_queue_active, m, vm_page_t, pageq);
662 		m->active = TRUE;
663 		vm_page_active_count++;
664 	}
665 }
666 
667 /*
668  *	vm_page_zero_fill:
669  *
670  *	Zero-fill the specified page.
671  *	Written as a standard pagein routine, to
672  *	be used by the zero-fill object.
673  */
674 
675 boolean_t vm_page_zero_fill(m)
676 	vm_page_t	m;
677 {
678 	VM_PAGE_CHECK(m);
679 
680 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
681 	return(TRUE);
682 }
683 
684 /*
685  *	vm_page_copy:
686  *
687  *	Copy one page to another
688  */
689 
690 void vm_page_copy(src_m, dest_m)
691 	vm_page_t	src_m;
692 	vm_page_t	dest_m;
693 {
694 	VM_PAGE_CHECK(src_m);
695 	VM_PAGE_CHECK(dest_m);
696 
697 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
698 }
699